Anatomía Y Fisiología De La Piel

Total Page:16

File Type:pdf, Size:1020Kb

Anatomía Y Fisiología De La Piel ANATOMÍA 1 Y FISIOLOGÍA DE LA PIEL Agustín Buendía Eisman1, José Mazuecos Blanca2 y Francisco M. Camacho Martínez3 1 Profesor Titular de Dermatología. Facultad de Medicina. Universidad de Granada. 2 Catedrático de Escuela Universitaria. Área de Dermatología. Facultad de Medicina. Universidad de Sevilla. 3 Presidente de Honor de la Academia Española de Dermatología. Catedrático de Dermatología. Universidad de Sevilla. Manual de Dermatología, 2.ª edición. Editores: J. Conejo-Mir, J. C. Moreno, F. M. Camacho, pp. 2-27. ISBN Volumen I: 978-84-7885-628-2. ISBN Obra completa: 978-84-7885-627-5. ISBN Volumen II: 978-84-7885-629-9. Contenido • Estructura general de la piel • Manto cutáneo ácido lipídico • Funciones de la piel • Hipodermis • Embriología de la piel • Vasos y nervios cutáneos • Estructura de la epidermis • Tendencias en la investigación del desarrollo • Sustancia fundamental y estructura de la piel • Anejos cutáneos • Bibliografía Características generales ◗ La piel consta de tres capas bien diferenciadas: epidermis, dermis Está formada por fibras, como las de colágeno y las elásticas, y e hipodermis. por células, como los fibrocitos, mastocitos e histiocitos. Tiene ◗ La epidermis está constituida por queratinocitos, melanocitos, dos áreas bien distinguibles: superior, o dermis papilar, e inferior o células de Largenhans y células de Merkel. dermis reticular. ◗ La capa más externa de la epidermis o capa córnea se forma por ◗ La hipodermis es la tercera capa, encargada de almacenar lípidos la apoptosis de los queratinocitos. para aportar energía al organismo y aislante térmico. ◗ Las uniones entre queratinocitos son mediante desmosomas; y ◗ Las funciones de la piel son: protección, termorregulación, entre la capa basal y la dermis, mediante hemidesmosomas. sensorial, secretora y excretora, inmunológica y producción de vitamina D. ◗ La dermis es una capa conjuntiva que alberga los plexos vasculonerviosos y sirve de sostén a la epidermis y a sus anejos. 2 © 2018. Grupo Aula Médica MANUAL DE DERMATOLOGÍA, 2.ª EDICIÓN - VOLUMEN I 01_anatomia.qxp:_Dermatologia_01.qxd 3/12/09 11:31 Página 4 01_anatomia.qxp:_Dermatologia_01.qxd 3/12/09 11:31 Página 10 4 Imágenes clave Estrato córneo 10 Epidermis Los desmosomas forman una unión simétrica, tienen Dermis un diámetro de 0,1-0,5 nm y están formados por unos Unión ajustada papilar Transmembrana: ocludina, claudina componentes transmembrana y otros de la propia placa Placa: ZO, cingulina, simplequina, 7H6 Temas generales Temas electrón-densa, con un espacio intercelular central (Figs. Conectada al citoesqueleto de actina 7, 8 y 11). Los componentes transmembrana son unas Unión adherente Transmembrana: cadherinas E y P glicoproteínas, familias de las cadherinas, formando aso- Placa: cateninas a y b, placoglobina ciaciones heterófilas de desmogleínas y de desmocoli- Conectada al citoesqueleto de actina Desmosoma Temas generales Temas nas; hay tres desmogleínas (desmogleínas 1-3) y otras Transmembrana: desmocolinas, desmogleinas Dermis tres desmocolinas (desmocolinas 1-3), y los de la placa Placa: desmoplaquinas, placoglobina reticular son otras tres proteínas (desmoplaquina, placoglobina Conectados al citoesqueleto intermedio y placofilina), que son las que fijan las cadherinas a los Unión de tipo hendidura tonofilamentos de queratina, que se disponen perpen- Transmembrana: conexón (6 conexinas) dicularmente a ella (Fig. 12). Hipodermis Figura 2. Foto histológica de piel y su división en capas. Figura 2. Foto histológica de piel y su división en Membrana basal Figura 1. Dibujo esquemático de la piel. capas. Las uniones adherentes son estructuras transmembrana elec- trón-densas compuestas por cadherina E, la cual forma interac- Hemidesmosoma ¿Adhesión focal? ciones calcio-dependientes con la cadherina E de la célula adya- vasos y nervios, y se ve perforado por los anejos, unos glan- cente. Estas interacciones se conexionan con la membrana Figura 11. Diferentes proteínas que constituyen las uniones celula- dulares (glándulas sebáceas y sudoríparas ecrinas y apocri- plasmática por medio de una red de proteínas adhesivas que resFigura en la epidermis. 11. Diferentes proteínas que constituyen las nas) y otros queratinizados (pelos y uñas). Capa córnea incluyen α-catenina, β-catenina y p120ctn. uniones celulares en la epidermis. Las uniones tipo hendidura (gap) son un grupo de canales intercelularesEstrato conocidos lúcido como conexones, que forman cone- Inmediatamente por debajo, y separada por la unión xiones entreCapa los granulosa citoplasmas de los queratinocitos adyacen- dermo-epidérmica, se encuentra la dermis, estrato tes. Los conexones se originan en el aparato de Golgi conjuntivo 20 a 30 veces mayor que la capa anterior, 01_anatomia.qxp:_Dermatologia_01.qxdmediante el ensamblaje 3/12/09 de seis subunidades 11:31 Página de conexinas 19 , que alberga en su interior los plexos vasculonervio- sintetizadas en el retículo endoplásmica, siendo después sos y sirve de sostén a la epidermis y a sus anejos. transportados a la membrana plasmática, donde se agregan Está formada por un componente fibroso, que con otros conexonesCapa espinosa y, en combinación con los agregados del incluye fibras de colágeno (principal estructura de la queratinocito adyacente, forman la unión gap. La función de estas uniones tipo hendidura es la transferencia de moléculas dermis) y fibras elásticas. Sus células constitutivas de bajo peso molecular (< 1000 Da) y de intercambio de iones son los fibroblastos, como las células más importantes, entre células vecinas. los mastocitos y los histiocitos. Estos dos componen- Las uniones ajustadas están compuestas de moléculas Desmocolina tes se encuentran dentro de una sustancia funda- transmembranaCapa basal e intracelulares, como la ocludina y las clau- 19 mental, en la que predominan los mucopolisacári- dinas. Tienen como función la de controlar la permeabilidad Desmogleína dos hidratados, con gran capacidad para retener y paralelasepidérmica a la superficiey la de mantener cutánea la polaridad en la dermis celular. profunda, Placoglobina Tallo agua. PlacofilinaMúsculo piloso siendo más gruesas.Dermis La síntesis de las fibras elásticas por erector del pelo Por debajo de la dermis se encuentra la hipodermis, los fibrocitos consta de dos etapas. En la primera se secre- Desmoplaquina panículo adiposo o tejido celular subcutáneo, que, Figura 15.Epidermopoyesis Inmunohistoquímica de los melanocitos Figura 3. Esquema de las capastan de laal epidermis. espacio extracelular las microfibrillas agrupadas de Figura 12. Componentes de los desmosomas. aparte de contener algunos elementos vasculonervio- en la capa basal con tinciones de plata. forma Enlineal la cinética produciéndose celular de la una epidermis, polimerización el concepto posterior- más impor- sos, es un perfecto aislante térmico y sirve de pro tec- mente.tante En la es segunda el tiempo se de produce regeneración la secreción celular (turnoverde la tropoe- time), ción frente a los traumatismos a los órganos internos. lastinaque dentro define de el los tiempo cilindros medio preformados de una población de microfibri-celular para La capa basal tiene una serie de controles estimuladores Ya debajo existe una fascia fibrosa profunda, que se reproducirse a sí misma; es decir, el intervalo entre dos mito- y/o inhibidores que permiten, en determinadas circunstan- llas; la elastina se une a ellas por medio de uniones Epidermis considera el límite cutáneo. sis sucesivas de las células germinativas epidérmicas. cias, producir más o menos células. covalentesAunque conocidas turnover como time desmosinastambién se emplea e isodesmosinas. para definir el Estas fibras son muy numerosas al nacer, observándose Dermis paso de una célula desde el estrato germinativo a la capa cór- Factores estimuladores como neabandas epitelial, de materialnos parece amorfo más lógico rodeadas emplear de elun término gran númerotiempo de microfibrillas de tránsito para de elastina.denominar Pocos este periodo. meses despuésYa hemos I Familia del Factor de crecimiento epidérmico (EGF, Glándula del nacimiento,indicado que aumenta es de 52 ala 75 cantidad días; sin embargo,de elastina un epitelio amorfa pso- y «Epidermal Growth Factor»). El EGF humano es un polipép- riásico sólo necesita de 8 a 10 días. El hecho de que el tamaño ecrinatido que estimula la proliferación y diferenciación celular ya se comprueba la organización típica de las fibras elásti- Vaina epitelial de la epidermis permanezca constante, hace pensar que la en un amplio rango de tejidos. Se encuentra en las glándu- externa cas maduras.tasa de producción Durante celularla vida en adulta,el estrato las germinativo fibras elásticas está equi- las salivales, plaquetas y algunas glándulas del duodeno. muestranlibrada pocas con lavariaciones pérdida celular a excepciónen el estrato decórneo. una discreta El EGF incrementa la epidermopoyesis uniéndose a unos Glándula reducción de las microfibrillas y la presencia de algunas apocrina Glándula sebácea inclusiones electrón-densas y de márgenes irregulares, lo de la piel Anatomía y fisiología que se hace más evidente sobre los cincuenta años. Vaina epitelial interna cutícula 1. Pelo corteza Morfométricamente, las fibras elásticas representan el médula 3-4% del total de la dermis en el recién nacido, no cambiando significativamente hasta la quinta década Matriz de la vida, a partir de la cual aumentan al 5% y en los Vaso sanguíneo Papila del tejido conectivo ancianos llegan al 7-8%. Este aumento se debe al mayor diámetro de las fibras y
Recommended publications
  • A Practical Technique for Differentiation of Subepidermal Bullous Diseases Localization of in Vivo–Bound Igg by Laser Scanning Confocal Microscopy
    STUDY A Practical Technique for Differentiation of Subepidermal Bullous Diseases Localization of In Vivo–Bound IgG by Laser Scanning Confocal Microscopy Katarzyna Woz´niak, MD; Takashi Kazama, MD; Cezary Kowalewski, MD Objective: To develop a practical technique to distin- whereas basement membrane zone markers were la- guish autoimmune subepidermal bullous diseases. beled with anti–mouse Cy5-conjugated antibodies. Design: A prospective study. Results: In patients with bullous pemphigoid, in vivo– bound IgG was localized on the epidermal side of lami- ␤ Setting: Academic referral center—the Department of nin 5 and co-localized with 4 integrin. In patients with Dermatology, Medical University of Warsaw. mucous membrane pemphigoid, IgG was in vivo bound to the dermal-epidermal junction between localization Patients: Forty-two patients fulfilling clinical, immu- of laminin 5 and type IV collagen. In patients with epi- nological, and/or immunoelectron microscopic criteria dermolysis bullosa acquisita, in vivo–bound IgG was for bullous pemphigoid (n=31), mucous membrane pem- present on the dermal side of type IV collagen. phigoid (n=6), or epidermolysis bullosa acquisita (n=5), diagnosed as having disease and treated from January 1, Conclusions: Laser scanning confocal microscopy al- 1997, to December 31, 2002. lows precise localization of in vivo–bound IgG in pa- tients’ skin and, thus, it is a rapid method for the differ- Main Outcome Measures: We applied laser scan- entiation of mucous membrane pemphigoid from bullous ning confocal microscopy to determine the localization pemphigoid and epidermolysis bullosa acquisita. This tool of in vivo–bound IgG at the basement membrane zone is suitable for the routine diagnosis of individual pa- in biopsy specimens taken from patients’ skin to com- tients and for retrospective studies.
    [Show full text]
  • Corrective Gene Transfer of Keratinocytes from Patients with Junctional Epidermolysis Bullosa Restores Assembly of Hemidesmosomes in Reconstructed Epithelia
    Gene Therapy (1998) 5, 1322–1332 1998 Stockton Press All rights reserved 0969-7128/98 $12.00 http://www.stockton-press.co.uk/gt Corrective gene transfer of keratinocytes from patients with junctional epidermolysis bullosa restores assembly of hemidesmosomes in reconstructed epithelia J Vailly1, L Gagnoux-Palacios1, E Dell’Ambra2, C Rome´ro1, M Pinola3, G Zambruno3, M De Luca2,3 J-P Ortonne1,4 and G Meneguzzi1 1U385 INSERM, Faculte´ de Me´decine, Nice; 4Service de Dermatologie, Hoˆpital L’Archet, Nice, France; Laboratories of 2Tissue Engineering and 3Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata, Rome, Italy Herlitz junctional epidermolysis bullosa (H-JEB) provides deposited into the extracellular matrix. Re-expression of a promising model for somatic gene therapy of heritable laminin-5 induced cell spreading, nucleation of hemides- mechano-bullous disorders. This genodermatosis is mosomal-like structures and enhanced adhesion to the cul- caused by the lack of laminin-5 that results in absence of ture substrate. Organotypic cultures performed with the hemidesmosomes (HD) and defective adhesion of squam- transduced keratinocytes, reconstituted epidermis closely ous epithelia. To establish whether re-expression of lami- adhering to the mesenchyme and presenting mature hemi- nin-5 can restore assembly of the dermal-epidermal attach- desmosomes, bridging the cytoplasmic intermediate fila- ment structures lacking in the H-JEB skin, we corrected the ments of the basal cells to the anchoring filaments of the genetic mutation hindering expression of the ␤3 chain of basement membrane. Our results provide the first evi- laminin-5 in human H-JEB keratinocytes by transfer of a dence of phenotypic reversion of JEB keratinocytes by laminin ␤3 transgene.
    [Show full text]
  • Documento Completo
    I UNIVERSIDAD NACIONAL DE LA PLATA Facultad de Ciencias Veterinarias Trabajo de tesis realizado como requisito para optar al título de Doctor en Ciencias Veterinarias Depilado enzimático conservador del pelo: Injuria química y mecánica de la epidermis para incrementar los procesos difusivos Garro María Laura Director: Profesor Doctor Barbeito Claudio Realizado en la Cátedra de Histología y Embriología. FCV, UNLP. Y en el Centro de Investigación y Tecnología del Cuero CITEC, M. Gonnet. Miembros del Jurado: Doctor Reinoso Hugo Doctor Sofía Alberto Doctor Drago Hugo 2012 II AGRADECIMIENTOS Este trabajo fue realizado sobre una idea original del Ingeniero Carlos Cantera director del Centro de Investigación y Tecnología del Cuero, CITEC. Llegados al punto de escribir lo realizado en este período de investigación quiero guardar un espacio para dar las gracias a todas las personas que han hecho posible este trabajo En primer lugar, gracias al Profesor Doctor Claudio Barbeito por su generosidad intelectual, darme la oportunidad de trabajar en su equipo, dirigir mi investigación, resolver todas mis dudas durante el trabajo en el laboratorio y durante la redacción, así como por la corrección de la misma, que parecía no tener fin. Gracias a la Doctora Renata Bitar quien se hizo un lugar en la etapa del cuidado de su pequeña hija para acompañarme en este trabajo a pesar de la distancia. Al Doctor Néstor Massa por darme la oportunidad de trabajar en Brasil y contactar a Renata. A la Doctora Betina Galarza dispuesta siempre a resolver mis dudas y compartir sus conocimientos. Al Histotecnólogo Rubén Mario por su colaboración en el desarrollo de las técnicas histológicas que fueron una parte indispensable para que esta investigación se pudiera llevar a cabo.
    [Show full text]
  • Sweat Glands
    Anatomy & physiology of skin Skin Structure Skin is the single largest organ in the human body. It weighs an average of 4 kg and covers an area of 2 m2 Three distinct layers Epidermis: Composed of epithelial tissue Dermis: Composed of a combination of connective tissues Hypodermis: usually contains abundant fat. Epidermis It’s outermost layer of skin. It consists of many layers of closely packed cells. The most superficial of which areflattened and filled with keratins. It is a stratified squamous epithelium. Contains no blood vessels. It varies in thickness from less than 0.1 mm on the eyelids to nearly 1 mm on the palms and soles. Stratum Basale the deepest layer, rests on a basement membrane, which attaches it to the dermis. It is a single layer of columnar cells. In normal skin only 30% of basal cells are preparing for division. Once basal cell leaves basal layer in humans, normal transit time to stratum corneum is at least 14 days, and transit through stratum corneum to desquamation requires 14 days, 28 days total. Stratum Spinosum Consists of 8-10 layers of Keratinocytes. They are named for the spine-like appearance of the cell margins in histologic sections. As these cells differentiate and move upward through the epidermis, they become progressively flatter and develop organelles known as lamellar granules Composed of Keratinocytes attached to each other via desmosomes. Contains langerhans cells that aid in the immune system response. Stratum Granulosum Stratum Granulosum: The middle layer of 3-5 layers of cells that help form keratin. Contains keratohyline granules that produce a secretion These make up the thick and tough peripheral protein coating of the horny envelope.
    [Show full text]
  • The Appearance of Pili Annulati Following Alopecia Areata
    The Appearance of Pili Annulati Following Alopecia Areata Antonio P. Cruz, MD; Christine A. Liang, MD; Jennifer P. Gray, MD; Leslie Robinson-Bostom, MD; Charles J. McDonald, MD Pili annulati is a rare autosomal-dominant hair taking omeprazole. She was otherwise healthy and shaft abnormality. It is characterized by alternat- reported no other nail, hair, or scalp changes. Her ing light and dark bands along the shaft due to family history was positive for eczema, but she denied air-filled cavities within the cortex of the hair shaft. a history of psoriasis or any dermatologic malignancy. Alopecia areata has been previously described Initial examination of the scalp revealed a 632-cm as a common association with pili annulati, with area of alopecia with exclamation point hairs at the improvement in alopecia areata coinciding with periphery. A clinical diagnosis of alopecia areata resolution of pili annulati. We report the case was made. The patient was given a 40-mg intra- of a patient with a history of alopecia areata muscular dose of triamcinolone acetonide and also and alopecia universalis who developed the was prescribed clobetasol propionate gel 0.05% that characteristic banded hair of pili annulati upon she was directed to apply once daily to the affected resolution of her alopecia areata. We provide areas of the scalp. On the 6-week follow-up as well as direct microscopic examinationCUTIS of postregrowth 3 subsequent visits over the course of 8 to 10 months, hairs compared to normal and cross-polarized the patient showed improvement of her alopecia with light microscopy. remarkable regrowth.
    [Show full text]
  • 433 Dermatology Team Structure of Skin
    433 Dermatology Team structure of skin Lecture (4) Structure of skin [email protected] 1 | P a g e 433 Dermatology Team structure of skin Objectives: • To be familiar with the different structures of the skin. • To have basic knowledge of anatomy and function of the skin. • To be familiar with different tools to investigate skin disorders. • The relation between anatomy and diseases. • To have a general idea about different therapeutic options used in dermatology practice. Color index: slides, doctor notes, 432 notes 2 | P a g e 433 Dermatology Team structure of skin Functions of Skin: Prevent infections via innate and adaptive immunity Maintain a barrier Repair injury Provide circulation Communicate Provide nutrition Regulate temperature Attract attention Pathologies affecting functions of skin: Infections Autoimmunity Cancers Dehydration Eczema Ulcers Infarction Vasculitis Sensory neuropathy Pruritus Vitiligo Alopecia Hyperthermia Vitamin D deficiency The Skin as an organ: General structure and embryological origins Epidermis (ectoderm) Dermal- Epidermal junction is called basement membrane, Weakest part in the skin usual site of blisters Dermis (mesoderm) Subcutaneous fat and skin appendages (ectoderm and mesoderm Palms, soles, genitalia and scalp skin have slightly different structure 3 | P a g e 433 Dermatology Team structure of skin Epidermis: • Keratinocytes: 95% of the cells in epidermis. Division of these cells only occur in the basal layer where 10% of them are stem cells. • The normal transit time of a differentiating keratinocyte from basal layer to the outer surface of the stratum corneum is 28 days. (in psoriasis it is much shorter). • The epidermis doesn’t have blood vessels it obtains its nutrients from the blood vessel of dermis diffusing through the dermoeoidermal junction (papillary layer of dermis).
    [Show full text]
  • MODULE 1 – Week 2 Skin Structure & Function/ Burn
    MODULE 1 – Week 2 Skin Structure & Function/ Burn Pathophysiology – The Structure & Function of Normal Skin [1] – The Epidermis Navsaria/ McKenzie The Structure & Function of Skin The integument comprises the skin together with its appendages (Figures 1 & 2). These include hair and hair follicles, sebaceous and sweat glands, and nails. The skin covers the entire body and is the largest organ of the body. It covers a surface area of more than 1.7 m2 making up in total about 16% of normal body weight. It has an array of functions. These include acting as a barrier to physical, biological and chemical agents, as well as to ultraviolet (UV) radiation. Skin barrier function also acts to prevent dehydration by controlling loss and gain of fluid. Other functions include sensory and thermoregulatory roles, vitamin D synthesis, immune surveillance, excretion of wastes through sweat glands, socio- sexual communication and reproduction, by virtue of its appearance and smell (e.g. hormones and pheromones). Skin is divided into glabrous (covering the palms of the hands and soles of the feet) and hairy skin. The skin comprises of 2 layers, the outer most epidermis and the innermost layer, the dermis. Embryologically, these 2 layers of skin are derived from the ectoderm and mesoderm respectively. The epidermis and dermis are firmly attached to each other and together, vary in thickness from around 0.5 to 4 mm or more depending on body site. At the point where the epidermis meets the dermis, evaginations that project into the dermis are formed known as ‘rete ridges’ or ‘pegs’. Complementary projections of the dermis are called dermal papillae.
    [Show full text]
  • Unusually Complex Basement Membranes in the Midgut of Two Decapod Crustaceans, the Stone Crab (Menippe Mercenaria) and the Lobster (Homarus Americanus)
    7/ THE ANATOMICAL RECORD 200:253-258 (1981) Unusually Complex Basement Membranes in the Midgut of Two Decapod Crustaceans, the Stone Crab (Menippe mercenaria) and the Lobster (Homarus americanus) JAN ROBERT FACTOR Smithsonian Institution, Ft. Pierce Bureau, Ft. Pierce, Florida 33450 ABSTRACT UltrastructuraJ studies of the stone crab (Menippe mercenaria) and the lobster [Homarus americanus) demonstrate that the basement membrane of the midgut (intestine) is unusually complex. In both species, the basement membrane is three-layered and has processes that form extensive networks pro- truding into the connective tissue. The possible functional significance of this complex structure is discussed. The basement membrane underlying epithe- clude cylinders or grid-like patterns, some- lial tissues is generally considered to be a con- times composed of hexagonal units. tinuous, electron-dense, extracellular sheet Ultrastructural studies of the connective tis- which ranges in thickness from 200 to 50,000 sue layer surrounding the digestive epithelium A and often appears fibrous or flocculent. in two decapod crustaceans, the stone crab When viewed at low magnifications, it has Menippe mercenaria (Brachyura: Xanthidae) been variously described in textbooks as and the lobster Homarus americanus "amorphous" (Threadgold, 76) or "homogene- (Macrura: Nephropidae), demonstrate that the ous" with poorly defined inner and outer limits basement membrane of the adult midgut (Fawcett, '66). Closer examination shows that (intestine) is unusually complex. This is the this layer may be a mat or meshwork of fine fil- first description of a complex basement aments embedded in an amorphous matrix membrane in this major group of (Bloom and Fawcett, 75). The basement mem- invertebrates.
    [Show full text]
  • Structure and Function of the Skin
    2 Structure and Function of the Skin Skin disease illustrates structure and function. Loss of or Chapter Contents defects in skin structure impair skin function. Skin dis­ ease is discussed in more detail in the other chapters. ● Epidermis ● Structure ● Other Cellular Components EPIDERMIS ● Dermal–Epidermal Junction – The Basement Membrane Zone ● Dermis ● Skin Appendages Key Points ● Subcutaneous Fat 1. Keratinocytes are the principal cell of the epidermis 2. Layers in ascending order: basal cell, stratum spinosum, stratum granulosum, stratum corneum 3. Basal cells are undifferentiated, proliferating cells Key Points 4. Stratum spinosum contains keratinocytes connected by desmosomes 1. The major function of the skin is as a barrier to maintain 5. Keratohyalin granules are seen in the stratum granulosum internal homeostasis 6. Stratum corneum is the major physical barrier 2. The epidermis is the major barrier of the skin 7. The number and size of melanosomes, not melanocytes, determine skin color 8. Langerhans cells are derived from bone marrow and are the skin’s first line of immunologic defense ABSTRACT 9. The basement membrane zone is the substrate for attach- ment of the epidermis to the dermis The skin is a large organ, weighing an average of 4 kg and 10. The four major ultrastructural regions of the basement covering an area of 2 m2. Its major function is to act as membrane zone include the hemidesmosomal plaque of a barrier against an inhospitable environment – to pro­ the basal keratinocyte, lamina lucida, lamina densa, and tect the body from the influences of the outside world. anchoring fibrils located in the sublamina densa region of The importance of the skin is well illustrated by the high the papillary dermis mortality rate associated with extensive loss of skin from burns.
    [Show full text]
  • THE BASEMENT MEMBRANE ZONE: MAKING the CONNECTION American Academy of Dermatology
    THE BASEMENT MEMBRANE ZONE: MAKING THE CONNECTION American Academy of Dermatology Study Notes THE BASEMENT MEMBRAN E ZONE: MAKING THE CONNECTION COPYRIGHT © 2012 AME RICAN ACADEMY OF DER MATOLOGY THE BASEMENT MEMBRAN E ZONE: MAKING THE CO NNECTION Study Guide LTC Eduardo M. Vidal, M.D. Medical Corps, U.S. Army Assistant Professor of Dermatology, Uniformed Services University of Health Sciences, Bethesda, Maryland. Copyright 2012 American Academy of Dermatology Reproduction or republication strictly prohibited without prior written permission. 930 E. Woodfield Road Schamburg, IL 60168 Toll-free: (866) 503-SKIN (7546) International: (847) 240-1280 Fax: (847) 240-1859 1 THE BASEMENT MEMBRAN E ZONE: MAKING THE CONNECTION COPYRIGHT © 2012 AME RICAN ACADEMY OF DER MATOLOGY 2 THE BASEMENT MEMBRAN E ZONE: MAKING THE CONNECTION COPYRIGHT © 2012 AME RICAN ACADEMY OF DER MATOLOGY 3 THE BASEMENT MEMBRAN E ZONE: MAKING THE CONNECTION COPYRIGHT © 2012 AME RICAN ACADEMY OF DER MATOLOGY Intermediate Filamments, Type I & II Classification: Cytoskeletal protein Molecular weight: 40-64 kDa. Location: Basal keratinocyte. Function(s): a. Structural/mechanical integrity. b. Organizing cytoplasmic architecture. c. Intracellular signaling. d. Regulation of transcription. Disease associations: a. Dominant epidermolysis bullosa simplex ( DEBS) [K5, K14]. b. REBS [K14]. c. EBS, Köebner type [K5, K14]. d. EBS, Weber-Cockayne type [K5, K14]. e. EBS, Dowling-Meara type [K5, K14]. f. EBS with mottled pigmentation [K5, K14]. g. EBS with migratory circinate erythema [K5]. h. EBS with severe palmoplantar hyperkeratosis [K5]. i. Dowling-Degos disease [K5] j. Epidermolytic hyperkeratosis [K1,K10] k. Epidermolytic PPK [K1, K5, K9,K10, K16]. l. Diffuse non-epidermolytic PPK [K1].
    [Show full text]
  • Collagens of Basement Membranes
    0022-2()�X/82!790:J-()051s$02.()(J/O THE .JOORNAL OF INVESTIGATIVE DERMATOLOGY, 79:.51s-598, 1982 \'01. 79, Supplement I Copyright © 1982 by The Williams & Wilkins Co. Printed in U.S.A. Collagens of Basement Membranes HELENE SAGE, PH.D. Department of Biochemistry, University of Washington, Seattle, WA u.s.A. Recent biochemical and immunohistochemical studies thelial and endothelial cells and the underlying connective have described several components of basement mem­ tissue stroma. Ultrastructurally, they appear most often as branes including heparan sulfate proteoglycan, 2 high continuous sheets of electron-dense material that surround molecular weight glycoproteins (fibronectin and lami­ capillary endothelium and are disposed beneath respiratory and nin), and 2 collagen types (IV and V). These collagens digestive epithelium. Specialized, highly distinct basement have several properties which distinguish them from membranes (BM) include those of the kidney glomerulus, lens other types that are located in the interstitium: (a) type capsule, corneal endothelium (Descement's membrane), and IV forms an amorphous, felt-like matrix, and neither IV the dermal-epidermal junction. nor V is found in large, cross-banded fibrils, (b) both Figure 1 is an electron micrograph of the basement membrane have an increased content of hydrophobic amino acids, as seen at the dermal-epidermal junction in human skin. Several (c) the precursor (pro) forms are larger than those of component layers can be observed: (a) the plasma membrane interstitial collagens, (d) type IV contains interruptions of the epidermal keratinocyte, (b) the lamina lucida and asso­ within the triple helix, and e) both IV and V are resistant ciated anchoring filaments, (c) the basal lamina (also designatl�d to human skin collagenase but are substrates for selected the basement membrane), consisting of a dense granular sub­ neutral proteases derived from mast cells, macrophages, stance referred to as the lamina densa; and (d) the fibrous and granulocytes.
    [Show full text]
  • The Basement Membrane Zone: Making the Connection (1St Edition, Version 1.3, Video Series with Accompanying Text and Study Guide)
    The Basement Membrane Zone: Making the Connection (1st Edition, version 1.3, Video series with accompanying text and study guide) for distribution by the American Academy of Dermatology (http://www.aad.org/education/the-basement-membrane-zone-video-lecture) LTC Eduardo M. Vidal, MD, FAAD Medical Corps, U.S. Army Deputy Commander for Clinical Services, Raymond W. Bliss Army Health Clinic Assistant Professor of Dermatology Uniformed Services University of Health Sciences, Bethesda, Maryland. Consultants: Thomas Darling, M.D., Ph.D, Director Research Laboratory Center, Uniformed Services University of Health Sciences, Bethesda, Maryland. Leonard Sperling, M.D., Chair, Department of Dermatology, Uniformed Services University of Health Sciences, Bethesda, Maryland. COL George Turiansky, M.D., Medical Corps, U.S. Army, Deputy Director, National Capital Consortium Graduate Medical Education, Bethesda, Maryland. Copyright 2013, Eduardo M. Vidal 1 Table of Contents: PREFACE ..................................................................................................................................................... 3 ACKNOWLEDGEMENTS ............................................................................................................................. 5 STRUCTURE ................................................................................................................................................ 6 BASAL KERATINOCYTE LAYER ...................................................................................................................
    [Show full text]