Food Phenolics and Lactic Acid Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Food Phenolics and Lactic Acid Bacteria * ViewManuscript metadata, withcitation Line and similarNumbers papers at core.ac.uk brought to you by CORE Click here to view linked References provided by Digital.CSIC 1 2 3 Food phenolics and lactic acid bacteria 4 5 6 Héctor Rodríguez a, José Antonio Curiel a, José María Landete a, Blanca de 7 las Rivas a, Félix López de Felipe b, Carmen Gómez-Cordovés a, José 8 Miguel Mancheño c, Rosario Muñoz a,* 9 10 11 12 a Departamento de Microbiología, Instituto de Fermentaciones Industriales, CSIC, Juan 13 de la Cierva 3, 28006 Madrid, Spain 14 b Grupo en Biotecnología de Bacterias Lácticas de Productos Fermentados, Instituto del 15 Frío, CSIC, José Antonio de Novaís 10, 28040 Madrid, Spain 16 c Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Rocasolano, 17 CSIC, Serrano 119, 28006 Madrid, Spain 18 19 20 21 *Corresponding author. Tel.: +34-91-5622900; fax: +34-91-5644853 22 E-mail address: [email protected] (R. Muñoz) 23 24 1 25 Abstract 26 27 Phenolic compounds are important constituents of food products of plant 28 origin. These compounds are directly related to sensory characteristics of foods 29 such as flavour, astringency, and colour. In addition, the presence of phenolic 30 compounds on the diet is beneficial to health due to their chemopreventive 31 activities against carcinogenesis and mutagenesis, mainly due to their antioxidant 32 activities. Lactic acid bacteria (LAB) are autochthonous microbiota of raw 33 vegetables. To get desirable properties on fermented plant-derived food products, 34 LAB has to be adapted to the characteristics of the plant raw materials where 35 phenolic compounds are abundant. Lactobacillus plantarum is the commercial 36 starter most frequently used in the fermentation of food products of plant origin. 37 However, scarce information is still available on the influence of phenolic 38 compounds on the growth and viability of L. plantarum and other LAB species. 39 Moreover, metabolic pathways of biosynthesis or degradation of phenolic 40 compounds in LAB have not been completely described. Results obtained in L. 41 plantarum showed that L. plantarum was able to degrade some food phenolic 42 compounds giving compounds influencing food aroma as well as compounds 43 presenting increased antioxidant activity. Recently, several L. plantarum proteins 44 involved in the metabolism of phenolic compounds have been genetically and 45 biochemically characterized. The aim of this review is to give a complete and 46 updated overview of the current knowledge among LAB and food phenolics 47 interaction, which could facilitate the possible application of selected bacteria or 48 their enzymes in the elaboration of food products with improved characteristics. 49 2 50 Contents 51 52 1. Introduction 53 2. Lactic acid bacteria in fermented food products of plant origin 54 3. Influence of phenolics on the growth and viability of lactic acid bacteria 55 3.1. Lactobacillus plantarum 56 3.2. Other lactic acid bacteria species 57 4. Metabolism of food phenolics by lactic acid bacteria 58 4.1. Lactobacillus plantarum 59 4.1.1. Tannase 60 4.1.2. Phenolic acid decarboxylase 61 4.1.3. Benzyl alcohol dehydrogenase 62 4.2. Other lactic acid bacteria species 63 5. Treatment of food by-products by lactic acid bacteria 64 6. Conclusions 65 Acknowledgments 66 References 67 68 69 3 70 1. Introduction 71 72 In the last years, researchers and food manufacturers have become increasingly 73 interested in phenolic compounds. The reason for this interest is the recognition of their 74 antioxidant properties, their great abundance in our diet, and their probable role in the 75 prevention of various diseases associated with oxidative stress, such as cancer, and 76 cardiovascular and degenerative diseases (Manach et al., 2004). 77 The term “phenolic compound” described several hundred molecules found in 78 edible plants that possess on their structure a benzenic ring substituted by, at least, one 79 hydroxyl group. These compounds may be classified into different groups as a function 80 of the number of phenol rings that they contain and of the structural elements that bind 81 these rings to one another. Distinctions are thus made between phenolic acids (benzoic 82 or hydroxycinnamic acid derivatives), flavonoids, stilbenes, and lignans. The flavonoids 83 may themselves be divided into flavonols, flavones, isoflavones, flavanones, 84 anthocyanidins, and flavanols (catechins and proanthocyanidins). In addition to this 85 diversity, polyphenols may be associated with various carbohydrates and organic acids 86 (Manach et al., 2004). 87 Traditionally, and from a basic knowledge, phenolic compounds have been 88 considered nutritionally undesirable because they precipitate proteins, inhibit digestive 89 enzymes and affect the utilization of vitamins and minerals, reducing the nutritional 90 values of foods. However, the recent recognition of their antioxidant properties reduced 91 the investigations of their adverse health effects. The presence of phenolic compounds 92 on the diet is beneficial to health due to their chemopreventive activities against 93 carcinogenesis and mutagenesis. The health effects of phenolic compounds depend on 4 94 the amount consumed and on their bioavailability (Chung et al., 1998; Shen et al., 95 2007). 96 In addition to having nutritional and antioxidant properties, phenolic compounds 97 influence multiple sensorial food properties, such as flavour, astringency, and colour. 98 Phenolic compounds contribute to the aroma and taste of numerous food products of 99 plant origin. The contribution of phenolic compounds to aroma is mainly due to the 100 presence of volatile phenols. Volatile phenols could be produced by the hydrolysis of 101 superior alcohols or by the metabolism of microorganisms, yeast and LAB. In addition, 102 food phenolics also contribute to food astringency. Some phenolic substances, mostly 103 tannins, present in foods are able to bring about a puckering and drying sensation 104 referred to as astringency which is related to the ability of the substance to precipitate 105 salivary proteins (Lea and Arnold, 1978). Moreover, phenolic compounds are natural 106 food pigments that greatly influence the colour of vegetable food products. Among 107 flavonoids, the anthocyanins are responsible for the pink, scarlet, red, mauve, blue and 108 violet colors of vegetables, fruits, fruit juices and wine (Harborne, 1988). Most 109 flavonoids are present in plant cells in the form of glycosides. 110 Fruits, vegetables and beverages, such as tea, are the main sources of phenolic 111 compounds in the human diet (Kapur and Kapoor, 2001). The Mediterranean diet 112 includes fermented vegetable food products, such as wine and table olives, for which 113 phenolic compounds are responsible of some of their sensorial and nutritional 114 characteristics. 115 116 2. Lactic acid bacteria in fermented food products of plant origin 117 5 118 Vegetables are strongly recommended in the human diet since they are rich in 119 antioxidant, vitamins, dietary fibres and minerals. The major part of the vegetables 120 consumed in the human diet are fresh, minimally processed, pasteurized or cooked by 121 boiling in water or microwaving. Minimally processed and, especially, fresh vegetables 122 have a very short-life since subjected to rapid microbial spoilage and the above cooking 123 processes would bring about a number of not always desirable changes in physical 124 characteristics and chemical composition of vegetables. Among the various 125 technological options, fermentation by lactic acid bacteria (LAB) may be considered as 126 a simple and valuable biotechnology for maintaining and/or improving the safety, 127 nutritional, sensory and shelf-life properties of vegetables. Lactic acid fermentation of 128 vegetables has nowadays an industrial significance for cucumbers, cabbages and olives. 129 Several other varieties of vegetables (e.g., carrots, French beans, marrows, artichokes, 130 capers and eggplants) also increase their safety, nutritional, sensory and shelf-life 131 properties through lactic acid fermentation under standardized industrial conditions. 132 Composition of microbiota and its development are important factors 133 influencing fermentation and final product quality. Overall, LAB are a small part of the 134 autochthonous microbiota of raw vegetables. To get desirable properties of fermented 135 vegetable food products, LAB has to be adapted to the intrinsic characteristics of the 136 raw materials. Spontaneous fermentations typically result from the competitive 137 activities of a variety of autochthonous and contaminating microorganisms. Those best 138 adapted to the conditions during the fermentation process will eventually dominate. 139 Initiation of a spontaneous process takes a relatively long time, with a high risk for 140 failure. Failure of fermentation processes can result in spoilage and/or the survival of 141 pathogens, thereby creating unexpected health risks in food products. Thus, from both a 142 hygiene and safety point of view, the use of starter cultures is recommended, as it would 6 143 lead to a rapid acidification of the product and thus inhibit the growth of spoilage and 144 pathogenic bacteria, and to a product with consistent quality. Although a large number 145 of LAB starters are routinely used in dairy, meat and baked food fermentations, only a 146 few cultures have been used for vegetable fermentations. Lactobacillus plantarum is the 147 commercial starter most
Recommended publications
  • Tannic Acid-Based Prepolymer Systems for Enhanced Intumescence in Epoxy Thermosets
    Cite this article Themed Issue: Sustainable flame Keywords: environmental impact/green Korey M, Johnson A, Webb W et al. (2020) retarded materials polymers/sustainable materials Tannic acid-based prepolymer systems for enhanced intumescence in epoxy thermosets. Paper 1900061 Green Materials 8(3): 150–161, Received 29/09/2019; Accepted 05/03/2020 https://doi.org/10.1680/jgrma.19.00061 Published online 06/04/2020 ICE Publishing: All rights reserved Green Materials Tannic acid-based prepolymer systems for enhanced intumescence in epoxy thermosets Matthew Korey Mark Dietenberger Graduate Research Assistant, Purdue University, West Lafayette, IN, USA Research General Engineer, Forest Products Laboratory, Madison, WI, USA (Orcid:0000-0002-2285-5646) Jeffrey Youngblood Alexander Johnson Professor, Purdue University, West Lafayette, IN, USA Undergraduate Research Assistant, Purdue University, West Lafayette, IN, USA (Orcid:0000-0002-8720-8642) William Webb John Howarter Staff, Career Academy, San Diego, CA, USA Associate Professor, Purdue University, West Lafayette, IN, USA (corresponding author: [email protected]) Tannic acid (TA) is a bio-based high-molecular-weight organic molecule. Although biologically sourced, TA is a pollutant in industrial wastewater streams, and there is desire to find applications in which to downcycle this molecule. Many flame retardants (FRs) used in epoxy are synthesized from petroleum-based monomers. Various bio-based modifiers have been developed, but increasing the flame retardancy of the system without trade-offs with other properties has proved challenging. In this work, TA is incorporated into the thermoset. The molecular behavior of the system was dependent on the TA loading, with low concentrations causing the molecule to be surface-functionalized, while at higher concentrations the molecule was cross-linked into the network.
    [Show full text]
  • Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability
    molecules Review Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability Leila Arfaoui Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80324, Jeddah 21589, Saudi Arabia; [email protected]; Tel.: +966-0126401000 (ext. 41612) Abstract: Dietary plant polyphenols are natural bioactive compounds that are increasingly attracting the attention of food scientists and nutritionists because of their nutraceutical properties. In fact, many studies have shown that polyphenol-rich diets have protective effects against most chronic diseases. However, these health benefits are strongly related to both polyphenol content and bioavailability, which in turn depend on their origin, food matrix, processing, digestion, and cellular metabolism. Although most fruits and vegetables are valuable sources of polyphenols, they are not usually con- sumed raw. Instead, they go through some processing steps, either industrially or domestically (e.g., cooling, heating, drying, fermentation, etc.), that affect their content, bioaccessibility, and bioavail- ability. This review summarizes the status of knowledge on the possible (positive or negative) effects of commonly used food-processing techniques on phenolic compound content and bioavailability in fruits and vegetables. These effects depend on the plant type and applied processing parameters (type, duration, media, and intensity). This review attempts to shed light on the importance of more comprehensive dietary guidelines that consider the recommendations of processing parameters to take full advantage of phenolic compounds toward healthier foods. Citation: Arfaoui, L. Dietary Plant Keywords: plant polyphenols; food processing; phenolic content; bioavailability; bioaccessibility Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959.
    [Show full text]
  • Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
    Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5].
    [Show full text]
  • The Use of Plants in the Traditional Management of Diabetes in Nigeria: Pharmacological and Toxicological Considerations
    Journal of Ethnopharmacology 155 (2014) 857–924 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations Udoamaka F. Ezuruike n, Jose M. Prieto 1 Center for Pharmacognosy and Phytotherapy, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom article info abstract Article history: Ethnopharmacological relevance: The prevalence of diabetes is on a steady increase worldwide and it is Received 15 November 2013 now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of Received in revised form herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby 26 May 2014 carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on Accepted 26 May 2014 the available evidence on the species' pharmacology and safety, we highlight ways in which their Available online 12 June 2014 therapeutic potential can be properly harnessed for possible integration into the country's healthcare Keywords: system. Diabetes Materials and methods: Ethnobotanical information was obtained from a literature search of electronic Nigeria databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants Ethnopharmacology used in diabetes management, in which the place of use and/or sample collection was identified as Herb–drug interactions Nigeria. ‘Diabetes’ and ‘Nigeria’ were used as keywords for the primary searches; and then ‘Plant name – WHO Traditional Medicine Strategy accepted or synonyms’, ‘Constituents’, ‘Drug interaction’ and/or ‘Toxicity’ for the secondary searches.
    [Show full text]
  • Biomolecules
    biomolecules Article Tannic Acid Improves Renal Function Recovery after Renal Warm Ischemia–Reperfusion in a Rat Model Louise Alechinsky 1, Frederic Favreau 2,3, Petra Cechova 4 , Sofiane Inal 1,5, Pierre-Antoine Faye 2,3, Cecile Ory 1, Raphaël Thuillier 1,5,6,7 , Benoit Barrou 1, Patrick Trouillas 8, Jerome Guillard 9 and Thierry Hauet 1,5,6,7,* 1 INSERM, U1082 IRTOMIT, 86021 Poitiers, France; [email protected] (L.A.); sofi[email protected] (S.I.); [email protected] (C.O.); [email protected] (R.T.); [email protected] (B.B.) 2 Université de Limoges, Faculté de Médecine, EA 6309 “Maintenance Myélinique et Neuropathies Périphériques”, 87025 Limoges, France; [email protected] (F.F.); [email protected] (P.-A.F.) 3 CHU de Limoges, Laboratoire de Biochimie et Génétique Moléculaire, 87042 Limoges, France 4 University Palacký of Olomouc, RCPTM, Dept Physical Chemistry, Faculty of Science, 771 46 Olomouc, Czech Republic; [email protected] 5 CHU de Poitiers, Laboratoire de Biochimie, 86021 Poitiers, France 6 Université de Poitiers, Faculté de Médecine et de Pharmacie, 86073 Poitiers, France 7 Département Hospitalo-Universitaire de Transplantation SUPORT, 86021 Poitiers, France 8 Inserm, UMR 1248, Fac. Pharmacy, Univ. Limoges, 87025 Limoges, France; [email protected] 9 Université de Poitiers, UMR CNRS 7285 IC2MP, Team 5 Organic Chemistry, 86073 Poitiers, France; [email protected] * Correspondence: [email protected] Received: 11 February 2020; Accepted: 9 March 2020; Published: 12 March 2020 Abstract: Background and purpose: Ischemia–reperfusion injury is encountered in numerous processes such as cardiovascular diseases or kidney transplantation; however, the latter involves cold ischemia, different from the warm ischemia found in vascular surgery by arterial clamping.
    [Show full text]
  • Phenolics in Human Health
    International Journal of Chemical Engineering and Applications, Vol. 5, No. 5, October 2014 Phenolics in Human Health T. Ozcan, A. Akpinar-Bayizit, L. Yilmaz-Ersan, and B. Delikanli with proteins. The high antioxidant capacity makes Abstract—Recent research focuses on health benefits of polyphenols as an important key factor which is involved in phytochemicals, especially antioxidant and antimicrobial the chemical defense of plants against pathogens and properties of phenolic compounds, which is known to exert predators and in plant-plant interferences [9]. preventive activity against infectious and degenerative diseases, inflammation and allergies via antioxidant, antimicrobial and proteins/enzymes neutralization/modulation mechanisms. Phenolic compounds are reactive metabolites in a wide range of plant-derived foods and mainly divided in four groups: phenolic acids, flavonoids, stilbenes and tannins. They work as terminators of free radicals and chelators of metal ions that are capable of catalyzing lipid oxidation. Therefore, this review examines the functional properties of phenolics. Index Terms—Health, functional, phenolic compounds. I. INTRODUCTION In recent years, fruits and vegetables receive considerable interest depending on type, number, and mode of action of the different components, so called as “phytochemicals”, for their presumed role in the prevention of various chronic diseases including cancers and cardiovascular diseases. Plants are rich sources of functional dietary micronutrients, fibers and phytochemicals, such
    [Show full text]
  • A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits.
    [Show full text]
  • Conductometric Study of the Acidity Properties of Tannic Acid (Chinese Tannin)
    Journal of the UniversityL. Costadinnova, of Chemical M. Hristova, Technology T. Kolusheva, and Metallurgy, N. Stoilova 47, 3, 2012, 289-296 CONDUCTOMETRIC STUDY OF THE ACIDITY PROPERTIES OF TANNIC ACID (CHINESE TANNIN) L. Costadinnova1, M. Hristova1, T. Kolusheva1, N. Stoilova2 1 University of Chemical Technology and Metallurgy Received 22 May 2012 8 Kl. Ohridski, 1756 Sofia, Bulgaria Accepted 12 June 2012 2 CLVCE, Department of VMP Analysis, 5 Iskarsko shose Blvd., Sofia, Bulgaria E-mail: [email protected] ABSTRACT Two tannic acids are studied (H T, n = 52), C H O , with average molar mass 1701.20 g mol-1. Using their UV and n 76 52 46 IR spectra it is shown that they have identical composition with respect to their functional groups, while by potentiometric and conductometric titration their structure of chinese tannin is verified and the relations between the acidity constants K > K K ... are determined. The absence of gallic acid is proved by HPLC. The conformational flexibility of the a1 a2 : a3 : tannin molecule is used to measure the stepwise constant K . By direct conductometry the acids were studied in the a1 concentration range of 5.00x10-4 to 5.00x10-2 mol l-1. The latter is determined from the Onsager-Shedlovsky relation. The molar conductivity of the ions − for the infinitely dilute solutions of the two tannic acids is found to be 55.2 and HTn1− 64.3 S L mol-1 cm-1. The degree of dissociation á in the studied concentration range varies from 0.03 to 0.3. The results for the acidity constant exponent pK are generalised using variance analysis, yielding ±∆ = ± , n = a1 pKa1 pK a1 4.19 0.02 26.
    [Show full text]
  • Sensory and Physico-Chemical Analyses of Roasted Marama Beans [Tylosema Esculentum (Burchell) A
    Sensory and physico-chemical analyses of roasted marama beans [Tylosema esculentum (Burchell) A. Schreiber] with specific focus on compounds that may contribute to bitterness Patricia Nyembwe , Amanda Minnaar , Kwaku G. Duodu, Henriette L. de Kock* Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa *Corresponding author: [email protected] Tel: +27 12 420 3238; Fax: +27 12 420 2839 ABSTRACT The role of phenolics and saponins in contributing to bitterness in marama beans, an underutilized legume, especially when roasted, was investigated. Marama beans were roasted at 150 °C for 20, 25 or 30 min, dehulled to separate cotyledons, and pastes were prepared from these. Water extracts were prepared from full fat and defatted flours from roasted and unroasted marama cotyledons. A sensory panel evaluated the sensory attributes of marama pastes and water extracts. Marama water extracts were analysed for total phenolic content, phenolic composition and saponin content. Roasting marama beans for more than 20 min resulted in negative properties such as bitterness. The major extractable phenolic acids present in marama water extracts were gallic and protocatechuic acids which increased as a function of roasting time. Saponin content of the water extracts was in the range of 55 to 63 mg/L. The identified phenolic acids, saponins and other as yet unidentified compounds may contribute to the perceived bitterness. KEYWORDS: Tylosema esculentum; marama bean water extracts; roasting; descriptive sensory evaluation; bitterness; phenolic compounds; saponins. 1 1. INTRODUCTION There is a search worldwide for food sources to alleviate malnutrition in developing countries due to a shortage of protein-rich foods.
    [Show full text]
  • Betalains and Phenolics in Red Beetroot (Beta Vulgaris)
    Betalains and Phenolics in Red Beetroot (Beta vulgaris) Peel Extracts: Extraction and Characterisation Tytti Kujala*, Jyrki Loponen and Kalevi Pihlaja Department of Chemistry, Vatselankatu 2, FIN-20014 University of Turku, Finland. Fax: +3582-333 67 00. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56 c, 343-348 (2001); received January 9/February 12, 2001 Beta vulgaris , Betalains, Phenolics The extraction of red beetroot (Beta vulgaris ) peel betalains and phenolics was compared with two extraction methods and solvents. The content of total phenolics in the extracts was determined according to a modification of the Folin-Ciocalteu method and expressed as gallic acid equivalents (GAE). The profiles of extracts were analysed by high-performance liquid chromatography (HPLC). The compounds of beetroot peel extracted with 80% aqueous methanol were characterised from separated fractions using HPLC- diode array detection (HPLC-DAD) and HPLC- electrospray ionisation-mass spectrometry (HPLC-ESI-MS) tech­ niques. The extraction methods and the choice of solvent affected noticeably the content of individual compounds in the extract. The betalains found in beetroot peel extract were vulgaxanthin I, vulgaxanthin II, indicaxanthin, betanin, prebetanin, isobetanin and neobe- tanin. Also cyclodopa glucoside, /V-formylcyclodopa glucoside, glucoside of dihydroxyindol- carboxylic acid, betalamic acid, L-tryptophan, p-coumaric acid, ferulic acid and traces of un­ identified flavonoids were detected. Introduction acid in their cell walls (Jackman and Smith, 1996). Phenolic compounds are ubiquitous in the plant Except ferulic acid, also other phenolic acids and kingdom and they have been reported to possess phenolic acid conjugates have been reported in many biological effects.
    [Show full text]
  • Phenolic Compounds in Cereal Grains and Their Health Benefits
    and antioxidant activity are reported in the Phenolic Compounds in Cereal literature. Unfortunately, it is difficult to make comparisons of phenol and anti- Grains and Their Health Benefits oxidant activity levels in cereals since different methods have been used. The ➤ Whole grain cereals are a good source of phenolics. purpose of this article is to give an overview ➤ Black sorghums contain high levels of the unique 3-deoxyanthocyanidins. of phenolic compounds reported in whole ➤ Oats are the only source of avenanthramides. grain cereals and to compare their phenol and antioxidant activity levels. ➤ Among cereal grains, tannin sorghum and black rice contain the highest antioxidant activity in vitro. Phenolic Acids Phenolic acids are derivatives of benzoic and cinnamic acids (Fig. 1) and are present in all cereals (Table I). There are two Most of the literature on plant phenolics classes of phenolic acids: hydroxybenzoic L. DYKES AND L. W. ROONEY focuses mainly on those in fruits, acids and hydroxycinnamic acids. Hy- TEXAS A&M UNIVERSITY vegetables, wines, and teas (33,50,53,58, droxybenzoic acids include gallic, p- College Station, TX 74). However, many phenolic compounds hydroxybenzoic, vanillic, syringic, and in fruits and vegetables (i.e., phenolic acids protocatechuic acids. The hydroxycinna- esearch has shown that whole grain and flavonoids) are also reported in cereals. mic acids have a C6-C3 structure and Rconsumption helps lower the risk of The different species of grains have a great include coumaric, caffeic, ferulic, and cardiovascular disease, ischemic stroke, deal of diversity in their germplasm sinapic acids. The phenolic acids reported type II diabetes, metabolic syndrome, and resources, which can be exploited.
    [Show full text]
  • Spinal Curaracardiac Poisons.Pdf
    STRYCHNOS NUX VOMICA KUCHILA Powerful alkaloids Strychnine and brucine ( 1& ½ %) Seeds also contain glucoside loganine Fruit hard, rough, glossy orange, 4‐5 cm wide, jelly like white or pale yellow pulp. It has 3‐5 seeds Strychnine occurs as colourless, odourless, rhombic prisms, having an intensely bitter taste The bark contains only brucine Fruit pulp ‐‐‐ low strychnine content Strychnine = 20 X brucine • Seeds are flat, circular discs or slightly convex on one side, concave on other side • 2.5 cm in diameter, 6mm in thickness • Ash grey or light brown in colour • Seeds are very hard, tough, difficult to pulverise • USES • In Chinese herbal medicine, the seeds of strychnine are eaten to alleviate external pains. • Different types of tumors as well as allay paralysis such as Bell’s palsy or facial paralysis. • Useful herbal medicine • Ingredient of homeopathic medication and is particularly recommended for digestive problems, feeling for cold as well as tetchiness. • As a respiratory stimulant • As a rodenticide • For killing stray dogs, even wild animals ABSORPTION AND EXCRETION All mm Much is taken by liver, muscle to be either released again into blood stream or to be destroyed This release produces convulsions on the 2nd or 3rd Day 80% is oxidised mainly in the liver Excreted slowly by the kidneys and traces in the bile, milk, saliva • ACTION • Competitively blocks ventral horn motor neuron postganglionic receptor sites in the spinal cord and prevent the effect of GLYCINE • Widespread inhibition in the spinal cord results in “release”
    [Show full text]