Technologies for the Extraction, Separation and Purification Of

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Nepal Journal of Biotechnology. Dec. 2018 Vol. 6, No. 1: 74-91 ISSN 2091-1130 (Print)/ISSN 2467-9319 (online) REVIEW ARTICLE Technologies for the Extraction, Separation and Purification of polyphenols – A Review Shyam Suwal1* and Alice Marciniak2 1 Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej Denmark 2Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Université Laval, Québec, Canada Abstract Polyphenols are high molecular weight, organic molecules mainly found in plant kingdom. They are mostly known for their positive impact on health, specifically for their antioxidant activity. Indeed, they are widely studied for the prevention of multiple diseases such as cancer, inflammatory, cardiovascular and neurodegenerative diseases. Nevertheless, extractions of these growing interest molecules remain challenging using conventional methods such as solvent extraction. That is why recent researches have focused on improving the extraction of polyphenol by using different technologies such as ultrasound, microwave, pressurized liquid, pulsed electric field, supercritical fluid and high hydrostatic pressure. In the current context, the assisted- extraction should demonstrate their potential to improve the extraction efficiency while being cost-effective and with a low environmental impact. To this end, technologies ought to, for instance, increase the solubility of polyphenol and the permeability of the cell wall. Consequently, this review is focused on the use and potential of these technologies to improve polyphenol extractions from plants as well as their purification using various methods. It discusses of the advantages and disadvantages with some examples of all these technologies assisted-extraction in comparison with conventional extraction method as well as purification technology. Keywords: Polyphenols, Conventional extraction process, Emerging technologies *Corresponding Author Email: [email protected] Introduction them very interesting as an ingredient of The prevention and treatment of chronic diseases functional foods or nutraceuticals [3]. Different mainly cardiovascular diseases (CVD) and cancer beneficial roles on human health such as are the major challenge in modern day health care antihypertensive anticancer, neuroprotector etc. system. About 60% of deaths were caused by the have been confirmed [6]. Therefore, an immense chronic diseases in 2001 and according to the interest of researchers on polyphenols mainly in study of World Health Organization (WHO) the their physiological roles (both in vitro and in vivo), heart disease will overcome the infectious disease their extraction processes and product by 2020 [1]. Therefore, the burden (economical as development in an industrial scale can be noticed. well as social) of chronic diseases is huge and However, extraction of such molecules from the tends to increase day by day alarming an urgent complex plant matrices is the rate limiting factor. need of preventive measures. Undoubtedly, the Several methods of polyphenol extraction from primary cause of these diseases is associated with variety of food and food by-products exist such as unhealthy diets. solvent (Soxhlet), ultrasound assisted, microwave There is an increasing interest in diets and assisted, pressurized liquid, pulse electric field, nutrition which has resulted in an increased supercritical fluid and high hydrostatic pressure importance and beliefs in functional foods and extractions. The extraction methods not only affect nutraceuticals [2]. Several bioactive molecules the input cost, final productivity and purity but (peptides, vitamins, polyunsaturated fatty acids also their biological activity in laboratory assay [7, and polyphenols) have been isolated from food 8]. A cost effective and environment friendly sources of plant as well as animal origin and are method are thus desired for the isolation of claimed to possess health benefits against CVD polyphenols. A separation and purification and cancer [3-5]. Very diverse nature of process is another vital step in product polyphenol in their chemical composition and development with polyphenols. Therefore, the their wide spread prevalence in edible plant make ©NJB, Biotechnology Society of Nepal 74 Nepjol.info/index.php/njb Nepal Journal of Biotechnology. Dec. 2018 Vol. 6, No. 1: 74-91 Surname of autheor et al. present study aims to review different techniques used for the isolation of Figure 1: Chemical structure of principal polyphenols (adapted from [3]). polyphenols published in the literature. In from a simple to polymerized structure and may addition, methods of fractionation and be found in a complex form with some purification of extracted polyphenol or free carbohydrate, protein or plant substances making polyphenols present in liquid beverages are also them highly insoluble [10]. Furthermore, a single discussed may contain several polyphenols whose concentration (several mg to few g per kg or L), Polyphenols and health claims stability and activity vary from one to another. Polyphenols are readily available in the plant- More than 8000 phenolic compounds are known derived food sources consumed by human in to exist and about 4000 flavonoids have been daily basis such as fruits, vegetables, cereals, tea, identified [11]. Further details about different wine etc. [3]. They are responsible for the major type of phenolic compounds in food sources, their organoleptic properties such as color and taste of characteristics and relevance can be found in the plant-derived food and beverages [9]. Plant literature [3, 12]. polyphenols comprise of diverse groups of Polyphenols are very well known as the most compounds that make them difficult to be abundant antioxidant in the diet and they have characterized except for some well-known ones been claimed to possess potential benefits against whose structure, chemical composition and cardiovascular diseases, cancer and functionality are well defined. Ample of neurodegenerative diseases in vitro as well as in polyphenol structures (having several hydroxyl vivo [6, 13, 14]. Due to the vast structural diversity groups in aromatic ring) are found in plants are of polyphenols many of them have not yet been therefore classified according to the number of identified and characterized consequently the phenol rings to one another. They can be mainly functional mechanism are not well established. classified into the phenolic acids, flavonoids Amongst them, the tea polyphenol: catechin also (flavones, anthocyanidins), stilbenes, and lignans known as epigallocatechin-3-gallate (EGCG) is (cinamic acid) as shown in figure 1. Each of these well characterized and a large number of phenolic compounds can be subclassified researches are focused on its mode of action. according to the type of heterocycle involved. The Lorenz [14] discussed the different mechanisms of chemical nature of phenolic compound can vary ©NJB, Biotechnology Society of Nepal 75 Nepjol.info/index.php/njb Nepal Journal of Biotechnology. Dec. 2018 Vol. 6, No. 1: 74-91 Surname of autheor et al. anticancer (apoptosis, inhibition of tumor growth 1. Conventional Solvent extraction and inhibition of telomerase), antioxidant (free Solvent extraction (SE) is one of the conventional radical scavenging, chelation of metal ions, methods of extraction of bioactive molecules from inhibition of ROS producing enzyme and plant sources but is still widely used for the reduction of inflammatory cytokines), extraction of various natural bioactive antihypertensive (vasodilation) and compounds specially the phenolic compounds neuroprotective (antineuro inflammatory effect, from various sources [20]. Pretreated plant activity of EGCG in the cellular and molecular material (washing, drying, etc.) are exposed to levels. In addition, a detail pharmacokinetic study varieties of solvents such as, water, hexane, ether, (absorption, distribution metabolism and chloroform, acetonitrile, benzene, ethanol and elimination) of tea polyphenols is recently methanol which take up the molecules of interest reviewed by Clifford et al. [15]. (polyphenols). However, the efficiency of solvent Extraction process extraction methods is affected by the solvent used (solubility of phenolic compounds depend on the Due to positive effects on human health, phenolic solvent type or its polarity) and the nature of compounds (isolated form or in extract) could be phenolics (degree of polymerization) and their used as food supplements (functional food) or interaction with other plant or food constituents nutraceuticals. To do so, a cost-effective methods [10]. The choice of extraction techniques have to for the extraction and separation of polyphenols is take into consideration of the location of phenolic necessary. A lot of research has focused on the compounds in the plant, most of which are stored analysis of biological activities and in the vacuoles only extractable by alcoholic or characterization of phenolic compound and the organic solvents except that are bound to extraction process are often ignored. The insoluble carbohydrate or protein [21]. Soxhlet extraction and isolation of polyphenols remain extraction also known as solid-liquid extraction is challenging especially due to structural one of the first techniques known to be used for complexity and instability (degradation and the extraction of polyphenols compounds [22]. reaction during processing) [9, 11]. Therefore, the This technique is more often considered as a efficiency
Recommended publications
  • Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability

    Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability

    molecules Review Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability Leila Arfaoui Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia; [email protected]; Tel.: +966-0126401000 (ext. 41612) Abstract: Dietary plant polyphenols are natural bioactive compounds that are increasingly attracting the attention of food scientists and nutritionists because of their nutraceutical properties. In fact, many studies have shown that polyphenol-rich diets have protective effects against most chronic diseases. However, these health benefits are strongly related to both polyphenol content and bioavailability, which in turn depend on their origin, food matrix, processing, digestion, and cellular metabolism. Although most fruits and vegetables are valuable sources of polyphenols, they are not usually con- sumed raw. Instead, they go through some processing steps, either industrially or domestically (e.g., cooling, heating, drying, fermentation, etc.), that affect their content, bioaccessibility, and bioavail- ability. This review summarizes the status of knowledge on the possible (positive or negative) effects of commonly used food-processing techniques on phenolic compound content and bioavailability in fruits and vegetables. These effects depend on the plant type and applied processing parameters (type, duration, media, and intensity). This review attempts to shed light on the importance of more comprehensive dietary guidelines that consider the recommendations of processing parameters to take full advantage of phenolic compounds toward healthier foods. Citation: Arfaoui, L. Dietary Plant Keywords: plant polyphenols; food processing; phenolic content; bioavailability; bioaccessibility Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959.
  • Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies

    Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies

    Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5].
  • Phenolics in Human Health

    Phenolics in Human Health

    International Journal of Chemical Engineering and Applications, Vol. 5, No. 5, October 2014 Phenolics in Human Health T. Ozcan, A. Akpinar-Bayizit, L. Yilmaz-Ersan, and B. Delikanli with proteins. The high antioxidant capacity makes Abstract—Recent research focuses on health benefits of polyphenols as an important key factor which is involved in phytochemicals, especially antioxidant and antimicrobial the chemical defense of plants against pathogens and properties of phenolic compounds, which is known to exert predators and in plant-plant interferences [9]. preventive activity against infectious and degenerative diseases, inflammation and allergies via antioxidant, antimicrobial and proteins/enzymes neutralization/modulation mechanisms. Phenolic compounds are reactive metabolites in a wide range of plant-derived foods and mainly divided in four groups: phenolic acids, flavonoids, stilbenes and tannins. They work as terminators of free radicals and chelators of metal ions that are capable of catalyzing lipid oxidation. Therefore, this review examines the functional properties of phenolics. Index Terms—Health, functional, phenolic compounds. I. INTRODUCTION In recent years, fruits and vegetables receive considerable interest depending on type, number, and mode of action of the different components, so called as “phytochemicals”, for their presumed role in the prevention of various chronic diseases including cancers and cardiovascular diseases. Plants are rich sources of functional dietary micronutrients, fibers and phytochemicals, such
  • A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health

    A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health

    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits.
  • Sensory and Physico-Chemical Analyses of Roasted Marama Beans [Tylosema Esculentum (Burchell) A

    Sensory and Physico-Chemical Analyses of Roasted Marama Beans [Tylosema Esculentum (Burchell) A

    Sensory and physico-chemical analyses of roasted marama beans [Tylosema esculentum (Burchell) A. Schreiber] with specific focus on compounds that may contribute to bitterness Patricia Nyembwe , Amanda Minnaar , Kwaku G. Duodu, Henriette L. de Kock* Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa *Corresponding author: [email protected] Tel: +27 12 420 3238; Fax: +27 12 420 2839 ABSTRACT The role of phenolics and saponins in contributing to bitterness in marama beans, an underutilized legume, especially when roasted, was investigated. Marama beans were roasted at 150 °C for 20, 25 or 30 min, dehulled to separate cotyledons, and pastes were prepared from these. Water extracts were prepared from full fat and defatted flours from roasted and unroasted marama cotyledons. A sensory panel evaluated the sensory attributes of marama pastes and water extracts. Marama water extracts were analysed for total phenolic content, phenolic composition and saponin content. Roasting marama beans for more than 20 min resulted in negative properties such as bitterness. The major extractable phenolic acids present in marama water extracts were gallic and protocatechuic acids which increased as a function of roasting time. Saponin content of the water extracts was in the range of 55 to 63 mg/L. The identified phenolic acids, saponins and other as yet unidentified compounds may contribute to the perceived bitterness. KEYWORDS: Tylosema esculentum; marama bean water extracts; roasting; descriptive sensory evaluation; bitterness; phenolic compounds; saponins. 1 1. INTRODUCTION There is a search worldwide for food sources to alleviate malnutrition in developing countries due to a shortage of protein-rich foods.
  • Betalains and Phenolics in Red Beetroot (Beta Vulgaris)

    Betalains and Phenolics in Red Beetroot (Beta Vulgaris)

    Betalains and Phenolics in Red Beetroot (Beta vulgaris) Peel Extracts: Extraction and Characterisation Tytti Kujala*, Jyrki Loponen and Kalevi Pihlaja Department of Chemistry, Vatselankatu 2, FIN-20014 University of Turku, Finland. Fax: +3582-333 67 00. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56 c, 343-348 (2001); received January 9/February 12, 2001 Beta vulgaris , Betalains, Phenolics The extraction of red beetroot (Beta vulgaris ) peel betalains and phenolics was compared with two extraction methods and solvents. The content of total phenolics in the extracts was determined according to a modification of the Folin-Ciocalteu method and expressed as gallic acid equivalents (GAE). The profiles of extracts were analysed by high-performance liquid chromatography (HPLC). The compounds of beetroot peel extracted with 80% aqueous methanol were characterised from separated fractions using HPLC- diode array detection (HPLC-DAD) and HPLC- electrospray ionisation-mass spectrometry (HPLC-ESI-MS) tech­ niques. The extraction methods and the choice of solvent affected noticeably the content of individual compounds in the extract. The betalains found in beetroot peel extract were vulgaxanthin I, vulgaxanthin II, indicaxanthin, betanin, prebetanin, isobetanin and neobe- tanin. Also cyclodopa glucoside, /V-formylcyclodopa glucoside, glucoside of dihydroxyindol- carboxylic acid, betalamic acid, L-tryptophan, p-coumaric acid, ferulic acid and traces of un­ identified flavonoids were detected. Introduction acid in their cell walls (Jackman and Smith, 1996). Phenolic compounds are ubiquitous in the plant Except ferulic acid, also other phenolic acids and kingdom and they have been reported to possess phenolic acid conjugates have been reported in many biological effects.
  • Phenolic Compounds in Cereal Grains and Their Health Benefits

    Phenolic Compounds in Cereal Grains and Their Health Benefits

    and antioxidant activity are reported in the Phenolic Compounds in Cereal literature. Unfortunately, it is difficult to make comparisons of phenol and anti- Grains and Their Health Benefits oxidant activity levels in cereals since different methods have been used. The ➤ Whole grain cereals are a good source of phenolics. purpose of this article is to give an overview ➤ Black sorghums contain high levels of the unique 3-deoxyanthocyanidins. of phenolic compounds reported in whole ➤ Oats are the only source of avenanthramides. grain cereals and to compare their phenol and antioxidant activity levels. ➤ Among cereal grains, tannin sorghum and black rice contain the highest antioxidant activity in vitro. Phenolic Acids Phenolic acids are derivatives of benzoic and cinnamic acids (Fig. 1) and are present in all cereals (Table I). There are two Most of the literature on plant phenolics classes of phenolic acids: hydroxybenzoic L. DYKES AND L. W. ROONEY focuses mainly on those in fruits, acids and hydroxycinnamic acids. Hy- TEXAS A&M UNIVERSITY vegetables, wines, and teas (33,50,53,58, droxybenzoic acids include gallic, p- College Station, TX 74). However, many phenolic compounds hydroxybenzoic, vanillic, syringic, and in fruits and vegetables (i.e., phenolic acids protocatechuic acids. The hydroxycinna- esearch has shown that whole grain and flavonoids) are also reported in cereals. mic acids have a C6-C3 structure and Rconsumption helps lower the risk of The different species of grains have a great include coumaric, caffeic, ferulic, and cardiovascular disease, ischemic stroke, deal of diversity in their germplasm sinapic acids. The phenolic acids reported type II diabetes, metabolic syndrome, and resources, which can be exploited.
  • Phenolic Compositions and Antioxidant Properties in Bark, Flower, Inner Skin, Kernel and Leaf Extracts of Castanea Crenata Sieb

    Phenolic Compositions and Antioxidant Properties in Bark, Flower, Inner Skin, Kernel and Leaf Extracts of Castanea Crenata Sieb

    antioxidants Article Phenolic Compositions and Antioxidant Properties in Bark, Flower, Inner Skin, Kernel and Leaf Extracts of Castanea crenata Sieb. et Zucc Phung Thi Tuyen 1, Tran Dang Xuan 1,*, Do Tan Khang 1, Ateeque Ahmad 2, Nguyen Van Quan 1, Truong Thi Tu Anh 1, La Hoang Anh 1 and Truong Ngoc Minh 1 1 Graduate School for International Development and Cooperation, Hiroshima University, Higashi-Hiroshima city, Hiroshima 739-8529, Japan; [email protected] (P.T.T.); [email protected] (D.T.K.); [email protected] (N.V.Q.); [email protected] (T.T.T.A.); [email protected] (L.H.A.); [email protected] (T.N.M.) 2 Process Chemistry and Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; [email protected] * Corresponding author: [email protected]; Tel.: +81-82-424-6927 Academic Editors: Antonio Segura-Carretero and Elena Alañon Received: 3 March 2017; Accepted: 29 April 2017; Published: 5 May 2017 Abstract: In this study, different plant parts (barks, flowers, inner skins, kernels and leaves) of Castanea crenata (Japanese chestnut) were analyzed for total phenolic, flavonoid, and tannin contents. Antioxidant properties were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), reducing power, and β-carotene bleaching methods. The highest total phenolic and tannin contents were found in the inner skins (1034 ± 7.21 mg gallic acid equivalent/g extract and 253.89 ± 5.59 mg catechin equivalent/g extract, respectively). The maximum total flavonoid content was observed in the flowers (147.41 ± 1.61 mg rutin equivalent/g extract).
  • Total Phenolic Contents and Phenolic Acid Constituents in 4 Varieties Of

    Total Phenolic Contents and Phenolic Acid Constituents in 4 Varieties Of

    JFS C: Food Chemistry and Toxicology Total Phenolic Contents and Phenolic Acid Constituents in 4 Varieties of Bitter Melons (Momordica charantia) and Antioxidant Activities of their Extracts RONNY HORAX, NAVAM HETTIARACHCHY, AND SHAHIDUL ISLAM ABSTRACT: Four varieties of bitter melon (Momordica charantia), India green (IG), India white (IW), China green (CG), and China white (CW) were analyzed for total phenolics, phenolic acid constituents, and antioxidant activities of their methanolic extracts. Phenolic contents of the oven-dried and freeze-dried tissues ranged from 5.39 to 8.94 and 4.64 to 8.90 mg chlorogenic acid equivalent (CAE)/g on dry weight basis, respectively. Phenolic contents of bitter melon seed, inner tissues, and flesh ranged from 4.67 to 8.02, 4.64 to 8.94, and 5.36 to 8.90 mg CAE/g, respectively. The total phenolic contents of IG, IW, CG, and CW were 4.64 to 6.84, 6.03 to 8.94, 5.39 to 7.81, and 6.07 to 8.90 mg CAE/g, respectively. The main phenolic acids in flesh were gallic acid, gentisic acid, catechin, C: Food Chemistry & Toxicology chlorogenic acid, and epicatechin, which ranged from 8.04 to 39.76, 16.99 to 32.39, 23.06 to 82.45, 4.55 to 15.83, and 16.14 to 44.28 mg/100 g on dry weight basis, respectively, while in inner tissues were gallic acid, gentisic acid, catechin, and epicatechin, which ranged from 2.57 to 18.05, 5.39 to 32.61, 13.54 to 39.74, and 2.96 to 40.91 mg/ 100 g, respectively.
  • Phenolic Compounds and Uses in Fruit Growing A,B Melekber SULUSOGLU * Akocaeli University, Arslanbey Agricultural Vocational School, TR-41285, Kocaeli/Turkey

    Phenolic Compounds and Uses in Fruit Growing A,B Melekber SULUSOGLU * Akocaeli University, Arslanbey Agricultural Vocational School, TR-41285, Kocaeli/Turkey

    Turkish Journal of Agricultural and Natural Sciences Special Issue: 1, 2014 TÜRK TURKISH TARIM ve DOĞA JOURNAL of AGRICULTURAL BİLİMLERİ DERGİSİ and NATURAL SCIENCES www.turkjans.com Phenolic Compounds and Uses in Fruit Growing a,b Melekber SULUSOGLU * aKocaeli University, Arslanbey Agricultural Vocational School, TR-41285, Kocaeli/Turkey. bKocaeli University, Graduate School of Natural and Applied Sciences, Department of Horticulture, TR-41380, Kocaeli/Turkey *Corresponding author: [email protected] Abstract Phenolic compounds are a class of chemical compounds in organic chemistry which consist of a hydroxyl group directly bonded to an aromatic hydrocarbon group. Phenolic compounds find in cell wall structures and play a major role in the growth regulation of plant as an internal physiological regulators or chemical messengers. They are used in the fruit growing field. They are related with defending system against pathogens and stress. They increase the success of tissue culture; can be helpful to identification of fruit cultivars, to determination of graft compatibility and identification of vigor of trees. They are also important because of their contribution to the sensory quality of fruits during the technological processes. In this review, the simple classification was given for these compounds and uses in the agricultural field were described. Key words: Phenolic compounds, fruit quality, fruit growing, cultivar identification, grafting, tree vigor Fenolik Bileşikler ve Meyve Yetiştiriciliğinde Kullanımı Özet Aromatik hidrokarbon grubuna bağlı bir hidroksil grubu içeren fenolik bileşikler organik kimyanın bir sınıfıdır. Fenolik bileşikler hücre duvarı yapısında bulunmakta ve içsel bir fizyolojik düzenleyici veya kimyasal haberci olarak bitki büyümesinin organizasyonunda önemli rol oynamaktadır. Meyve yetiştiriciliği alanında kullanılmaktadır.
  • A Comparison of the Chemical Composition, in Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds from Rice Bran and Its Dietary Fibres

    A Comparison of the Chemical Composition, in Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds from Rice Bran and Its Dietary Fibres

    molecules Article A Comparison of the Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds from Rice Bran and Its Dietary Fibres Guanghe Zhao 1,2 ID , Ruifen Zhang 1,2,*, Lihong Dong 1, Fei Huang 1, Lei Liu 1, Yuanyuan Deng 1, Yongxuan Ma 1, Yan Zhang 1, Zhencheng Wei 1, Juan Xiao 1 and Mingwei Zhang 1,* 1 Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; [email protected] (G.Z.); [email protected] (L.D.); [email protected] (F.H.); [email protected] (L.L.); [email protected] (Y.D.); [email protected] (Y.M.); [email protected] (Y.Z.); [email protected] (Z.W.); [email protected] (J.X.) 2 College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China * Correspondence: [email protected] (R.Z.); [email protected] (M.Z.); Tel.:+86-136-0903-8685 (R.Z.); +86-136-0900-8406 (M.Z.) Received: 14 December 2017; Accepted: 16 January 2018; Published: 18 January 2018 Abstract: The composition, in vitro bioaccessibility and antioxidant activities of the phenolic compounds in defatted rice bran (DRB) and its soluble and insoluble dietary fibres were systematically evaluated in this study. The total phenolic content of insoluble dietary fibre from DRB (IDFDRB) was much higher than that of the soluble dietary fibre from DRB (SDFDRB) but was 10% lower than that of DRB. Bound phenolics accounted for more than 90% of the total phenolics in IDFDRB, whereas they accounted for 34.2% and 40.5% of the total phenolics in DRB and SDFDRB, respectively.
  • Red Beetroot. a Potential Source of Natural Additives for the Meat Industry

    Red Beetroot. a Potential Source of Natural Additives for the Meat Industry

    applied sciences Review Red Beetroot. A Potential Source of Natural Additives for the Meat Industry Rubén Domínguez 1 , Paulo E. S. Munekata 1, Mirian Pateiro 1 , Aristide Maggiolino 2 , Benjamin Bohrer 3 and José M. Lorenzo 1,4,* 1 Centro Tecnológico de la Carne de Galicia, Rúa Galicia N◦ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; [email protected] (R.D.); [email protected] (P.E.S.M.); [email protected] (M.P.) 2 Department of Veterinary Medicine, University of Bari A. Moro, Valenzano, 70010 Bari, Italy; [email protected] 3 Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; [email protected] 4 Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain * Correspondence: [email protected] Received: 30 October 2020; Accepted: 23 November 2020; Published: 24 November 2020 Featured Application: This review aims to conduct an exhaustive search on the main bioactive compounds present in beetroot, with a primary focus on the implications of their consumption on human health as well as highlighting research that has utilized beetroot (or their products) for the reformulation of meat products. Despite the fact that some studies presented very promising results, the number of researchers that have investigated the use of beetroot in meat or meat products is very limited. Therefore, in addition to exposing the main achievements and observations, this review comprehensively discusses the potential that this vegetable has for the meat industry. Abstract: Currently, the food industry is looking for alternatives to synthetic additives in processed food products, so research investigating new sources of compounds with high biological activity is worthwhile and becoming more common.