Traits: a Mechanism for Fine-Grained Reuse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MANNING Greenwich (74° W
Object Oriented Perl Object Oriented Perl DAMIAN CONWAY MANNING Greenwich (74° w. long.) For electronic browsing and ordering of this and other Manning books, visit http://www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact: Special Sales Department Manning Publications Co. 32 Lafayette Place Fax: (203) 661-9018 Greenwich, CT 06830 email: [email protected] ©2000 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Library of Congress Cataloging-in-Publication Data Conway, Damian, 1964- Object oriented Perl / Damian Conway. p. cm. includes bibliographical references. ISBN 1-884777-79-1 (alk. paper) 1. Object-oriented programming (Computer science) 2. Perl (Computer program language) I. Title. QA76.64.C639 1999 005.13'3--dc21 99-27793 CIP Manning Publications Co. Copyeditor: Adrianne Harun 32 Lafayette -
New Inheritance Models That Facilitate Source Code Reuse in Object-Oriented Programming
NEW INHERITANCE MODELS THAT FACILITATE SOURCE CODE REUSE IN OBJECT- ORIENTED PROGRAMMING By HISHAM M. AL-HADDAD Bachelor of Science Yarmouk University lrbid, Jordan 1986 Master of Science Northrop University Los Angeles, California 1988 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY July, 1992 Oklahoma Statt.' Ur1iv. Library NEW INHERITANCE MODELS THAT FACILITATE SOURCE CODE REUSE IN OBJECT- ORIENTED PROGRAMMING C/ wU::r-~ B I A~c;p .... _.-~ Dean of the Graduate CoUege ii PREFACE Code reusability is a primary objective in the development of software systems. The object-oriented programming methodology is one of the areas that facilitate the development of software systems by allowing and promoting code reuse and modular designs. Object-oriented programming languages (OOPLs) provide different facilities to attain efficient reuse and reliable extension of existing software components. Inheritance is an important language feature that is conducive to reusability and extensibility. Various OOPLs provide different inheritance models based on different interpretations of the inheritance notion. Therefore, OOPLs have different characteristics derived from their respective inheritance models. This dissertation is concerned with solutions for three major problems that limit the utilization of inheritance for code reusability. The range of object-oriented applications and thus the usage of object-oriented programming in general is also discussed. The three major problems are: 1) the relationship between inheritance and other related issues such as encapsulation, access techniques, visibility of inheritance, and subtyping; 2) the hierarchical structure imposed by inheritance among classes; and 3) the accessibility of previous versions of the modified methods defmed in classes located at higher levels of the inheritance structure than the parent classes. -
A Comparative Study on the Effect of Multiple Inheritance Mechanism in Java, C++, and Python on Complexity and Reusability of Code
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 6, 2017 A Comparative Study on the Effect of Multiple Inheritance Mechanism in Java, C++, and Python on Complexity and Reusability of Code Fawzi Albalooshi Amjad Mahmood Department of Computer Science Department of Computer Science University of Bahrain University of Bahrain Kingdom of Bahrain Kingdom of Bahrain Abstract—Two of the fundamental uses of generalization in Booch, there are two problems associated with multiple object-oriented software development are the reusability of code inheritance and they are how to deal with name collisions from and better structuring of the description of objects. Multiple super classes, and how to handle repeated inheritance. He inheritance is one of the important features of object-oriented presents solutions to these two problems. Other researchers [4] methodologies which enables developers to combine concepts and suggest that there is a real need for multiple inheritance for increase the reusability of the resulting software. However, efficient object implementation. They justify their claim multiple inheritance is implemented differently in commonly referring to the lack of multiple subtyping in the ADA 95 used programming languages. In this paper, we use Chidamber revision which was considered as a deficiency that was and Kemerer (CK) metrics to study the complexity and rectified in the newer version [5]. It is clear that multiple reusability of multiple inheritance as implemented in Python, inheritance is a fundamental concept in object-orientation. The Java, and C++. The analysis of results suggests that out of the three languages investigated Python and C++ offer better ability to incorporate multiple inheritance in system design and reusability of software when using multiple inheritance, whereas implementation will better structure the description of objects Java has major deficiencies when implementing multiple modeling, their natural status and enabling further code reuse inheritance resulting in poor structure of objects. -
Mixins and Traits
◦ ◦◦◦ TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ ◦◦◦◦ ◦ ◦ ◦◦◦ ◦◦◦◦ ¨ ¨ ◦ ◦◦ FAKULTAT FUR INFORMATIK Programming Languages Mixins and Traits Dr. Michael Petter Winter 2016/17 What advanced techiques are there besides multiple implementation inheritance? Outline Design Problems Cons of Implementation Inheritance 1 Inheritance vs Aggregation 1 2 (De-)Composition Problems Lack of finegrained Control 2 Inappropriate Hierarchies Inheritance in Detail A Focus on Traits 1 A Model for single inheritance 1 2 Inheritance Calculus with Separation of Composition and Inheritance Expressions Modeling 2 3 Modeling Mixins Trait Calculus Mixins in Languages Traits in Languages 1 (Virtual) Extension Methods 1 Simulating Mixins 2 Squeak 2 Native Mixins Reusability ≡ Inheritance? Codesharing in Object Oriented Systems is often inheritance-centric. Inheritance itself comes in different flavours: I single inheritance I multiple inheritance All flavours of inheritance tackle problems of decomposition and composition The Adventure Game Door ShortDoor LockedDoor canPass(Person p) canOpen(Person p) ? ShortLockedDoor canOpen(Person p) canPass(Person p) The Adventure Game Door <interface>Doorlike canPass(Person p) canOpen(Person p) Short canPass(Person p) Locked canOpen(Person p) ShortLockedDoor ! Aggregation & S.-Inheritance Door must explicitely provide canOpen(Person p) chaining canPass(Person p) Doorlike must anticipate wrappers ) Multiple Inheritance X The Wrapper FileStream SocketStream read() read() write() write() ? SynchRW acquireLock() releaseLock() ! Inappropriate Hierarchies -
Mixin-Based Programming in C++1
Mixin-Based Programming in C++1 Yannis Smaragdakis Don Batory College of Computing Department of Computer Sciences Georgia Institute of Technology The University of Texas at Austin Atlanta, GA 30332 Austin, Texas 78712 [email protected] [email protected] Abstract. Combinations of C++ features, like inheritance, templates, and class nesting, allow for the expression of powerful component patterns. In particular, research has demonstrated that, using C++ mixin classes, one can express lay- ered component-based designs concisely with efficient implementations. In this paper, we discuss pragmatic issues related to component-based programming using C++ mixins. We explain surprising interactions of C++ features and poli- cies that sometimes complicate mixin implementations, while other times enable additional functionality without extra effort. 1 Introduction Large software artifacts are arguably among the most complex products of human intellect. The complexity of software has led to implementation methodologies that divide a problem into manageable parts and compose the parts to form the final prod- uct. Several research efforts have argued that C++ templates (a powerful parameteriza- tion mechanism) can be used to perform this division elegantly. In particular, the work of VanHilst and Notkin [29][30][31] showed how one can implement collaboration-based (or role-based) designs using a certain templatized class pattern, known as a mixin class (or just mixin). Compared to other techniques (e.g., a straightforward use of application frameworks [17]) the VanHilst and Notkin method yields less redundancy and reusable components that reflect the structure of the design. At the same time, unnecessary dynamic binding can be eliminated, result- ing into more efficient implementations. -
Generic Programming
Generic Programming July 21, 1998 A Dagstuhl Seminar on the topic of Generic Programming was held April 27– May 1, 1998, with forty seven participants from ten countries. During the meeting there were thirty seven lectures, a panel session, and several problem sessions. The outcomes of the meeting include • A collection of abstracts of the lectures, made publicly available via this booklet and a web site at http://www-ca.informatik.uni-tuebingen.de/dagstuhl/gpdag.html. • Plans for a proceedings volume of papers submitted after the seminar that present (possibly extended) discussions of the topics covered in the lectures, problem sessions, and the panel session. • A list of generic programming projects and open problems, which will be maintained publicly on the World Wide Web at http://www-ca.informatik.uni-tuebingen.de/people/musser/gp/pop/index.html http://www.cs.rpi.edu/˜musser/gp/pop/index.html. 1 Contents 1 Motivation 3 2 Standards Panel 4 3 Lectures 4 3.1 Foundations and Methodology Comparisons ........ 4 Fundamentals of Generic Programming.................. 4 Jim Dehnert and Alex Stepanov Automatic Program Specialization by Partial Evaluation........ 4 Robert Gl¨uck Evaluating Generic Programming in Practice............... 6 Mehdi Jazayeri Polytypic Programming........................... 6 Johan Jeuring Recasting Algorithms As Objects: AnAlternativetoIterators . 7 Murali Sitaraman Using Genericity to Improve OO Designs................. 8 Karsten Weihe Inheritance, Genericity, and Class Hierarchies.............. 8 Wolf Zimmermann 3.2 Programming Methodology ................... 9 Hierarchical Iterators and Algorithms................... 9 Matt Austern Generic Programming in C++: Matrix Case Study........... 9 Krzysztof Czarnecki Generative Programming: Beyond Generic Programming........ 10 Ulrich Eisenecker Generic Programming Using Adaptive and Aspect-Oriented Programming . -
Comp 411 Principles of Programming Languages Lecture 19 Semantics of OO Languages
Comp 411 Principles of Programming Languages Lecture 19 Semantics of OO Languages Corky Cartwright Mar 10-19, 2021 Overview I • In OO languages, OO data values (except for designated non-OO types) are special records [structures] (finite mappings from names to values). In OO parlance, the components of record are called members. • Some members of an object may be functions called methods. Methods take this (the object in question) as an implicit parameter. Some OO languages like Java also support static methods that do not depend on this; these methods have no implicit parameters. In efficient OO language implementations, method members are shared since they are the same for all instances of a class, but this sharing is an optimization in statically typed OO languages since the collection of methods in a class is immutable during program evaluation (computation). • A method (instance method in Java) can only be invoked on an object (the receiver, an implicit parameter). Additional parameters are optional, depending on whether the method expects them. This invocation process is called dynamic dispatch because the executed code is literally extracted from the object: the code invoked at a call site depends on the value of the receiver, which can change with each execution of the call. • A language with objects is OO if it supports dynamic dispatch (discussed in more detail in Overview II & III) and inheritance, an explicit taxonomy for classifying objects based on their members and class names where superclass/parent methods are inherited unless overridden. • In single inheritance, this taxonomy forms a tree; • In multiple inheritance, it forms a rooted DAG (directed acyclic graph) where the root class is the universal class (Object in Java). -
Code Reuse and Refactoring: Going Agile on Complex Products
Code Reuse and Refactoring: Going Agile on Complex Products Using enterprise Software Version Management to coordinate complex products, seamlessly support Git developers, and solve refactoring problems. Table of Contents Component-Based Development __________________________________________________ 1 CBD Product Model ______________________________________________________________ 1 The Repository Model ____________________________________________________________ 2 Managing CBD in Git _____________________________________________________________ 2 Setting Up the CBD Model _____________________________________________________ 2 Incorporating Non-Software Components ____________________________________ 3 Updating Component Baselines ________________________________________________ 3 Submitting Patches to Components _____________________________________________ 4 Developer View _______________________________________________________________ 4 Refactoring: In Practice ________________________________________________________ 4 Refactoring: Developer Impact _________________________________________________ 4 Managing CBD in Perforce Software Version Management and Perforce Git Fusion ______ 5 Setting Up the CBD Model _____________________________________________________ 5 Incorporating Non-Software Components ____________________________________ 5 Updating Component Baselines ________________________________________________ 5 Submitting Patches to Components _____________________________________________ 5 Developer View _______________________________________________________________ -
A Model of Inheritance for Declarative Visual Programming Languages
An Abstract Of The Dissertation Of Rebecca Djang for the degree of Doctor of Philosophy in Computer Science presented on December 17, 1998. Title: Similarity Inheritance: A Model of Inheritance for Declarative Visual Programming Languages. Abstract approved: Margaret M. Burnett Declarative visual programming languages (VPLs), including spreadsheets, make up a large portion of both research and commercial VPLs. Spreadsheets in particular enjoy a wide audience, including end users. Unfortunately, spreadsheets and most other declarative VPLs still suffer from some of the problems that have been solved in other languages, such as ad-hoc (cut-and-paste) reuse of code which has been remedied in object-oriented languages, for example, through the code-reuse mechanism of inheritance. We believe spreadsheets and other declarative VPLs can benefit from the addition of an inheritance-like mechanism for fine-grained code reuse. This dissertation first examines the opportunities for supporting reuse inherent in declarative VPLs, and then introduces similarity inheritance and describes a prototype of this model in the research spreadsheet language Forms/3. Similarity inheritance is very flexible, allowing multiple granularities of code sharing and even mutual inheritance; it includes explicit representations of inherited code and all sharing relationships, and it subsumes the current spreadsheet mechanisms for formula propagation, providing a gradual migration from simple formula reuse to more sophisticated uses of inheritance among objects. Since the inheritance model separates inheritance from types, we investigate what notion of types is appropriate to support reuse of functions on different types (operation polymorphism). Because it is important to us that immediate feedback, which is characteristic of many VPLs, be preserved, including feedback with respect to type errors, we introduce a model of types suitable for static type inference in the presence of operation polymorphism with similarity inheritance. -
Beginning SOLID Principles and Design Patterns for ASP.NET Developers — Bipin Joshi Beginning SOLID Principles and Design Patterns for ASP.NET Developers
THE EXPERT’S VOICE® IN .NET DEVELOPMENT Beginning SOLID Principles and Design Patterns for ASP.NET Developers — Bipin Joshi Beginning SOLID Principles and Design Patterns for ASP.NET Developers Bipin Joshi Beginning SOLID Principles and Design Patterns for ASP.NET Developers Bipin Joshi 301 Pitruchhaya Thane, India ISBN-13 (pbk): 978-1-4842-1847-1 ISBN-13 (electronic): 978-1-4842-1848-8 DOI 10.1007/978-1-4842-1848-8 Library of Congress Control Number: 2016937316 Copyright © 2016 by Bipin Joshi This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. -
Multiple Inheritance and the Resolution of Inheritance Conflicts
JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005 Vol. 4, No.2, March-April 2005 The Theory of Classification Part 17: Multiple Inheritance and the Resolution of Inheritance Conflicts Anthony J H Simons, Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK 1 INTRODUCTION This is the seventeenth article in a regular series on object-oriented theory for non- specialists. Using a second-order λ-calculus model, we have previously modelled the notion of inheritance as a short-hand mechanism for defining subclasses by extending superclass definitions. Initially, we considered the inheritance of type [1] and implementation [2] separately, but later combined both of these in a model of typed inheritance [3]. By simplifying the short-hand inheritance expressions, we showed how these are equivalent to canonical class definitions. We also showed how classes derived by inheritance are type compatible with their superclass. Further aspects of inheritance have included method combination [4], mixin inheritance [5] and inheritance among generic classes [6]. Most recently, we re-examined the ⊕ inheritance operator [7], to show how extending a class definition (the intension of a class) has the effect of restricting the set of objects that belong to the class (the extension of the class). We also added a type constraint to the ⊕ operator, to restrict the types of fields that may legally be combined with a base class to yield a subclass. By varying the form of this constraint, we modelled the typing of inheritance in Java, Eiffel, C++ and Smalltalk. -
Software Reusability: Approaches and Challenges
International Journal of Research and Innovation in Applied Science (IJRIAS) |Volume VI, Issue V, May 2021|ISSN 2454-6194 Software Reusability: Approaches and Challenges Moko Anasuodei1, Ojekudo, Nathaniel Akpofure2 1Department of Computer Science and Informatics, Faculty of Science, Federal University Otuoke, Nigeria 2Department of Computer Science, Faculty of Natural and Applied Sciences, Ignatius Ajuru University of Education, Nigeria Abstract: Software reuse is used to aid the software phases. Software engineering has been more centered on development process which in recent times can improve the original development which gives an optimal software at a resulting quality and productivity of software development, by faster and less costly price, a design process based on assisting software engineers throughout various software systemic reusable is now recognized. engineering phases to enhance the quality of software, provide quick turnaround time for software development using few Software reuse reduces efforts and cost, because software people, tools, and methods, which creates a good software development costs can be extremely high, but they are quality by enhancing integration of the software system to shared, such that the cost of reuse can be extremely low. provide a competitive advantage. This paper examines the One major advantage of software reuse suggested by concept of software reuse, the approaches to be considered for keswani et al (2014) explains that there is a significant need software reuse, which is broadly shared into three categories: component-based software reuse, domain engineering and for the number of bugs to be reduced during software software product lines, architecture-based software reuse and development process, such that instead of developing an challenges that affect the software reuse development process.