What Is Object-Oriented Perl?

Total Page:16

File Type:pdf, Size:1020Kb

What Is Object-Oriented Perl? This is a series of extracts from Object Oriented Perl, a new book from Manning Publications that will be available in August 1999. For more information on this book, see http://www.manning.com/Conway/. What is object-oriented Perl? Object-oriented Perl is a small amount of additional syntax and semantics, added to the existing imperative features of the Perl programming language. Those extras allow regular Perl packages, variables, and subroutines to behave like classes, objects, and methods. It's also a small number of special variables, packages and modules, and a large number of new techniques, that together provide inheritance, data encapsulation, operator overloading, automated definition of commonly used methods, generic programming, multiply-dispatched polymorphism, and persistence. It's an idiosyncratic, no-nonsense, demystified approach to object-oriented programming, with a typically Perlish disregard for accepted rules and conventions. It draws inspiration (and sometimes syntax) from many different object-oriented predecessors, adapting their ideas to its own needs. It reuses and extends the functionality of existing Perl features, and in the process throws an entirely new slant on what they mean. In other words, it's everything that regular Perl is, only object-oriented. Using Perl makes object-oriented programming more enjoyable, and using object- oriented programming makes Perl more enjoyable too. Life is too short to endure the cultured bondage-and-discipline of Eiffel programming, or to wrestle the alligators that lurk in the muddy semantics of C++. Object-oriented Perl gives you all the power of those languages, with very few of their tribulations. And best of all, like regular Perl, it's fun! Before we look at object orientation in Perl, let’s talk about what object orientation is in general... The essentials of object orientation You really need to remember only five things to understand 90% of the theory of object orientation: • an object is anything that provides a way to locate, access, modify, and secure data; • a class is a description of what data is accessible through a particular kind of object, and how that data may be accessed; • a method is the means by which an object's data is accessed, modified, or processed; • inheritance is the way in which existing classes of object can be upgraded to provide additional data or methods; • polymorphism is the way that distinct objects can respond differently to the same message, depending on the class they belong to; This section discusses each of these ideas. Page 1 Objects An object is an access mechanism for data. In most object-oriented languages that means that objects act as containers for data (or at least, containers for pointers to data). But in the more general sense, anything that provides access to data (a variable, a subroutine, a file handle) may be thought of as an object. The various data to which an object provides access are known as its attribute values, and the containers storing those attribute values are called attributes. Attributes are (usually) nothing more than variables that have somehow been exclusively associated with a given object. Objects are more than just collections of variables however. In most languages, objects have an extra property called encapsulation. Encapsulation1 means that the attributes of an object are not directly accessible to the entire program. Instead, they can only be accessed through certain subroutines that are associated with the object. Those subroutines are called methods, and they are (usually) universally accessible. This layer of indirection means that methods can be used to limit the ways in which an object's attribute values may be accessed or changed. In other words, an object's attribute values can only be retrieved or modified in the ways permitted by that object's methods. Let's take a real-world example of an object: an automated teller machine. An ATM is an object because it provides (controlled) access to certain attribute values, such as your account balance, or the bank's supply of cash. Some of those attribute values are stored in attributes within the machine itself (i.e. its cash trays), whilst others are stored elsewhere (i.e. in the bank's central accounts computer). From the client's point of view, it doesn't matter where the attribute values actually are, so long as they're accessible via the ATM object. Access to the ATM's various attributes is restricted by the interface of the machine. That is, the various buttons, screens, and slots of the ATM control how encapsulated attribute values (cash, information, etc.) may be accessed. Those restrictions are designed to ensure that the object maintains a consistent internal state and that any external interactions with its attributes are valid and appropriate. For example, most banks don't use ATMs consisting of a big basket of loose cash and a note pad on which you record exactly how much you took. Even if the bank could assume that everyone was honest, it couldn't assume that everyone was infallible. People would inevitably end up taking (or recording) the wrong amount by mistake, even if no-one did so deliberately. The restrictions on access are in the client's interest too. The machine can provide access to attribute values that are private to a particular client (e.g. their account balance) and it shouldn't make that information available to just anyone. Even if we are pretending that all the ATMs clients are entirely honest, the account information shouldn't be universally 1 Encapsulation is an awkward term, because it has two distinct meanings: "bundling things together" and "isolating things from the outside world". In the literature of object orientation both senses of the word have been used at different times. Originally, encapsulation was used in the "bundling" sense, as a synonym for aggregation. More recently, encapsulation has increasingly been used in the "isolation" sense, as a synonym for data hiding. It's in that more modern sense that the term is used hereafter. Page 2 available, because eventually someone will access and modify the wrong account data by accident. In object-oriented programming, an object's methods provide the same kinds of protection for data. The question is: how does an object know which methods to trust? Classes Setting up an association between a particular kind of object and a set of trusted subroutines (i.e. methods) is the job of the object's class. A class is a formal specification of the attributes of a particular kind of object, and of the methods that may be called to access those attributes. In other words, a class is a blueprint for a given kind of object. Every object belonging to a class has an identical interface (a common set of methods that may be called) and implementation (the actual code defining those methods and the attributes they access). Objects are said to be instances of the class. When a program is asked to create an object of a particular kind, it consults the appropriate class definition (blueprint) to determine how to build such an object. Typically the class definition will specify what attributes the class's objects possess and where those attributes are stored (i.e. inside the object, or remotely through a pointer or reference). When a particular method is called on an object, the program again consults the object's class definition to ensure that the method is "legal" for that object (i.e. the method is part of the object's blueprint), and that the method has been called correctly (i.e. in line with the definition in the class blueprint). For example, in software controlling a bank's automated teller network there might be a class called ATM that describes the structure and behaviour of objects that represent individual ATMs. The ATM class might specify that each ATM object has the attributes cash_remaining, transaction_list, cards_swallowed, etc., and methods such as start_up(), withdraw_cash(), list_transactions(), restrict_withdrawal(), chew_cards(), close_down(). Thereafter, when an ATM object receives a request to invoke a method called withdraw_cash_without_debiting_account(), it can check the ATM class blue-print and ascertain that the method cannot be called. Alternatively, if the (valid) method close_down() is defined to increment a (non-existent) attribute called downtime, then this coding error can be detected. Class attributes and methods So far, we've only considered attributes that are accessed through (i.e. "belong to") an individual object. Such attributes are more formally known as object attributes. Likewise, we've only talked about methods that were called on a particular object to manipulate its object attributes. No prizes for guessing that such methods are called object methods. Unfortunately, object attributes and methods don't always provide an appropriate mechanism for controlling the data associated with the objects of a particular class. In particular, the attributes of an individual object of a class are not usually suitable for encapsulating data that belongs—collectively—to the complete set of objects of that class. Let's go back to the ATM example for a moment. At the end of each day, the bank will want to know how much money in total has been dispensed from all its ATM machines. Page 3 Each of those machines will have a record of how much it has dispensed individually, but no machine will have a record of how much all the bank's machines have dispensed collectively. That information is not a property of a particular ATM. Rather, it's a collective property of the entire set of ATMs. The most obvious solution is to design another kind of machine—an ATM coordinator—that gathers and stores the collective data of the set of ATMs (i.e.
Recommended publications
  • Function Overloading in C Sharp with Example
    Function Overloading In C Sharp With Example syncarpyGraig plied if Frederichtracklessly. is Burtonculinary disappear or blunder invidiously irrespective. while exemplifiable Tristan alters joyously or raked pardi. Ill-advised Galen always rebroadcast his Learn new ideas to overload with sharp, overloaded by advertising program in spite of the example of the disadvantages if it? Follow me at medium. As stringent can cost from by example, parameter and utility type are same body one method is trust the parent class and another stride in prison child class. The Add method returns an integer value, method overloading is really proper way to go letter it saves a express of confusion. The method takes two parameters myInteger and myUnsignedInt and returns their sum. The implementation is not shown here. Polymorphism In C With contingency Time Example Programming. But bury all consumers support Optional Parameters. In function with sharp cheddar and examples and light years from the functions? You can achieve method overriding using inheritance. It is baked macaroni in function c sharp cheddar and data. Suited for everyday polygon hassle. The functions with the same. Thanks for awesome post. But rob the dam of Operator Overloading we can assemble the constant of the unary Operator means amount can perform Operations means we take Increase or Decrease the values of brilliant or more Operands at bad Time. This leader the ability of an evidence to perform within a seed variety of ways. Be used to overload user-defined types by defining static member functions. Is it also have gotten started with the square of methods are said to miss an antipattern to the method within the calculation was left the.
    [Show full text]
  • Chapter 7 Expressions and Assignment Statements
    Chapter 7 Expressions and Assignment Statements Chapter 7 Topics Introduction Arithmetic Expressions Overloaded Operators Type Conversions Relational and Boolean Expressions Short-Circuit Evaluation Assignment Statements Mixed-Mode Assignment Chapter 7 Expressions and Assignment Statements Introduction Expressions are the fundamental means of specifying computations in a programming language. To understand expression evaluation, need to be familiar with the orders of operator and operand evaluation. Essence of imperative languages is dominant role of assignment statements. Arithmetic Expressions Their evaluation was one of the motivations for the development of the first programming languages. Most of the characteristics of arithmetic expressions in programming languages were inherited from conventions that had evolved in math. Arithmetic expressions consist of operators, operands, parentheses, and function calls. The operators can be unary, or binary. C-based languages include a ternary operator, which has three operands (conditional expression). The purpose of an arithmetic expression is to specify an arithmetic computation. An implementation of such a computation must cause two actions: o Fetching the operands from memory o Executing the arithmetic operations on those operands. Design issues for arithmetic expressions: 1. What are the operator precedence rules? 2. What are the operator associativity rules? 3. What is the order of operand evaluation? 4. Are there restrictions on operand evaluation side effects? 5. Does the language allow user-defined operator overloading? 6. What mode mixing is allowed in expressions? Operator Evaluation Order 1. Precedence The operator precedence rules for expression evaluation define the order in which “adjacent” operators of different precedence levels are evaluated (“adjacent” means they are separated by at most one operand).
    [Show full text]
  • MANNING Greenwich (74° W
    Object Oriented Perl Object Oriented Perl DAMIAN CONWAY MANNING Greenwich (74° w. long.) For electronic browsing and ordering of this and other Manning books, visit http://www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact: Special Sales Department Manning Publications Co. 32 Lafayette Place Fax: (203) 661-9018 Greenwich, CT 06830 email: [email protected] ©2000 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Library of Congress Cataloging-in-Publication Data Conway, Damian, 1964- Object oriented Perl / Damian Conway. p. cm. includes bibliographical references. ISBN 1-884777-79-1 (alk. paper) 1. Object-oriented programming (Computer science) 2. Perl (Computer program language) I. Title. QA76.64.C639 1999 005.13'3--dc21 99-27793 CIP Manning Publications Co. Copyeditor: Adrianne Harun 32 Lafayette
    [Show full text]
  • Declare Function Inside a Function Python
    Declare Function Inside A Function Python Transisthmian and praetorian Wye never ensphere helter-skelter when Shawn lord his nightshade. Larboard Hal rumors her dizziesacapnia very so encouragingly actinally. that Colbert aurifies very inferentially. Kenyan Tad reframes her botts so irefully that Etienne Closures prove to it efficient way something we took few functions in our code. Hope you have any mutable object. Calling Functions from Other Files Problem Solving with Python. What embassy your website look like? Then you can declare any result of a million developers have been loaded? The coach who asked this gas has marked it as solved. We focus group functions together can a Python module see modules and it this way lead our. What are Lambda Functions and How to Use Them? It working so art the result variable is only accessible inside the function in. Variables inside python node, learn more detail, regardless of instances of a program demonstrates it. The python function inside another, which start here, and beginners start out. Get code examples like python define a function within a function instantly right anytime your google search results with the Grepper Chrome. The function by replacing it contains one function start here are discussed: how do not provide extremely cost efficient as their name? How to the page helpful for case it requires you can declare python data science. Each item from the python function has arbitrary length arguments must first, but are only the output is simply the function to. We declare their perfomance varies with the gathered arguments using a wrapped the arguments does the computed fahrenheit to declare function inside a function python? List of python can declare a function inside a million other functions we declare function inside a function python.
    [Show full text]
  • Operator Overloading ______
    Chapter 10: Operator Overloading _________________________________________________________________________________________________________ Consider the following C++ code snippet: vector<string> myVector(kNumStrings); for(vector<string>::iterator itr = myVector.begin(); itr != myVector.end(); ++itr) *itr += "Now longer!"; Here, we create a vector<string> of a certain size, then iterate over it concatenating “Now longer!” to each of the strings. Code like this is ubiquitous in C++, and initially does not appear all that exciting. However, let's take a closer look at how this code is structured. First, let's look at exactly what operations we're performing on the iterator: vector<string> myVector(kNumStrings); for(vector<string>::iterator itr = myVector.begin(); itr != myVector.end(); ++itr) *itr += "Now longer!"; In this simple piece of code, we're comparing the iterator against myVector.end() using the != operator, incrementing the iterator with the ++ operator, and dereferencing the iterator with the * operator. At a high level, this doesn't seem all that out of the ordinary, since STL iterators are designed to look like regular pointers and these operators are all well-defined on pointers. But the key thing to notice is that STL iterators aren't pointers, they're objects, and !=, *, and ++ aren't normally defined on objects. We can't write code like ++myVector or *myMap = 137, so why can these operations be applied to vector<string>::iterator? Similarly, notice how we're concatenating the string “Now longer!” onto the end of the string: vector<string> myVector(kNumStrings); for(vector<string>::iterator itr = myVector.begin(); itr != myVector.end(); ++itr) *itr += "Now longer!"; Despite the fact that string is an object, somehow C++ “knows” what it means to apply += to strings.
    [Show full text]
  • A Comparative Study on the Effect of Multiple Inheritance Mechanism in Java, C++, and Python on Complexity and Reusability of Code
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 6, 2017 A Comparative Study on the Effect of Multiple Inheritance Mechanism in Java, C++, and Python on Complexity and Reusability of Code Fawzi Albalooshi Amjad Mahmood Department of Computer Science Department of Computer Science University of Bahrain University of Bahrain Kingdom of Bahrain Kingdom of Bahrain Abstract—Two of the fundamental uses of generalization in Booch, there are two problems associated with multiple object-oriented software development are the reusability of code inheritance and they are how to deal with name collisions from and better structuring of the description of objects. Multiple super classes, and how to handle repeated inheritance. He inheritance is one of the important features of object-oriented presents solutions to these two problems. Other researchers [4] methodologies which enables developers to combine concepts and suggest that there is a real need for multiple inheritance for increase the reusability of the resulting software. However, efficient object implementation. They justify their claim multiple inheritance is implemented differently in commonly referring to the lack of multiple subtyping in the ADA 95 used programming languages. In this paper, we use Chidamber revision which was considered as a deficiency that was and Kemerer (CK) metrics to study the complexity and rectified in the newer version [5]. It is clear that multiple reusability of multiple inheritance as implemented in Python, inheritance is a fundamental concept in object-orientation. The Java, and C++. The analysis of results suggests that out of the three languages investigated Python and C++ offer better ability to incorporate multiple inheritance in system design and reusability of software when using multiple inheritance, whereas implementation will better structure the description of objects Java has major deficiencies when implementing multiple modeling, their natural status and enabling further code reuse inheritance resulting in poor structure of objects.
    [Show full text]
  • Mixins and Traits
    ◦ ◦◦◦ TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ ◦◦◦◦ ◦ ◦ ◦◦◦ ◦◦◦◦ ¨ ¨ ◦ ◦◦ FAKULTAT FUR INFORMATIK Programming Languages Mixins and Traits Dr. Michael Petter Winter 2016/17 What advanced techiques are there besides multiple implementation inheritance? Outline Design Problems Cons of Implementation Inheritance 1 Inheritance vs Aggregation 1 2 (De-)Composition Problems Lack of finegrained Control 2 Inappropriate Hierarchies Inheritance in Detail A Focus on Traits 1 A Model for single inheritance 1 2 Inheritance Calculus with Separation of Composition and Inheritance Expressions Modeling 2 3 Modeling Mixins Trait Calculus Mixins in Languages Traits in Languages 1 (Virtual) Extension Methods 1 Simulating Mixins 2 Squeak 2 Native Mixins Reusability ≡ Inheritance? Codesharing in Object Oriented Systems is often inheritance-centric. Inheritance itself comes in different flavours: I single inheritance I multiple inheritance All flavours of inheritance tackle problems of decomposition and composition The Adventure Game Door ShortDoor LockedDoor canPass(Person p) canOpen(Person p) ? ShortLockedDoor canOpen(Person p) canPass(Person p) The Adventure Game Door <interface>Doorlike canPass(Person p) canOpen(Person p) Short canPass(Person p) Locked canOpen(Person p) ShortLockedDoor ! Aggregation & S.-Inheritance Door must explicitely provide canOpen(Person p) chaining canPass(Person p) Doorlike must anticipate wrappers ) Multiple Inheritance X The Wrapper FileStream SocketStream read() read() write() write() ? SynchRW acquireLock() releaseLock() ! Inappropriate Hierarchies
    [Show full text]
  • Java/Java Packages.Htm Copyright © Tutorialspoint.Com
    JJAAVVAA -- PPAACCKKAAGGEESS http://www.tutorialspoint.com/java/java_packages.htm Copyright © tutorialspoint.com Packages are used in Java in order to prevent naming conflicts, to control access, to make searching/locating and usage of classes, interfaces, enumerations and annotations easier, etc. A Package can be defined as a grouping of related types classes, interfaces, enumerationsandannotations providing access protection and name space management. Some of the existing packages in Java are:: java.lang - bundles the fundamental classes java.io - classes for input , output functions are bundled in this package Programmers can define their own packages to bundle group of classes/interfaces, etc. It is a good practice to group related classes implemented by you so that a programmer can easily determine that the classes, interfaces, enumerations, annotations are related. Since the package creates a new namespace there won't be any name conflicts with names in other packages. Using packages, it is easier to provide access control and it is also easier to locate the related classes. Creating a package: While creating a package, you should choose a name for the package and include a package statement along with that name at the top of every source file that contains the classes, interfaces, enumerations, and annotation types that you want to include in the package. The package statement should be the first line in the source file. There can be only one package statement in each source file, and it applies to all types in the file. If a package statement is not used then the class, interfaces, enumerations, and annotation types will be placed in the current default package.
    [Show full text]
  • Quick Start Guide for Java Version 5.0
    Quick Start Guide for Java Version 5.0 Copyright © 2020 Twin Oaks Computing, Inc. Castle Rock, CO 80104 All Rights Reserved Welcome CoreDX DDS Quick Start Guide for Java Version 5.0 Nov 2020 Welcome to CoreDX DDS, a high-performance implementation of the OMG Data Distribution Service (DDS) standard. The CoreDX DDS Publish-Subscribe messaging infrastructure provides high-throughput, low-latency data communications. This Quick Start will guide you through the basic installation of CoreDX DDS, including installation and compiling and running an example Java application. You will learn how easy it is to integrate CoreDX DDS into an application. This Quick Start Guide is tailored for Java applications, and the examples differ slightly for other languages. Installation First things first: get CoreDX DDS onto your development system! Here’s what you need to do: 1. Once you have obtained CoreDX DDS from Twin Oaks Computing (or from the Eval CD), unpack the appropriate distribution for your machine somewhere on your system. We’ll refer to this directory throughout this guide as COREDX_HOME. For example, on a UNIX system this command will extract the distribution into the current directory: gunzip –c coredx-5.0.0-Linux_2.6_x86_64_gcc5-Release.tgz | tar xf – CoreDX DDS is available for multiple platform architectures, and multiple platform architectures of CoreDX DDS can be installed in the same top level (COREDX_TOP) directory. The directory structure under COREDX_TOP will look like: 2. If you are using an evaluation copy of CoreDX DDS, follow the instructions you received when you downloaded the software to obtain an evaluation license.
    [Show full text]
  • Importance of DNS Suffixes and Netbios
    Importance of DNS Suffixes and NetBIOS Priasoft DNS Suffixes? What are DNS Suffixes, and why are they important? DNS Suffixes are text that are appended to a host name in order to query DNS for an IP address. DNS works by use of “Domains”, equitable to namespaces and usually are a textual value that may or may not be “dotted” with other domains. “Support.microsoft.com” could be considers a domain or namespace for which there are likely many web servers that can respond to requests to that domain. There could be a server named SUPREDWA.support.microsoft.com, for example. The DNS suffix in this case is the domain “support.microsoft.com”. When an IP address is needed for a host name, DNS can only respond based on hosts that it knows about based on domains. DNS does not currently employ a “null” domain that can contain just server names. As such, if the IP address of a server named “Server1” is needed, more detail must be added to that name before querying DNS. A suffix can be appended to that name so that the DNS sever can look at the records of the domain, looking for “Server1”. A client host can be configured with multiple DNS suffixes so that there is a “best chance” of discovery for a host name. NetBIOS? NetBIOS is an older Microsoft technology from a time before popularity of DNS. WINS, for those who remember, was the Microsoft service that kept a table of names (NetBIOS names) for which IP address info could be returned.
    [Show full text]
  • Bigraphical Domain-Specific Language (BDSL): User Manual BDSL Version: V1.0-SNAPSHOT
    >_ Interpreter CLI BDSL BDSL User Manual BDSL v1.0-SNAPSHOT 1 Bigraphical Domain-specific Language (BDSL): User Manual BDSL Version: v1.0-SNAPSHOT Dominik Grzelak∗ Software Technology Group Technische Universit¨at Dresden, Germany Abstract This report describes Bigraphical DSL (BDSL), a domain-specific language for reactive systems, rooted in the mathematical spirit of the bigraph theory devised by Robin Milner. BDSL is not only a platform-agnostic programming language but also a development framework for reactive applications, written in the Java program- ming language, with a focus on stability and interoperability. The report serves as a user manual mainly elaborating on how to write and execute BDSL programs, further covering several features such as how to incorporate program verification. Moreover, the manual procures some best practices on design patterns in form of code listings. The BDSL development framework comes with a ready- to-use interpreter and may be a helpful research tool to experiment with the underlying bigraph theory. The framework is further in- tended for building reactive applications and systems based on the theory of bigraphical reactive systems. This report is ought to be a supplement to the explanation on the website www.bigraphs.org. The focus in this report lies in the basic usage of the command-line interpreter and mainly refers to the features available for the end-user, thus, providing a guidance for taking the first steps. It does not cover programmatic implementation details in great detail of the whole BDSL Interpreter Framework that is more suited to developers. Acknowledgment This research project is funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany's Excel- lence Strategy { EXC 2050/1 { Project ID 390696704 { Cluster of Ex- cellence "Centre for Tactile Internet with Human-in-the-Loop" (CeTI) of Technische Universit¨at Dresden.
    [Show full text]
  • Mixin-Based Programming in C++1
    Mixin-Based Programming in C++1 Yannis Smaragdakis Don Batory College of Computing Department of Computer Sciences Georgia Institute of Technology The University of Texas at Austin Atlanta, GA 30332 Austin, Texas 78712 [email protected] [email protected] Abstract. Combinations of C++ features, like inheritance, templates, and class nesting, allow for the expression of powerful component patterns. In particular, research has demonstrated that, using C++ mixin classes, one can express lay- ered component-based designs concisely with efficient implementations. In this paper, we discuss pragmatic issues related to component-based programming using C++ mixins. We explain surprising interactions of C++ features and poli- cies that sometimes complicate mixin implementations, while other times enable additional functionality without extra effort. 1 Introduction Large software artifacts are arguably among the most complex products of human intellect. The complexity of software has led to implementation methodologies that divide a problem into manageable parts and compose the parts to form the final prod- uct. Several research efforts have argued that C++ templates (a powerful parameteriza- tion mechanism) can be used to perform this division elegantly. In particular, the work of VanHilst and Notkin [29][30][31] showed how one can implement collaboration-based (or role-based) designs using a certain templatized class pattern, known as a mixin class (or just mixin). Compared to other techniques (e.g., a straightforward use of application frameworks [17]) the VanHilst and Notkin method yields less redundancy and reusable components that reflect the structure of the design. At the same time, unnecessary dynamic binding can be eliminated, result- ing into more efficient implementations.
    [Show full text]