Monitoring of Threatened Vascular Plants in Estonia and Finland
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Native Orchids in Southeast Alaska
Native Orchids in Southeast Alaska Marlin Bowles & Bob Armstrong 2019 Preface Southeast Alaska's rainforests, peatlands and alpine habitats support a wide variety of plant life. The composition of this vegetation is strongly influenced by patterns of plant distribution and geographical factors. For example, the ranges of some Asian plant species extend into Southeast Alaska by way of the Aleutian Islands; other species extend northward into this region along the Pacific coast or southward from central Alaska. Included in Southeast Alaska's vegetation are at least 27 native orchid species and varieties whose collective ranges extend from Mexico north to beyond the Arctic Circle, and from North America to northern Europe and Asia. These orchids survive in a delicate ecological balance, requiring specific insect pollinators for seed production, and mycorrhizal fungi that provide nutrients essential for seedling growth and survival of adult plants. These complex relationships can lead to vulnerability to human impacts. Orchids also tend to transplant poorly and typically perish without their fungal partners. They are best left to survive as important components of biodiversity as well as resources for our enjoyment. Our goal is to provide a useful description of Southeast Alaska's native orchids for readers who share enthusiasm for the natural environment and desire to learn more about our native orchids. This book addresses each of the native orchids found in the area of Southeast Alaska extending from Yakutat and the Yukon border south to Ketchikan and the British Columbia border. For each species, we include a brief description of its distribution, habitat, size, mode of reproduction, and pollination biology. -
Mushrooms Russia and History
MUSHROOMS RUSSIA AND HISTORY BY VALENTINA PAVLOVNA WASSON AND R.GORDON WASSON VOLUME I PANTHEON BOOKS • NEW YORK COPYRIGHT © 1957 BY R. GORDON WASSON MANUFACTURED IN ITALY FOR THE AUTHORS AND PANTHEON BOOKS INC. 333, SIXTH AVENUE, NEW YORK 14, N. Y. www.NewAlexandria.org/ archive CONTENTS LIST OF PLATES VII LIST OF ILLUSTRATIONS IN THE TEXT XIII PREFACE XVII VOLUME I I. MUSHROOMS AND THE RUSSIANS 3 II. MUSHROOMS AND THE ENGLISH 19 III. MUSHROOMS AND HISTORY 37 IV. MUSHROOMS FOR MURDERERS 47 V. THE RIDDLE OF THE TOAD AND OTHER SECRETS MUSHROOMIC 65 1. The Venomous Toad 66 2. Basques and Slovaks 77 3. The Cripple, the Toad, and the Devil's Bread 80 4. The 'Pogge Cluster 92 5. Puff balls, Filth, and Vermin 97 6. The Sponge Cluster 105 7. Punk, Fire, and Love 112 8. The Gourd Cluster 127 9. From 'Panggo' to 'Pupik' 138 10. Mucus, Mushrooms, and Love 145 11. The Secrets of the Truffle 166 12. 'Gripau' and 'Crib' 185 13. The Flies in the Amanita 190 v CONTENTS VOLUME II V. THE RIDDLE OF THE TOAD AND OTHER SECRETS MUSHROOMIC (CONTINUED) 14. Teo-Nandcatl: the Sacred Mushrooms of the Nahua 215 15. Teo-Nandcatl: the Mushroom Agape 287 16. The Divine Mushroom: Archeological Clues in the Valley of Mexico 322 17. 'Gama no Koshikake and 'Hegba Mboddo' 330 18. The Anatomy of Mycophobia 335 19. Mushrooms in Art 351 20. Unscientific Nomenclature 364 Vale 374 BIBLIOGRAPHICAL NOTES AND ACKNOWLEDGEMENTS 381 APPENDIX I: Mushrooms in Tolstoy's 'Anna Karenina 391 APPENDIX II: Aksakov's 'Remarks and Observations of a Mushroom Hunter' 394 APPENDIX III: Leuba's 'Hymn to the Morel' 400 APPENDIX IV: Hallucinogenic Mushrooms: Early Mexican Sources 404 INDEX OF FUNGAL METAPHORS AND SEMANTIC ASSOCIATIONS 411 INDEX OF MUSHROOM NAMES 414 INDEX OF PERSONS AND PLACES 421 VI LIST OF PLATES VOLUME I JEAN-HENRI FABRE. -
Likely to Have Habitat Within Iras That ALLOW Road
Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing -
Coumarins and Iridoids from Crucianella Graeca, Cruciata Glabra, Cruciata Laevipes and Cruciata Pedemontana (Rubiaceae) Maya Iv
Coumarins and Iridoids from Crucianella graeca, Cruciata glabra, Cruciata laevipes and Cruciata pedemontana (Rubiaceae) Maya Iv. Mitova3, Mincho E. Anchevb, Stefan G. Panev3, Nedjalka V. Handjieva3 and Simeon S. Popov3 a Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria h Institute of Botany, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria Z. Naturforsch. 51c, 631-634 (1996); received May 23/July8 , 1996 Rubiaceae, Crucianella, Cruciata, Coumarins, Iridoids The coumarin and iridoid composition of Crucianella graeca, Cruciata glabra, Cruciata laevipes and Cruciata pedemontana has been studied. Daphnin and daphnetin glucoside do minated in C. glabra along with low concentrations of daphnetin, deacetylasperulosidic acid and scandoside. In C. laevipes and C. pedemontana were found the same coumarin glucosides along with six iridoid glucosides. In Crucianella graeca were found ten iridoid glucosides. Introduction Thirteen pure compounds (Fig. 1) were isolated and identified by 'H and 13C NMR spectra (Ta Crucianella L. and Cruciata Mill. (Rubiaceae) ble I) and comparisons with authentic samples as are represented each by three species in the Bul the coumarins, daphnin (1), daphnetin glucoside garian flora (Ancev, 1976, 1979). They are mor (2) and daphnetin (3) (Jevers et al., 1978) and the phologically well differentiated and all except iridoids, deacetylasperulosidic acid (4), scandoside Cruciata glabra (L.) Ehrend., do not suggest seri (5), asperuloside (6), asperulosidic acid (7), methyl ous taxonomic problems. The coumarins, scopo- ester of deacetylasperulosidic acid (8), daphyllo letin, umbelliferone and cruciatin and the iridoid side (9), geniposidic acid (10), 10-hydroxyloganin glucosides monotropein, asperuloside and au- (11), deacetylasperuloside (12) and iridoid V3 (13) cubin, were found in some Cruciata species (Bo (Boros and Stermitz, 1990; El-Naggar & Beal, risov, 1967, 1974; Borisov and Borisyuk, 1965; Bo 1980). -
Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Chemical Diversity in Volatiles of Helichrysum Plicatum DC. Subspecies in Turkey
ORIGINAL ARTICLE Rec. Nat. Prod . 8:4 (2014) 373-384 Chemical Diversity in Volatiles of Helichrysum plicatum DC. Subspecies in Turkey Bintu ğ Öztürk ∗∗∗1, Gülmira Özek 2, Temel Özek 2 and Kemal Hüsnü C. Ba şer 2,3,4 1Department of Pharmaceutical Botany, Faculty of Pharmacy, Ege University, İzmir, 35100 Türkiye 2Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eski şehir, 26470, Türkiye 3Department of Botany and Microbiology, King Saud University, College of Science, 11451 Riyadh, Saudi Arabia 4Bahcesehir University, Technology Transfer Office, Besiktas, 34353 Istanbul, Türkiye (Received December 25, 2013; Revised April 28, 2014; Accepted April 28, 2014) Abstract: In the present work three subspecies of Helichrysum plicatum DC. ( Helichrysum plicatum DC. subsp. plicatum, Helichrysum plicatum DC. subsp. polyphillum (Ledeb) P.H.Davis & Kupicha and Helichrysum plicatum DC. subsp. isauricum Parolly) were investigated for the essential oil chemical compositions. The volatiles were obtained by conventional hydrodistillation of aerial parts and microdistillation of inflorescences. Subsequent gas chromatography (GC-FID) and gas chromatography coupled to mass spectrometry (GC/MS) revealed chemical diversity in compositions of the volatiles analyzed. A total of 199 compounds were identified representing 73.9-98.3% of the volatiles compositions. High abundance of fatty acids and their esters (24.9-70.8%) was detected in the herb volatiles of H. plicatum subsp. polyphyllum and H. plicatum subsp. isauricum . The inflorescences of Helichrysum subspecies were found to be rich in monoterpenes (15.0-93.1%), fatty acids (0.1-36.3%) and sesquiterpenes (1.1-25.5%). The inflorescence volatiles of H. plicatum subsp. isauricum were distinguished by predomination of monoterpene hydrocarbons (93.1%) with fenchene (88.3%) as the major constituent Keywords: Helichrysum plicatum; GC/MS ; volatiles; biodiversity; Turkish flora. -
Helichrysum Cymosum (L.) D.Don (Asteraceae): Medicinal Uses, Chemistry, and Biological Activities
Online - 2455-3891 Vol 12, Issue 7, 2019 Print - 0974-2441 Review Article HELICHRYSUM CYMOSUM (L.) D.DON (ASTERACEAE): MEDICINAL USES, CHEMISTRY, AND BIOLOGICAL ACTIVITIES ALFRED MAROYI* Department of Botany, Medicinal Plants and Economic Development Research Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa. Email: [email protected] Received: 26 April 2019, Revised and Accepted: 24 May 2019 ABSTRACT Helichrysum cymosum is a valuable and well-known medicinal plant in tropical Africa. The current study critically reviewed the medicinal uses, phytochemistry and biological activities of H. cymosum. Information on medicinal uses, phytochemistry and biological activities of H. cymosum, was collected from multiple internet sources which included Scopus, Google Scholar, Elsevier, Science Direct, Web of Science, PubMed, SciFinder, and BMC. Additional information was gathered from pre-electronic sources such as journal articles, scientific reports, theses, books, and book chapters obtained from the University library. This study showed that H. cymosum is traditionally used as a purgative, ritual incense, and magical purposes and as herbal medicine for colds, cough, fever, headache, and wounds. Ethnopharmacological research revealed that H. cymosum extracts and compounds isolated from the species have antibacterial, antioxidant, antifungal, antiviral, anti-HIV, anti-inflammatory, antimalarial, and cytotoxicity activities. This research showed that H. cymosum is an integral part of indigenous pharmacopeia in tropical Africa, but there is lack of correlation between medicinal uses and existing pharmacological properties of the species. Therefore, future research should focus on evaluating the chemical and pharmacological properties of H. cymosum extracts and compounds isolated from the species. Keywords: Asteraceae, Ethnopharmacology, Helichrysum cymosum, Herbal medicine, Indigenous pharmacopeia, Tropical Africa. -
HELCOM Lists of Threatened And/Or Declining Species and Biotopes/Habitats in the Baltic Sea Area
Baltic Sea Environment Proceedings No.113 HELCOM lists of threatened and/or declining species and biotopes/habitats in the Baltic Sea area Helsinki Commission Baltic Marine Environment Protection Commission Baltic Sea Environment Proceedings No. 113 HELCOM lists of threatened and/or declining species and biotopes/ habitats in the Baltic Sea area Editors: Dieter Boedeker and Henning von Nordheim Helsinki Commission Baltic Marine Environment Protection Commission Contact address for editors: German Federal Agency for Nature Conservation (BfN) BfN, Isle of Vilm, D-18581 Putbus, Germany Cover photo: Baltic low salinity reef community (Fucus serratus – stands with Gobius flavescens) on top of Adler Ground (photo BfN © Krause & Hübner) For bibliographic purposes this document should be cited to as: HELCOM 2007: HELCOM lists of threatened and/or declining species and biotopes/habitats in the Baltic Sea area Baltic Sea Environmental Proceedings, No. 113. Information included in this publication or extracts there of is free for citing on the condition that the complete reference of the publication is given as stated above. Copyright 2007 by the Baltic Marine Environment Protection Commission - Helsinki Commission Layout: Hanna Paulomäki ISSN Table of Contents Preface.....................................................................................................................................6 Introduction .............................................................................................................................7 Lists: -
Gymnaconitum, a New Genus of Ranunculaceae Endemic to the Qinghai-Tibetan Plateau
TAXON 62 (4) • August 2013: 713–722 Wang & al. • Gymnaconitum, a new genus of Ranunculaceae Gymnaconitum, a new genus of Ranunculaceae endemic to the Qinghai-Tibetan Plateau Wei Wang,1 Yang Liu,2 Sheng-Xiang Yu,1 Tian-Gang Gao1 & Zhi-Duan Chen1 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269-3043, U.S.A. Author for correspondence: Wei Wang, [email protected] Abstract The monophyly of traditional Aconitum remains unresolved, owing to the controversial systematic position and taxonomic treatment of the monotypic, Qinghai-Tibetan Plateau endemic A. subg. Gymnaconitum. In this study, we analyzed two datasets using maximum likelihood and Bayesian inference methods: (1) two markers (ITS, trnL-F) of 285 Delphinieae species, and (2) six markers (ITS, trnL-F, trnH-psbA, trnK-matK, trnS-trnG, rbcL) of 32 Delphinieae species. All our analyses show that traditional Aconitum is not monophyletic and that subgenus Gymnaconitum and a broadly defined Delphinium form a clade. The SOWH tests also reject the inclusion of subgenus Gymnaconitum in traditional Aconitum. Subgenus Gymnaconitum markedly differs from other species of Aconitum and other genera of tribe Delphinieae in many non-molecular characters. By integrating lines of evidence from molecular phylogeny, divergence times, morphology, and karyology, we raise the mono- typic A. subg. Gymnaconitum to generic status. Keywords Aconitum; Delphinieae; Gymnaconitum; monophyly; phylogeny; Qinghai-Tibetan Plateau; Ranunculaceae; SOWH test Supplementary Material The Electronic Supplement (Figs. S1–S8; Appendices S1, S2) and the alignment files are available in the Supplementary Data section of the online version of this article (http://www.ingentaconnect.com/content/iapt/tax). -
D. Gargano, L. Peruzzi, KF Caparelli & G. Cesca Preliminary Observations
D. Gargano, L. Peruzzi, K. F. Caparelli & G. Cesca Preliminary observations on the reproductive strategies in five early- flowering species of Gagea Salisb. (Liliaceae) Abstract Gargano, D., Peruzzi L., Caparelli, K. F. & Cesca, G.: Preliminary observations on the repro- dutctive strategies in five early-flowering species of Gagea Salisb. (Liliaceae). — Bocconea 21: 349-358. 2007. — ISSN 1120-4060. The field and laboratory studies about Gagea bohemica (Zauschn.) Schult. & Schult. f., G. chrysantha Schult. & Schult. f. s. l., G. granatellii (Parl.) Parl., G. lutea (L.) Ker-Gawl., G. fra- gifera (Vill.) Ehr. Bayer & G. Lòpez are carried on community structure, phenology and repro- ductive biology. The studied species show differences in terms of community characteristics (species composition, structure), time and duration of flowering, and seed production. The species of rocky environment (G. granatellii and G. bohemica) show the highest number of veg- etative individuals with respect to the flowering ones, the shortest duration of flowering and the lowest seed-set. It appears as a consequence of the low resource availability. The species of meadows (G. chrysantha, G. fragifera and G. lutea) appear instead to suffer overall the biologi- cal competition for resources and pollinators. Gross morphological analysis of the pollen grains revealed that deformed pollen is more abundant in triploid (G. chrysantha, G. granatellii) and heptaploid (G. fragifera) species, compared to the tetraploid (G. bohemica) and the hexaploid (G. lutea) ones. Seed production was very low. There is a positive correlation between amount of morphologically regular pollen and number of produced seeds. In most of the studied species we observed a trend to increase the seed production in individuals with many flowers; probably this is the result of a strategy aimed diminishing the effects of pollen- and pollinator-limitation. -
THE IRISH RED DATA BOOK 1 Vascular Plants
THE IRISH RED DATA BOOK 1 Vascular Plants T.G.F.Curtis & H.N. McGough Wildlife Service Ireland DUBLIN PUBLISHED BY THE STATIONERY OFFICE 1988 ISBN 0 7076 0032 4 This version of the Red Data Book was scanned from the original book. The original book is A5-format, with 168 pages. Some changes have been made as follows: NOMENCLATURE has been updated, with the name used in the 1988 edition in brackets. Irish Names and family names have also been added. STATUS: There have been three Flora Protection Orders (1980, 1987, 1999) to date. If a species is currently protected (i.e. 1999) this is stated as PROTECTED, if it was previously protected, the year(s) of the relevant orders are given. IUCN categories have been updated as follows: EN to CR, V to EN, R to V. The original (1988) rating is given in brackets thus: “CR (EN)”. This takes account of the fact that a rare plant is not necessarily threatened. The European IUCN rating was given in the original book, here it is changed to the UK IUCN category as given in the 2005 Red Data Book listing. MAPS and APPENDIX have not been reproduced here. ACKNOWLEDGEMENTS We are most grateful to the following for their help in the preparation of the Irish Red Data Book:- Christine Leon, CMC, Kew for writing the Preface to this Red Data Book and for helpful discussions on the European aspects of rare plant conservation; Edwin Wymer, who designed the cover and who, as part of his contract duties in the Wildlife Service, organised the computer applications to the data in an efficient and thorough manner.