Global Database of GHG Emissions Related to Feed Crops a Life Cycle Inventory

Total Page:16

File Type:pdf, Size:1020Kb

Global Database of GHG Emissions Related to Feed Crops a Life Cycle Inventory VERSION 1 Global database of GHG emissions related to feed crops A life cycle inventory LIVESTOCK ENVIRONMENTAL ASSESSMENT AND http://www.fao.org/partnerships/leap I8275EN/1/12.17 PERFORMANCE PARTNERSHIP VERSION 1 Global database of GHG emissions related to feed crops A life cycle inventory FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2017 Recommended Citation FAO. 2017. Global database of GHG emissions related to feed crops: A life cycle inventory. Version 1. Livestock Environmental Assessment and Performance Partnership. FAO, Rome, Italy. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-130078-7 © FAO, 2017 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to [email protected]. FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through [email protected] Contents Acknowledgements 1 1. INTRODUCTION 3 1.1. Aims and objectives 3 1.2. Scope of the study 3 1.3. Outline of the report 3 2. DATA AND DATA COLLECTION METHODS 5 2.1. Database overview 5 2.2. Data representativeness 6 2.3. Principles for data collection 6 2.4. Dealing with data gaps 7 3. LIFE CYCLE INVENTORY 9 3.1. Seed and seeding rates 9 3.2. Crop yields 10 3.3. Crop residues 10 3.4. Synthetic fertilizer and agricultural lime 11 3.4.1. Data and data sources 11 3.3.2. Data gaps 12 3.3.3. Emission factors for production of synthetic fertilizer and agricultural lime 13 3.5. Organic fertilizer (manure) 13 3.5.1. Data and data sources 14 3.5.2. Data gaps 14 3.5.3. Emission factors 14 3.6. Pesticides 14 3.6.1. Data and data sources 14 3.6.2. Data gaps 15 3.7. Water use for irrigation 15 3.7.1. Data and data sources 15 3.7.2. Emission factors 15 3.8. Machinery and equipment 16 3.8.1. Data and data sources 16 3.8.2. Data gaps 17 3.9. Energy 17 3.10. Land use change 18 3.10.1. Data and data sources 18 3.10.2. Emission factors 18 REFERENCES 21 iii ANNEX 1 YIELD distriBUTION MAPS for MAIZE, Wheat, BARLEY AND soyBean 29 ANNEX 2 N applicatioN rates from maNure (kg N/ ha) 33 ANNEX 3 pesticide applicatioN rates – maximum, miNimum aNd average values 37 ANNEX4 e missioN factors for abstractioN of grouNd water (kgCO2/ha) 41 ANNEX 5 Machinery AND EQUIPMENT USE, FREQUENCY, OPeration TIME aNd meaN fuel coNsumption 45 ANNEX 6 emissioNs factors for laNd use chaNge (toNs CO2eq/kgm d *year), 2010 75 iv Global database of GHG emissions related to feed crops - A life cycle inventory Acknowledgements The draft database and accompanying documents is a product of the Livestock En- vironmental Assessment and Performance (LEAP) Partnership. The database has been developed based on the LEAP Feed Guidelines: Environmental performance of animal feeds supply chains: Guidelines for quantification. The LEAP Secretariat coordinated and led the work of this assessment, and ensured coherence between LEAP Guidelines and the analysis. This work was led by Carolyn Opio (Livestock Policy Officer, FAO). The re- search team included Alessandra Falcucci, Monica Rulli, Ellen Huls, Renato Cu- mani, and Theun Vellinga (modelling and data management). Supporting analysis was carried out by research partners, including Rich Conant and Tom Hiliniski from Colorado State University. The database development has been carried out by: Luca Pepi and Donatella Mori from FAO and Dick Stamens from Wageningen University. Appreciation also goes to those who have provided valuable comments, views and information on this first draft version of the database which enriched the analy- sis and the report. We would like to acknowledge the support of Camillo de Camil- lis, Claudia Ciarlantini and Claudia Nicolai. v Global database of GHG emissions related to feed crops - A life cycle inventory 1. introduction Life Cycle Inventories (LCIs) are necessary for performing life cycle assessments (LCAs) however the availability of such data is often the greatest barrier for con- ducting LCA. The LEAP Partnership recognizes this challenge and has put great effort in gathering and compiling the LCI data presented in this report. The LCI phase involves the collection and quantification of inputs and outputs throughout the life cycle stages covered by the system boundary of the individual study. This document is part of background documentation for the LEAP global database on GHG emissions from feed crops and describes life cycle inventory data related to the cultivation of 5 main crops used for feed. 1.1 AIMS AND OBJectives The wider context for this study is to ensure that benchmarking of livestock supply chains is based on recognized internationally recognized and harmonized meth- odology and datasets. The goal of this assessment is to develop a robust life cycle inventory (LCI) and emission intensity database. Specific objectives were to estab- lish a global database of GHG emissions and emission intensities for major feed crops disaggregated by crop, production practices, and country and provide a con- solidated database of life cycle inventories to support continued benchmarking in livestock supply chains. 1.2 ScoPE OF THE study The main focus is on the quantification of greenhouse gas emissions arising from the cultivation phase in crop production. The study focuses on 5 main crops: maize, wheat, barley, cassava and soybean and covers the major GHG emissions: CO2, N2O and CH4 from all major processes from raw material production through to the production of crop to the field-gate. In addition, the analysis incorporates car- bon stock changes associated with land-use change. Changes in soil carbon from constant and management will be incorporated in the database. Results from this analysis are provided in a database. This database provides in- formation on the life cycle inventory per crop and the emission intensities associ- ated with the cultivation of the crop. Users are able to query the database to access aggregate information on emission intensities associated with the studied crops dis- aggregated by production practice and country. 1.3 OUTLINE OF THE REPort This report presents the life cycle inventories of the five studied crops. Section 2 of the document presents the type of data that can be sourced from the database, the data collection methods, and highlights the data gaps. Section three presents the life cycle inventory providing information on the data and data sources, assumptions and data gaps and how these were addressed. The Annexes provide information on crop yield distributions, data on nitrogen applica- tion rates, pesticide use and information on field processes and machinery use. 1 Global database of GHG emissions related to feed crops - A life cycle inventory 2. data and data collection methods 2.1 DATABASE overvieW The database has 2010 as its reference year and it is organized in 3 main sections: • Life Cycle Inventory (LCI); • Field work processes; and • Emission Intensity. Life Cycle Inventory (LCI) This section reports the main inputs used in the production of each crop such as: seed, organic fertilizer, synthetic N fertilizer, lime, phosphorus, potassium, and pes- ticides. These values are expressed in kg of input per hectare of harvested area. Ad- ditional inventory data provided include data on crop yields and crop residues per crop. For each variable, the minimum, the maximum, the average and the standard deviation values are provided. Field work processes This section reports, per crop, per production system and practice, and per coun- try, the main cultivation activities such as: ploughing, seedbed preparation, sowing, fertilization (lime, organic and synthetic fertilizer application), pesticide spraying, weed control, irrigation and harvesting. For each of these cropping activities, the frequency (number of times the activity is performed) and the type of traction (i.e. mechanical, animal, manual) are reported. The type of traction is expressed as the fraction of the process performed per type of traction, summing up to 1. Emission Intensity In this section, the emission intensities, related to the different on-farm activities, such as seed, organic fertilizer, synthetic fertilizer, crop protection, energy use in land work, land use and land use change, are presented, per crop, per production system and practice, and per country. For each, the minimum, the maximum, the average and the standard deviation values are reported in kg of CO2-eq. per kg of dry matter. The four statistical values are calculated to give the user an overview of the variability across each country, and are dependent on the spatial heterogeneity of the crop yields which is in turn determined by the different environmental and management conditions.
Recommended publications
  • Default Emissions from Biofuels
    Definition of input data to assess GHG default emissions from biofuels in EU legislation Version 1c - July 2017 Edwards, R. Padella, M. Giuntoli, J. Koeble, R. O’Connell, A. Bulgheroni, C. Marelli, L. 2017 EUR 28349 EN This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. JRC Science Hub https://ec.europa.eu/jrc JRC104483 EUR 28349 EN PDF ISBN 978-92-79-64617-1 ISSN 1831-9424 doi:10.2790/658143 Print ISBN 978-92-79-64616-4 ISSN 1018-5593 doi:10.2790/22354 Luxembourg: Publications Office of the European Union, 2017 © European Union, 2017 The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. How to cite this report: Edwards, R., Padella, M., Giuntoli, J., Koeble, R., O’Connell, A., Bulgheroni, C., Marelli, L., Definition of input data to assess GHG default emissions from biofuels in EU legislation, Version 1c – July 2017 , EUR28349 EN, doi: 10.2790/658143 All images © European Union 2017 Title Definition of input data to assess GHG default emissions from biofuels in EU legislation, Version 1c – July 2017 Abstract The Renewable Energy Directive (RED) (2009/28/EC) and the Fuel Quality Directive (FQD) (2009/30/EC), amended in 2015 by Directive (EU) 2015/1513 (so called ‘ILUC Directive’), fix a minimum requirement for greenhouse gas (GHG) savings for biofuels and bioliquids for the period until 2020, and set the rules for calculating the greenhouse impact of biofuels, bioliquids and their fossil fuels comparators.
    [Show full text]
  • Choosing Effective Liming Materials ► Acidic Soils Require Lime to Maintain the Proper Ph for Growing Crops and Forage
    AGRICULTURE Choosing Effective Liming Materials ► Acidic soils require lime to maintain the proper pH for growing crops and forage. Learn how to test and maintain your soil for optimal production. Most Alabama soils are naturally low in pH and must How Lime Recommendations be limed to create soil conditions that increase plant Are Determined nutrient availability and decrease aluminum toxicity. The ideal pH for most Alabama crops is in the range The amount of liming material needed to reach a target of 6.0 to 6.5. When the pH of a soil falls below a value soil pH depends on the soil’s current pH and the soil’s of 6.0, the availability of most macronutrients (such buffer pH. Soil pH is a measurement of the acidity or as nitrogen, phosphorous, and potassium) needed for alkalinity of a soil, while buffer pH is used to measure crop and forage production begins to decrease. When the soil’s resistance to change in pH. pH increases above 6.5, the availability of most plant Soils that are high in organic matter and clay content micronutrients (such as zinc, manganese, copper, and have a higher buffering capacity. More lime is therefore iron) tends to decrease. required to raise the pH in these soils than in soils that Maintaining pH according to soil testing laboratory are sandy and low in organic matter. For example, a recommendations will ensure that the availability of sandy soil at pH 5.0 may require only 1 ton of ground all plant nutrients is maximized and that any fertilizers limestone to raise the pH to 6.5, while a clay soil at the applied to the soil will not go to waste.
    [Show full text]
  • Agricultural Lime Recommendations Based on Lime Quality E.L
    University of Kentucky College of Agriculture, Food and Environment ID-163 Cooperative Extension Service Agricultural Lime Recommendations Based on Lime Quality E.L. Ritchey, L.W. Murdock, D. Ditsch, and J.M. McGrath, Plant and Soil Sciences; F.J. Sikora, Division of Regulatory Services oil acidity is one of the most important soil factors affect- Figure 1. Liming acid soils increases exchangeable Ca and Mg. Sing crop growth and ultimately, yield and profitability. It is determined by measuring the soil pH, which is a measure Acid Soil Limed Soil Ca2+ H+ H+ Ca2+ Ca2+ of the amount of hydrogen ions in the soil solution. As soil Lime Applied H+ H+ H+ H+ Ca2+ acidity increases, the soil pH decreases. Soils tend to be + + + 2+ + naturally acidic in areas where rainfall is sufficient to cause H H H Mg H substantial leaching of basic ions (such as calcium and mag- nesium), which are replaced by hydrogen ions. Most soils in Kentucky are naturally acidic because of our abundant rainfall. Nitrogen fertilization can also contribute to soil acid- The majority of the hydrogen ions are actually held on ity as the nitrification of ammonium increases the hydrogen cation exchange sites. To effectively neutralize soil acidity, ion concentration in the soil through the following reaction: hydrogen ions must be removed from both the soil solution and the exchange sites. While soil pH only measures the solu- + - - + NH4 + 2O2 --> NO3 = H2O + 2H tion hydrogen, the buffer pH is an indication of exchangeable acidity and how much ag lime is actually needed. It is possible Periodically, agricultural limestone (ag lime) is needed to for two soils to have the same water pH but different lime neutralize soil acidity and maintain crop productivity.
    [Show full text]
  • Agricultural Lime Recommendations Based on Lime Quality Greg Schwab University of Kentucky, [email protected]
    University of Kentucky UKnowledge Agriculture and Natural Resources Publications Cooperative Extension Service 3-2007 Agricultural Lime Recommendations Based on Lime Quality Greg Schwab University of Kentucky, [email protected] Lloyd W. Murdock University of Kentucky, [email protected] David C. Ditsch University of Kentucky, [email protected] Monroe Rasnake University of Kentucky, [email protected] Frank J. Sikora University of Kentucky, [email protected] See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/anr_reports Part of the Agriculture Commons, and the Environmental Sciences Commons Repository Citation Schwab, Greg; Murdock, Lloyd W.; Ditsch, David C.; Rasnake, Monroe; Sikora, Frank J.; and Frye, Wilbur, "Agricultural Lime Recommendations Based on Lime Quality" (2007). Agriculture and Natural Resources Publications. 76. https://uknowledge.uky.edu/anr_reports/76 This Report is brought to you for free and open access by the Cooperative Extension Service at UKnowledge. It has been accepted for inclusion in Agriculture and Natural Resources Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Greg Schwab, Lloyd W. Murdock, David C. Ditsch, Monroe Rasnake, Frank J. Sikora, and Wilbur Frye This report is available at UKnowledge: https://uknowledge.uky.edu/anr_reports/76 ID-163 Agricultural Lime Recommendations Based on Lime Quality G.J. Schwab, L.W. Murdock, D. Ditsch, and M. Rasnake, UK Department of Plant and Soil Sciences; F.J. Sikora, UK Division of Regulatory Services; W.
    [Show full text]
  • Lime Guidelines for Field Crops in New York
    Lime Guidelines for Field Crops in New York. First Release. CSS E06-2. June 2006. LIME GUIDELINES FOR FIELD CROPS IN NEW YORK Quirine M. Ketterings, W. Shaw Reid, and Karl J. Czymmek Department of Crop and Soil Sciences Extension Series E06-2 Cornell University June 9, 2006 Quirine M. Ketterings is Associate Professor of Nutrient Management in Agricultural Systems, Department of Crop and Soil Sciences, Cornell University. W. Shaw Reid is Emeritus Professor of Soil Fertility, Department of Crop and Soil Sciences, Cornell University. Karl J. Czymmek is Senior Extension Associate in Field Crops and Nutrient Management with PRO-DAIRY, Cornell University. Lime Guidelines for Field Crops in New York. First Release. CSS E06-2. June 2006. Acknowledgments: We thank Carl Albers, Area Field Crops Extension Educator, Cornell Cooperative Extension of Steuben, Chemung, and Schuyler Counties, for his review of an earlier draft of this extension bulletin. Correct citation: Ketterings, Q.M., W.S. Reid, and K.J. Czymmek (2006). Lime guidelines for field crops in New York. First Release. Department of Crop and Soil Sciences Extension Series E06-2. Cornell University, Ithaca NY. 35 pages. Downloadable from: http://nmsp.css.cornell.edu/nutrient_guidelines/ For more information: For more information contact Quirine Ketterings at the Department of Crop and Soil Sciences, Cornell University, 817 Bradfield Hall, Ithaca NY 14583, or e- mail: [email protected]. Nutrient Management Spear Program Collaboration among the Cornell University Department of Crop and Soil Sciences, PRODAIRY and Cornell Cooperative Extension http://nmsp.css.cornell.edu/ Lime Guidelines for Field Crops in New York. First Release.
    [Show full text]
  • Lime for Michigan Soils
    Extension Bulletin E-471 • Revised • December 2010 LIME FOR MICHIGAN SOILS Darryl Warncke, Laura Bast and Don Christenson Department of Crop and Soil Sciences pplying lime to agricultural soils can provide farm- WHAT IS SOIL ACIDITY? ers with a very good return on investment. Long- Although the use of synthetic fertilizers contributes to soil term experiments in Michigan and other Great Lakes A acidity, soil acidification results from the natural leaching states indicate that every dollar spent on agricultural lime of calcium (Ca) and magnesium (Mg) from the soil and the applied according to soil test recommendations returns decomposition of plant residues. Positively charged hydro- $5 to $10. Liming acid soils improves nutrient availability, gen ions in the soil solution (water in the soil) and on the microbial activity and overall soil productivity. Soil-applied surface of clay and organic matter particles that make up the lime neutralizes (or corrects) acidity, a soil chemical condi- soil contribute to the active acidity of the soil. Soil pH is tion that affects the growth of crops. Lime also supplies soil the measure of this active acidity. A pH value below 7.0 is with two essential plant nutrients: calcium and magnesium. acid, 7.0 is neutral, and above 7.0 is alkaline, Recent soil test summaries indicate that about 10 percent The amount or concentration of active acidity in the soil of Michigan’s 7.8 million acres of agricultural land need at solution depends on the number of hydrogen ions held by least 2.5 tons/acre of lime, for a total of 1.95 million tons the negatively charged soil particles of clay and organic mat- of lime needed statewide to neutralize soil acidity.
    [Show full text]
  • Pelletized Lime for Short-Term Treatment of Soil Acidity Gene Stevens and David Dunn University of Missouri-Delta Research Center
    Pelletized Lime for Short-Term Treatment of Soil Acidity Gene Stevens and David Dunn University of Missouri-Delta Research Center Correct soil pH is the cornerstone of a successful crop nutrient management program. Annual applications of nitrogen fertilizers on crops slowly produce acid conditions in fields. If low pH is not corrected by agricultural lime applications, soil acidity will reduce nutrient availability to plants (especially P), produce toxic levels of aluminum and manganese, and diminish the weed control activity of some herbicides. In recent years, agricultural fertilizer dealers have reported 2 to 3 fold increases in sales of pelletized lime. Pelletized lime is finely ground limestone, which is made into small pellets for broadcasting with conventional fertilizer equipment. Because pelletized lime is relatively expensive per ton, it is applied at lower rates (<300 lbs/acre) as compared to recommended rates of agricultural lime. A “1:10 ratio” rule of thumb has been promoted for comparing the short-term neutralizing effectiveness of pelletized lime to agricultural lime. (Example: if a soil test recommends the ENM equivalent of 2000 lbs of agricultural lime per acre apply 200 lbs of pelletized lime/acre). Most farmers realize that pelletized lime is not a long-term “fix”, but expect it to reduce soil acidity to tolerable levels for one year. Typically, farmers apply this material on fields that a landlord is unwilling to share part of the cost of applying agricultural lime or will not provide a lease agreement for more than one year. A study was initiated to evaluate the general philosophy of using finely ground lime to provide a short-term, “quick fix” of soil acidity and compare corn and cotton yield response of pelletized lime to agricultural lime.
    [Show full text]
  • Lime for Acid Soils
    Prepared for the Northern and Yorke NRM Board Lime for Acid Soils Sustainable Agriculture in the Northern and Yorke NRM Region. Lime is the most effective method for the treatment of acid soils. Within the Northern and Yorke Region there are more than 270,000 hectares of land susceptible to soil acidification that degrades the soil and reduces crop and pasture growth. Soil acidification tends to occur on the sands and sandy loams in the high rainfall areas, north of Kapunda through to Jamestown and from Crystal Brook through to Melrose with a smaller area around Redhill (Figure 1). Soil acidification is caused by an accumulation of hydrogen ions in the soil through the build-up of organic matter; addition and leaching of nitrogen from fertilisers and legumes and the removal of alkaline nutrients in plant and animal products. As the amount of hydrogen ions increases then soil acidity increases. When the soil falls below a soil pH of 5.0 (CaCl2) the productivity of even tolerant crops and pastures starts to fall, toxic amounts of aluminium can be released into the soil, microbial activity starts to decline and nutrients such as phosphorus, magnesium, calcium and molybdenum become less available. Table 1 shows the tolerance of plant species to soil acidity. Table 1: Tolerance of plants of soil acidity Species Tolerance Canola, faba beans, lucerne, annual medic Very Sensitive Barley, wheat, peas, phalaris Sensitive Lupins, wheat, sub-clover, cocksfoot, vetch, Tolerant fescue, perennial rye-grass Triticale, oats, seradella Very tolerant Lime for acid soils The use of lime will raise the soil pH and increase the productivity of crops and pastures.
    [Show full text]
  • Liming Acid Soils in Tennessee
    PB 1096 (Available online only) Liming Acid Soils in Tennessee Hubert Savoy Jr., Associate Professor, Biosystems Engineering and Soil Science and Debbie Joines, Manager, UT Soil, Plant and Pest Center What is Soil Acidity? Soil acidity refers to the level of acids present in soils. As acid levels increase, the pH of the soil decreases. While the pH scale ranges from 0-14, most Tennessee soils range in value from 4.5 to 7.5. Soils with pH values greater than 7.0 are alkaline or sweet, and those with values of less than 7.0 are acid or sour (Figure 1). As the soil pH decreases below 7.0, the amount of acidity rapidly increases. For example, a pH of 5.0 is 10 times more acidic than 6.0 and 100 times more acidic than a pH of 7.0. Soil test results indicate that approximately 40 to 60 percent of the cropland in Tennessee is too acidic for optimum crop production. Because of this, determining the need for lime by soil testing should be the first step in developing a sound crop fertilization program. Figure 1. The pH Scale (Source: NCSA). Lime neutralizes excess soil acids and increases soil pH which is a measure of soil acidity. Levels of Causes of Soil Acidity extractable aluminum (Al) and manganese (Mn) are Several factors contribute to soil acidity. Acid levels reduced to a nontoxic range as soil pH increases. If increase as basic nutrients (calcium, magnesium and not limed as needed, soils continue to become more potassium) are replaced by hydrogen through soil acidic, reducing the potential for production of healthy erosion, leaching and crop removal.
    [Show full text]
  • Biosolids Management Plan
    FINAL BIOSOLIDS MANAGEMENT PLAN Prepared by February 2008 WB022008001GNV Contents Section Page Executive Summary ...................................................................................................................... ES-1 Background ....................................................................................................................... ES-1 Biosolids Management Program .................................................................................... ES-1 Detailed Evaluation and Ranking of Biosolids Management Alternatives .............. ES-2 1. Introduction ......................................................................................................................... 1-1 1.1 Background ............................................................................................................. 1-1 1.2 Project Scope ........................................................................................................... 1-1 1.3 Evaluation Approach ............................................................................................. 1-1 1.3.1 Task 1 – Workshop No. 1: Project Kickoff.............................................. 1-1 1.3.2 Task 2 – Workshop No. 2: Framing the Issue ........................................ 1-2 1.3.3 Task 3 – Workshop No. 3: Preliminary Screening of Alternatives ..... 1-2 1.3.4 Task 4 – Workshop No. 4: Evaluation and Ranking of Screened Biosolids Alternatives ............................................................................... 1-2 1.3.5 Task 5
    [Show full text]
  • Calcium Carbonate
    Right to Know Hazardous Substance Fact Sheet Common Name: CALCIUM CARBONATE Synonyms: Calcium Salt of Carbonic Acid, Chalk CAS Number: 1317-65-3 Chemical Name: Limestone RTK Substance Number: 4001 Date: July 2015 DOT Number: NA Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Calcium Carbonate is a white to tan odorless powder or Hazard Summary odorless crystals. It is used in human medicine as an antacid, Hazard Rating NJDOH NFPA calcium supplement and food additive. Other uses are HEALTH 1 - agricultural lime and as additive in cement, paints, cosmetics, FLAMMABILITY 0 - dentifrices, linoleum, welding rods, and to remove acidity in REACTIVITY 0 - wine. REACTIVE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe Reasons for Citation When Calcium Carbonate is heated to decomposition, it Calcium Carbonate is on the Right to Know Hazardous emits acrid smoke and irritating vapors. Substance List because it is cited by OSHA, NIOSH, and Calcium Carbonate is incompatible with ACIDS, EPA. ALUMINUM, AMMONIUM SALTS, MAGNESIUM, HYDROGEN, FLUORINE and MAGNESIUM. Calcium Carbonate mixed with magnesium and heated in a current of hydrogen causes a violent explosion. Calcium Carbonate ignites on contact with FLUORINE. Calcium Carbonate contact causes irritation to eyes and skin. SEE GLOSSARY ON PAGE 5. Inhaling Calcium Carbonate causes irritation to nose, throat and respiratory system and can cause coughing. FIRST AID Eye Contact Immediately flush with large amounts of water for at least 15 Workplace Exposure Limits minutes, lifting upper and lower lids. Remove contact OSHA: The legal airborne permissible exposure limit (PEL) is lenses, if worn, while flushing.
    [Show full text]
  • Liming to Improve Soil Quality in Acid Soils
    SOIL QUALITY – AGRONOMY TECHNICAL NOTE No. 8 Liming To Improve Soil Quality in Acid Soils Soil pH is an excellent chemical indicator of soil quality. Farmers can improve the soil quality of acid soils by liming to adjust pH to the levels needed by the crop to be grown. Benefits of liming include increased nutrient availability, improved soil structure, and increased rates of infiltration. United States Department of This technical note addresses the following topics: (1) soil pH, (2) liming Agriculture benefits, (3) liming materials, and (4) practical applications. Natural Resources Soil pH Conservation Service Understanding soil pH is essential for the proper management and optimum soil and crop productivity. In aqueous (liquid) solutions, an acid is a substance that donates hydrogen ions (H+) to some other substance (Tisdale et al., 1993). Soil Quality Institute 411 S. Donahue Dr. Auburn, AL 36832 Soil pH is a measure of the number of hydrogen ions in the soil solution. 334-844-4741 However, the actual concentration of hydrogen ions in the soil solution is actually X-177 quite small. For example, a soil with a pH of 4.0 has a hydrogen ion concentration in Technical the soil water of just 0.0001 moles per liter. (One mole is equal to the number of Note No. 8 hydrogen atoms in 1 gram of hydrogen). Since it is difficult to work with numbers like this, pH is expressed as the negative logarithm of the hydrogen ion concentration, May 1999 which results in the familiar scale of pH ranging from 0-14. Therefore, pH = 4.0 = - log (0.0001).
    [Show full text]