Network 2030 Architecture Framework

Total Page:16

File Type:pdf, Size:1020Kb

Network 2030 Architecture Framework International Telecommunication U n i o n ITU-T Technical Specification TELECOMMUNICATION STANDARDIZATION SECTOR (June 2020) OF ITU FG-NET2030 – Focus Group on Technologies for Network 2030 Network 2030 Architecture Framework - 2 - FG NET-2030 Technical Specification on Network 2030 Architecture Framework Table of Contents Acknowledgement ........................................................................................................................... 10 1. Summary .............................................................................................................................. 10 2. Keywords .............................................................................................................................. 10 3. Scope ..................................................................................................................................... 10 4. Abbreviations ....................................................................................................................... 10 5. Conventions. ......................................................................................................................... 12 6. Definitions and Acronyms ................................................................................................... 13 7. Introduction.......................................................................................................................... 23 8. Architecture Principles ....................................................................................................... 23 8.1 Simplicity ................................................................................................................ 24 8.2 Native Programmability and Soft Re-architecting ............................................. 25 8.2 Backward Compatibility ....................................................................................... 25 8.3 Heterogeneity in communication, compute, storage, service and their integration .............................................................................................................. 26 8.4 Native Slicing ......................................................................................................... 26 8.5 Unambiguous naming network functions and services ...................................... 26 8.6 Intrinsic Anonymity and security support for all network operations ............ 27 8.7 Resilience ................................................................................................................ 27 8.8 Network Determinism ........................................................................................... 28 9 Overall Architecture ............................................................................................................ 29 9.1 Introduction ........................................................................................................... 29 9.2 Network2030 Architecture ................................................................................... 30 9.2.1 Characteristics of Network2030 ............................................................... 32 9.2.2 Interfaces .................................................................................................... 33 9.2.3 Connections and Connection End Points ................................................ 38 9.3 Management Architecture for Network2030 ...................................................... 41 9.4 Conclusion .............................................................................................................. 46 10 Access Network and Edge ................................................................................................... 47 - 3 - 10.2 Introduction ........................................................................................................... 47 10.3 Access and Edge Components .............................................................................. 48 10.4 Architecture ........................................................................................................... 50 10.5 Edge Computing and Analytics ............................................................................ 53 10.6 MEC and Access Network .................................................................................... 55 10.7 Protocols and Interfaces ........................................................................................ 55 10.8 Messaging Services ................................................................................................ 57 10.8.1 Multi-User Group Messaging ................................................................... 58 10.8.2 Opportunistic Multicast ............................................................................ 58 10.9 Resource Fairness .................................................................................................. 59 10.10 Flow Setup .............................................................................................................. 60 10.11 Efficient Transport Network Integration ............................................................ 60 10.12 Deterministic Networking ..................................................................................... 60 10.13 Ultra-Reliable communications ............................................................................ 61 10.14 End User Equipment Interaction with MEC ...................................................... 61 10.15 MEC Federation and Collaboration .................................................................... 64 10.15.1 GSMA Operator Platform Concept ..................................................................... 65 10.15.2 MEC Federation and Collaboration .................................................................... 65 10.15.3 Business Benefits .................................................................................................... 68 10.15.4 Business Value Chain ............................................................................................ 68 10.15.5 Challenges and Remedies ...................................................................................... 69 10.16 Conclusion .............................................................................................................. 69 11 Space Networking ................................................................................................................ 70 11.1 Key Components of Future Integrated Space-terrestrial Network .................. 70 11.2 Fundamental integration use cases and scenarios .............................................. 70 11.3 Using LEO satellites as backbone network ......................................................... 71 11.3.1 Decoupled scenario .................................................................................... 71 11.3.2 Coupled scenario ....................................................................................... 71 11.3.3 Using LEO satellites as access network ................................................... 72 11.3.4 Design options on addressing and routing .............................................. 73 11.4 Other Advanced Functionalities and Features ................................................... 76 11.4.1 Supporting of unicast, multicast, broadcast and anycast ...................... 76 11.4.2 Access/admission control and security .................................................... 77 11.4.3 Edge caching and computing ................................................................... 77 11.4.4 Network slicing .......................................................................................... 77 11.5 Implication to Key Network Management Operations ...................................... 78 12 Routing and Addressing ...................................................................................................... 80 12.1 Routing Requirements in Network2030 .............................................................. 80 - 4 - 12.1.1 Path and Topology Policies....................................................................... 80 12.1.2 Predictive Routing ..................................................................................... 82 12.1.3 Domain-Specific Routing Protocols and Algorithms ............................. 82 12.1.4 Industrial Internet and Internet of Things ............................................. 83 12.1.5 ManyNets and Routing in the space ........................................................ 83 12.2 Network layer UNI and NNI ................................................................................ 84 12.3 Mobility .................................................................................................................. 85 12.4 Routing Security and Resilience ........................................................................... 85 12.5 Emerging Routing Protocols ................................................................................ 87 13 Security, Privacy and Trust ................................................................................................ 91 13.1 Goals ....................................................................................................................... 91 13.2 Requirements and Challenges .............................................................................. 93 13.3 Design Alternatives ................................................................................................ 94 13.3.1 Decentralized
Recommended publications
  • A Taxonomy of Accelerator Architectures and Their
    A taxonomy of accelerator C. Cas$caval S. Chatterjee architectures and their H. Franke K. J. Gildea programming models P. Pattnaik As the clock frequency of silicon chips is leveling off, the computer architecture community is looking for different solutions to continue application performance scaling. One such solution is the multicore approach, i.e., using multiple simple cores that enable higher performance than wide superscalar processors, provided that the workload can exploit the parallelism. Another emerging alternative is the use of customized designs (accelerators) at different levels within the system. These are specialized functional units integrated with the core, specialized cores, attached processors, or attached appliances. The design tradeoff is quite compelling because current processor chips have billions of transistors, but they cannot all be activated or switched at the same time at high frequencies. Specialized designs provide increased power efficiency but cannot be used as general-purpose compute engines. Therefore, architects trade area for power efficiency by placing in the design additional units that are known to be active at different times. The resulting system is a heterogeneous architecture, with the potential of specialized execution that accelerates different workloads. While designing and building such hardware systems is attractive, writing and porting software to a heterogeneous platform is even more challenging than parallelism for homogeneous multicore systems. In this paper, we propose a taxonomy that allows us to define classes of accelerators, with the goal of focusing on a small set of programming models for accelerators. We discuss several types of currently popular accelerators and identify challenges to exploiting such accelerators in current software stacks.
    [Show full text]
  • DSL-Based Access Solutions Thomas Martin Session SPL-211
    SPL_211 © 2001, Cisco Systems, Inc. All rights reserved. 1 Design Principles for DSL-Based Access Solutions Thomas Martin Session SPL-211 SPL_211 © 2001, Cisco Systems, Inc. All rights reserved. 3 Agenda • Digital Subscriber Line Technologies • Subscriber Connection Models • Reaching the Services • Case Studies • Summary, Question and Answer SPL_211 © 2001, Cisco Systems, Inc. All rights reserved. 4 What is Digital Subscriber Line (DSL)? End-User DSL E’net ATM Value-Added Copper Loop Packet Network DSL DSL “Modem” “Modem” • DSL is a pair of “modems” on either end of a copper wire pair • DSL converts ordinary phone lines into high-speed data conduits • Like dial, cable, wireless, and E1, DSL by itself is a transmission technology, not a complete end-to-end solution • End-users don’t buy DSL, they buy services such as high-speed Internet access, intranet, leased-line, voice, VPN, and video on demand SPL_211 © 2001, Cisco Systems, Inc. All rights reserved. 5 DSL Modem Technology DSLDSL ServiceService Max.Max. DataData RateRate AnalogAnalog VoiceVoice Max.Max. ReachReach Down/UplinkDown/Uplink (bps)(bps) SupportSupport (km-feet)(km-feet) Residential VDSL–Very 25M/1.6M25M/1.6M YesYes .9–3,000.9–3,000 High Bit Rate oror 8M/8M8M/8M SOHO ADSL–Asymmetric 8M/1M8M/1M YesYes 5.5–18,0005.5–18,000 G.SHDSL 2.3M/2.3M.2.3M/2.3M. NoNo 8.15–26,0008.15–26,000 Business • Trade-off is reach vs. Bandwidth • Reach numbers imply “clean copper” • Different layer 1 transmission technologies, need a common upper protocol layer to tie them together SPL_211 © 2001, Cisco Systems, Inc.
    [Show full text]
  • Best Practices for Deploying Ipv6 Over Broadband Access
    WHITE PAPER Best Practices for Deploying IPv6 over Broadband Access www.ixiacom.com 915-0123-01 Rev. D, January 2016 2 Table of Contents Introduction ................................................................................................. 4 IPv6 Solutions for Broadband Access......................................................... 4 Translation ................................................................................................... 5 Tunneling ..................................................................................................... 5 Dual-Stack Lite (DS-Lite) ............................................................................ 5 IPv6 Rapid Deployment (6rd) ...................................................................... 6 Dual-Stack ................................................................................................... 8 How Dual-Stack PPP works ....................................................................... 8 Test Requirements ....................................................................................... 9 Testing Tunneling ......................................................................................... 9 Testing Dual-Stack PPP ............................................................................. 11 Conclusion ..................................................................................................12 3 Introduction Service Providers: The IPv6 Bell Tolls for Thee! After more than a decade of forewarning, the IPv4 to IPv6 transition has
    [Show full text]
  • WWW 2013 22Nd International World Wide Web Conference
    WWW 2013 22nd International World Wide Web Conference General Chairs: Daniel Schwabe (PUC-Rio – Brazil) Virgílio Almeida (UFMG – Brazil) Hartmut Glaser (CGI.br – Brazil) Research Track: Ricardo Baeza-Yates (Yahoo! Labs – Spain & Chile) Sue Moon (KAIST – South Korea) Practice and Experience Track: Alejandro Jaimes (Yahoo! Labs – Spain) Haixun Wang (MSR – China) Developers Track: Denny Vrandečić (Wikimedia – Germany) Marcus Fontoura (Google – USA) Demos Track: Bernadette F. Lóscio (UFPE – Brazil) Irwin King (CUHK – Hong Kong) W3C Track: Marie-Claire Forgue (W3C Training, USA) Workshops Track: Alberto Laender (UFMG – Brazil) Les Carr (U. of Southampton – UK) Posters Track: Erik Wilde (EMC – USA) Fernanda Lima (UNB – Brazil) Tutorials Track: Bebo White (SLAC – USA) Maria Luiza M. Campos (UFRJ – Brazil) Industry Track: Marden S. Neubert (UOL – Brazil) Proceedings and Metadata Chair: Altigran Soares da Silva (UFAM - Brazil) Local Arrangements Committee: Chair – Hartmut Glaser Executive Secretary – Vagner Diniz PCO Liaison – Adriana Góes, Caroline D’Avo, and Renato Costa Conference Organization Assistant – Selma Morais International Relations – Caroline Burle Technology Liaison – Reinaldo Ferraz UX Designer / Web Developer – Yasodara Córdova, Ariadne Mello Internet infrastructure - Marcelo Gardini, Felipe Agnelli Barbosa Administration– Ana Paula Conte, Maria de Lourdes Carvalho, Beatriz Iossi, Carla Christiny de Mello Legal Issues – Kelli Angelini Press Relations and Social Network – Everton T. Rodrigues, S2Publicom and EntreNós PCO – SKL Eventos
    [Show full text]
  • Qos Support in MPLS Networks
    1 QoS Support in MPLS Networks MPLS/Frame Relay Alliance White Paper May 2003 By: Victoria Fineberg, Consultant [email protected] Abstract MPLS is sometimes used synonymously with QoS, but more accurately, it is a QoS- enabling technology that forces application flows into connection-oriented paths and provides mechanisms for traffic engineering and bandwidth guarantees along these paths. Furthermore, when an MPLS network supports DiffServ, traffic flows can receive class- based admission, differentiated queue servicing in the network nodes, preemption priority, and other network treatment that provide bases for QoS guarantees. The IETF work in this area has been augmented by the MPLS/Frame Relay Alliance Implementation Agreement which extends MPLS to the user-network interface, and thus serves as a foundation for implementing QoS end-to-end. This paper describes various QoS and MPLS mechanisms and analyzes their applicability. 2 Table of Contents 1. Introduction..................................................................................................................3 1.1 QoS Drivers .........................................................................................................3 1.2 Main Definitions ..................................................................................................4 1.3 Necessary Conditions for QoS.............................................................................5 2. Initial QoS and TE Models ..........................................................................................6
    [Show full text]
  • ISP Architecture – MPLS Overview, Design and Implementation for Wisps
    www.iparchitechs.com 1-855-MIKROTI(K) ISP Architecture – MPLS Overview, Design and Implementation for WISPs. KEVIN MYERS, NETWORK ARCHITECT / MANAGING PARTNER MTCINE #1409 MIKROTIK CERTIFIED TRAINER •Kevin Myers, Network Architect • Jackson, Mississippi – United States • 18 + years in IT, Network Architecture and Engineering • Areas of Design Focus: •MikroTik integration with large multi-vendor networks •Design/Implement/Operate BGP/MPLS/OSPF Wireline and WISP service provider networks •Design/Implement/Operate Data Center (Enterprise and Cloud) networks • Certifications • MTCINE #1409 & MikroTik Certified Trainer • MikroTik – MTCWE, MTCUME, MTCRE, MTCTCE, MTCNA • Cisco/Microsoft – CCNP, CCNA, MCP •www.iparchitechs.com •Global Leaders in MikroTik Design and Engineering •#1 ranked MikroTik consulting firm in North America •The most successful MikroTik global integrator – we bill thousands of hours in MikroTik engineering across 6 continents. •The first consulting firm to offer 24/7 MikroTik technical assistance with enterprise level SLAs •Operate at large scale supporting networks with tens of thousands or routers, switches, firewalls, etc •www.iparchitechs.com •Our Services •Global Professional Services – Consulting for Design, Engineering, Integration and Operations •Fully Managed Network Services - per rack unit support for full network management and monitoring •24/7 support contracts per device – support all MikroTik devices with 24/7 TAC support and 4 hour SLAs. • MultiLingual Support in: English, Français, Polski, Español MPLS – What is it? • Theory: Briefly introduce the MPLS protocol and how it works in conjunction with existing L2/L3 networks • Design: Discuss an MPLS architecture and preparing your WISP for implementing MPLS. • Business Justification: Identify the business and financial use case for implementing MPLS in a WISP.
    [Show full text]
  • Matrox Imaging Library (MIL) 9.0 Update 58
    ------------------------------------------------------------------------------- Matrox Imaging Library (MIL) 9.0 Update 58. Release Notes (Whatsnew) September 2012 (c) Copyright Matrox Electronic Systems Ltd., 1992-2012. ------------------------------------------------------------------------------- For more information and what's new in processing, display, drivers, Linux, ActiveMIL, and all MIL 9 updates, consult their respective readme files. Main table of contents Section 1 : What's new in Mil 9.0 Update 58 Section 2 : What's new in MIL 9.0 Release 2. Section 3 : What's new in MIL 9.0. Section 4 : Differences between MIL Lite 8.0 and 7.5 Section 5 : Differences between MIL Lite 7.5 and 7.1 Section 6 : Differences between MIL Lite 7.1 and 7.0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- Section 1: What's new in MIL 9.0 Update 58. Table of Contents for Section 1 1. Overview. 2. Mseq API function definition 2.1 MseqAlloc 2.2 MseqControl 2.3 MseqDefine 2.4 MseqFeed 2.5 MseqFree 2.6 MseqGetHookInfo 2.7 MseqHookFunction 2.8 MseqInquire 2.9 MseqProcess 3. Examples 4. Operating system information 1. Overview. The main goal for MIL 9.0 Update 58 is to add a new module called Mseq, which offers a user-friendly interface for H.264 compression. 2. Mseq API function definition 2.1 MseqAlloc - Synopsis: Allocate a sequence context. - Syntax: MIL_ID MseqAlloc( MIL_ID SystemID, MIL_INT64 SequenceType, MIL_INT64 Operation, MIL_UINT32 OutputFormat, MIL_INT64 InitFlag, MIL_ID* ContextSeqIdPtr) - Parameters: * SystemID: Specifies the identifier of the system on which to allocate the sequence context. This parameter must be given a valid system identifier. * SequenceType: Specifies the type of sequence to allocate: Values: M_DEFAULT - Specifies the sequence as a context in which the related operation should be performed.
    [Show full text]
  • Ipv6 in Broadband Networks MR-244
    IPv6 in Broadband Networks MR-244 January 2011 Agenda 1. Introduction to the Broadband Forum 2. Business drivers for IPv6 and IPv4 exhaustion 3. Key IPv6 attributes and deployment challenges 4. IPv6 strategies for broadband access to support Internet access and new services 5. Summary 2 IPv6 in Broadband Networks Tutorial Contributors Christophe Alter – France Telecom Salman Asadullah – Cisco David Allan – Ericsson Michel Borgne – France Telecom Dave Christophe – Alcatel-Lucent Guillaume Gottardi – Cisco Michael Hanrahan – Huawei Christian Jacquenet – France Telecom David Kessens – NSN Suresh Krishnan – Ericsson Roberta Maglione – Telecom Italia Drew Rexrode – Verizon 3 We are the Broadband Forum http://www.broadband-forum.org The Broadband Forum is the central organization driving broadband solutions and empowering converged packet networks worldwide to better meet the needs of vendors, service providers and their customers. We develop multi-service broadband packet networking specifications addressing interoperability, architecture and management. Our work enables home, business and converged broadband services, encompassing customer, access and backbone networks. 4 The BroadbandSuite Goals and Focus The BroadbandSuite is broken down into three major domains: BroadbandManagement – Goal – enhance network management capabilities and enable an intelligent, programmable control layer that unifies diverse networks – Focus - empower service providers to deliver and efficiently maintain personalized services that enhance the
    [Show full text]
  • The Role of Emerging Broadband Technologies on the Converged
    The Role of Emerging Broadband Technologies on the Converged Packet-Based Network Introduction The vision of network convergence toward a consolidated packet-based network has been discussed for years, though it is still not a reality. Currently, there are numerous overlay networks such as IP, ATM, FR, Ethernet, SONET, DWDM and wireless for different services. The evolution pace toward convergence has been slow due to economic, technical and regulatory issues. However, the fact is that data traffic volume is now surpassing voice traffic volume. Traditional TDM voice traffic is moving to IP packets and TDM private line is moving to Ethernet private line. The wave of broadband applications such as Internet access, VOD, and IPTV create high bandwidth requirements for the network. These applications are packet-based, but have a much lower margin of profit for the service providers when compared to traditional voice service. Today’s overlay and traditional circuit-based infrastructure will become less optimal for the new packet-based services as the profit margin decreases. Most of the wireless networks in North America today are still circuit-based because most of the current wireless service is still voice-based. However, with emerging wireless access technologies such as WiMAX and Wi-Fi, more broadband wireless data and video services can be deployed. As a result, the wireless core network evolves toward a packet-based network. Service offerings drive network evolution. As more packet-based broadband services are launched and bundled together in service offerings, service providers start to add more packet-aware features into their current network components.
    [Show full text]
  • An FPGA-Accelerated Embedded Convolutional Neural Network
    Master Thesis Report ZynqNet: An FPGA-Accelerated Embedded Convolutional Neural Network (edit) (edit) 1000ch 1000ch FPGA 1000ch Network Analysis Network Analysis 2x512 > 1024 2x512 > 1024 David Gschwend [email protected] SqueezeNet v1.1 b2a ext7 conv10 2x416 > SqueezeNet SqueezeNet v1.1 b2a ext7 conv10 2x416 > SqueezeNet arXiv:2005.06892v1 [cs.CV] 14 May 2020 Supervisors: Emanuel Schmid Felix Eberli Professor: Prof. Dr. Anton Gunzinger August 2016, ETH Zürich, Department of Information Technology and Electrical Engineering Abstract Image Understanding is becoming a vital feature in ever more applications ranging from medical diagnostics to autonomous vehicles. Many applications demand for embedded solutions that integrate into existing systems with tight real-time and power constraints. Convolutional Neural Networks (CNNs) presently achieve record-breaking accuracies in all image understanding benchmarks, but have a very high computational complexity. Embedded CNNs thus call for small and efficient, yet very powerful computing platforms. This master thesis explores the potential of FPGA-based CNN acceleration and demonstrates a fully functional proof-of-concept CNN implementation on a Zynq System-on-Chip. The ZynqNet Embedded CNN is designed for image classification on ImageNet and consists of ZynqNet CNN, an optimized and customized CNN topology, and the ZynqNet FPGA Accelerator, an FPGA-based architecture for its evaluation. ZynqNet CNN is a highly efficient CNN topology. Detailed analysis and optimization of prior topologies using the custom-designed Netscope CNN Analyzer have enabled a CNN with 84.5 % top-5 accuracy at a computational complexity of only 530 million multiply- accumulate operations. The topology is highly regular and consists exclusively of convolu- tional layers, ReLU nonlinearities and one global pooling layer.
    [Show full text]
  • Service Provider Ipv6 Deployment BRKSPG-3300
    Service Provider IPv6 Deployment BRKSPG-3300 Amarjit Gahir – Solutions Architect BRKSPG-3300 Prerequisites: Session Abstract • This session focuses on SP IPv6 deployment techniques in core networks which will help network designers and administrators understand IPv6 operation and implementation options for native IPv4 and MPLS core environments. This session will also shed light on IPv6 Multihoming, addressing and Cisco Carrier- Grade IPv6 (CGv6) Solution considerations in core networks. • Attendee must have a solid foundation of IPv6 basics (Protocol, Addressing, Routing), MPLS and Multicast. © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public 2 Agenda • SP IPv6 Integration Strategy • IPv6 in Core Networks and Deployment Models • IPv6 Addressing Considerations • IPv6 Multi-homing Considerations • Carrier-Grade IPv6 Solution – CGv6 • Conclusion Growing Internet Challenge & Evolution Moving from 1 to 2 to 3 to 1 ….. Public Public IPv4 IPv4 Public IPv6 IPv4 Private IPv6 Private IPv4 IPv4 • 2012: Mandates take effect – GlobAlization - WorldIPv6LAunch - Massive Mobile deployment. Transition to IPv6 forces Services & Applications running over IPv6 customers to acquire product or managed services to sustain business and IPv4/IPv6 Coexistence Infrastructure customer reach IPv6 Internet • 2015: IPv6 is mAinstreAm Customers without transition Preserve IPv4 infrastructure experience v4 run out reduced service levels, diminished customer reach 2012 2015 2020+ © 2017 Cisco and/or its affiliates. All rights reserved. Cisco Public IPv4 Runout RIR Projected RemAining ExhAustion Addresses in Date RIR Pool (/8s) APNIC 19-Apr-2011 0.6079 (actual) RIPE NCC 14-Sep-2012 0.9394 (actual) LACNIC 10-Jun-2014 0.1067 (actual) ARIN 24 Sep-2015 (actual) AFRINIC 11-Jan-2019 1.6947 5 © 2017 Cisco and/or its affiliates.
    [Show full text]
  • Implementing Trust-To-Trust with Customer Edge Switching
    Implementing Trust-to-Trust with Customer Edge Switching Raimo A. Kantola, Member, IEEE, Department of Communications and Networking Aalto University Helsinki, Finland [email protected] for the duration of a session. Abstract — A Network Address Translator allows hosts in a The UNSAF architecture requires a STUN client in the private address space to communicate with servers in the pub- hosts and STUN servers to be deployed in the global net- lic Internet. There is no accepted solution for an arbitrary host work but it leaves the NATs themselves as they are. UNSAF from the public IP network to initiate communication with a uses IP addresses for identification. It clutters applications host in a private address space although attempts have been made to create one. This paper proposes the replace NATs with code that has nothing to do with the task of the with a more comprehensive concept we call Customer Edge application. It scales poorly particularly for mobile hosts. It Switching (CES). Customer edge switching assumes connection does not help in deploying servers in private address space state on the trust boundary between the user and the core net- and thus hampers the user innovation potential. works. The connection state is managed by implicit signaling. An application on a user device such as a mobile termi- The state gives means for the private network operator to ap- nal that wants to be reachable needs to maintain a NAT ply elaborate access control to packet flows arriving from the Internet to the private network. CES is a way of moving from mapping by a keep-alive mechanism that wakes the device the end-to-end principle to the trust-to-trust principle advo- at regular intervals and keeps the NAT state alive.
    [Show full text]