Ardisia Elliptica Thunb Family: Primulaceae Thunberg, C.P

Total Page:16

File Type:pdf, Size:1020Kb

Ardisia Elliptica Thunb Family: Primulaceae Thunberg, C.P Australian Tropical Rainforest Plants - Online edition Ardisia elliptica Thunb Family: Primulaceae Thunberg, C.P. (1798) Nova Genera Plantarum 8: 119. Type: Sri Lanka. Common name: Shoe-button Ardisia Stem Usually flowers and fruits as a shrub about 2 m tall. Leaves Leaf blades about 10-13 x 3.5-4.5 cm, petioles about 0.9-1.6 cm, grooved on the upper surface. Lateral veins curving inside the blade margin and forming inconspicuous loops. Oil dots translucent in fresh material (pink to red in dried leaves), numerous, rather large, mainly orbicular in shape with a scattering of streaky dots. Flower. © Barry Jago Flowers Features not available. Fruit Fruits depressed globose, about 10-12 mm diam, calyx persistent at the base. Seeds globose, about 6 mm diam. Testa with longitudinal striations. Embryo about 4 mm long. Radicle about 3.5 mm long, much longer than the cotyledons. Seedlings Fruit [not vouchered]. CC-BY J.L. Cotyledons broadly elliptic to orbicular, about 13-22 x 7-11 mm, glabrous, petioles short, about 2-3 Dowe mm long. Oil dots red. First pair of leaves about 22-28 x 10-14 mm, petioles 2-4 mm long. Oil dots red. At the tenth leaf stage: leaf blade narrowly elliptic, oil dots red, mainly orbicular in shape. Seed germination time 61 days. Distribution and Ecology An introduced species originally from Asia, now naturalised in NT, CYP, NEQ, CEQ and in south- east Queensland and north-east New South Wales. Altitudinal range from close to sea level to 800 m. Grows in moist rain forest and swampy areas. Natural History & Notes This species may have medicinal properties. Previously this species was incorrectly referred to as Ardisia solanacea. Scale bar 10mm. © CSIRO Synonyms Ardisia solanacea Roxb., Hort. Bengal : 16(1814), Type: India. Ardisia humilis Vahl, Symb. Bot. 3: 40(1794), Type: Ind. or.: Malaya. RFK Code 3511 Cotyledon stage, epigeal germination. © CSIRO Copyright © CSIRO 2020, all rights reserved. 10th leaf stage. © CSIRO Web edition hosted at https://apps.lucidcentral.org/rainforest.
Recommended publications
  • Ethnobotanical Study on Wild Edible Plants Used by Three Trans-Boundary Ethnic Groups in Jiangcheng County, Pu’Er, Southwest China
    Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China Yilin Cao Agriculture Service Center, Zhengdong Township, Pu'er City, Yunnan China ren li ( [email protected] ) Xishuangbanna Tropical Botanical Garden https://orcid.org/0000-0003-0810-0359 Shishun Zhou Shoutheast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Liang Song Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Intergrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Ruichang Quan Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Huabin Hu CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Research Keywords: wild edible plants, trans-boundary ethnic groups, traditional knowledge, conservation and sustainable use, Jiangcheng County Posted Date: September 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40805/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 27th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00420-1. Page 1/35 Abstract Background: Dai, Hani, and Yao people, in the trans-boundary region between China, Laos, and Vietnam, have gathered plentiful traditional knowledge about wild edible plants during their long history of understanding and using natural resources. The ecologically rich environment and the multi-ethnic integration provide a valuable foundation and driving force for high biodiversity and cultural diversity in this region.
    [Show full text]
  • Ardisia Humilis Vahl.) Planting Condition Toward the Alpha-Glucosidase Inhibition Activity in Vitro
    Pharmacogn J. 2020; 12(2): 377-385 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Research Article www.phcogj.com Study of the Effect of Lampeni (Ardisia humilis Vahl.) Planting Condition toward the Alpha-glucosidase Inhibition Activity In vitro Sri Ningsih1,*, Fifit Juniarti1, Idah Rosidah1, Adam Arditya Fajriawan1, Kurnia Agustini1, Syofi Rosmalawati2, Agung Eru Wibowo2, Erliana Sasikirana3, Wahono Sumaryono3 ABSTRACT Background: The quality of a medicinal plant is influenced by agronomic conditions and harvesting time. Objective: This study aimed to evaluate the effect of planting method (open- air (OA) and shedding house (SH)) and harvesting time (2, 4, 6 months) of Lampeni (Ardisia Sri Ningsih1,*, Fifit Juniarti1, humilis Vahl.) toward the inhibitory activity of alpha-glucosidase. Methods: The Lampeni Idah Rosidah1, Adam Arditya seedling were placed under controlled light conditions (SH) and on direct sun exposure (OA). Fajriawan1, Kurnia Agustini1, Harvesting of the leaves was carried out at the age of 2, 4, and 6 months after plantation Syofi Rosmalawati2, Agung Eru (2m, 4m, and 6m). Each leaves dry powder was refluxed with methanol 70% and followed Wibowo2, Erliana Sasikirana3, by liquid-liquid partition using n-hexane, ethyl acetate (EtOAc), and water. All samples were Wahono Sumaryono3 evaluated toward inhibition of the alpha-glucosidase enzyme in vitro. Total phenol levels were determined using Folin-Ciocalteu reagent. Results: The results showed that EtOAc fractions 1Center for Pharmaceutical and Medical Technology, Agency for the Assessment and of both plantation techniques exhibited the highest inhibition of alpha-glucosidase. The highest Application of Technology. Laptiab building, activity was demonstrated by the 4m-OA-EtOAc fraction (IC50, 93.50 ppm) and followed by Puspiptek Serpong Area, South Tangerang, the 6m-OA-EtOAc fraction (IC50, 98.13 ppm).
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Exempted Trees List
    Prohibited Plants List The following plants should not be planted within the City of North Miami. They do not require a Tree Removal Permit to remove. City of North Miami, 2017 Comprehensive List of Exempted Species Pg. 1/4 Scientific Name Common Name Abrus precatorius Rosary pea Acacia auriculiformis Earleaf acacia Adenanthera pavonina Red beadtree, red sandalwood Aibezzia lebbek woman's tongue Albizia lebbeck Woman's tongue, lebbeck tree, siris tree Antigonon leptopus Coral vine, queen's jewels Araucaria heterophylla Norfolk Island pine Ardisia crenata Scratchthroat, coral ardisia Ardisia elliptica Shoebutton, shoebutton ardisia Bauhinia purpurea orchid tree; Butterfly Tree; Mountain Ebony Bauhinia variegate orchid tree; Mountain Ebony; Buddhist Bauhinia Bischofia javanica bishop wood Brassia actino-phylla schefflera Calophyllum antillanum =C inophyllum Casuarina equisetifolia Australian pine Casuarina spp. Australian pine, sheoak, beefwood Catharanthus roseus Madagascar periwinkle, Rose Periwinkle; Old Maid; Cape Periwinkle Cestrum diurnum Dayflowering jessamine, day blooming jasmine, day jessamine Cinnamomum camphora Camphortree, camphor tree Colubrina asiatica Asian nakedwood, leatherleaf, latherleaf Cupaniopsis anacardioides Carrotwood Dalbergia sissoo Indian rosewood, sissoo Dioscorea alata White yam, winged yam Pg. 2/4 Comprehensive List of Exempted Species Scientific Name Common Name Dioscorea bulbifera Air potato, bitter yam, potato vine Eichhornia crassipes Common water-hyacinth, water-hyacinth Epipremnum pinnatum pothos; Taro
    [Show full text]
  • Pdf 755.65 K
    Trends Phytochem. Res. 4(4) 2020 177-192 Trends in Phytochemical Research (TPR) Journal Homepage: http://tpr.iau-shahrood.ac.ir Original Research Article Chemical composition, insect antifeeding, insecticidal, herbicidal, antioxidant and anti-inflammatory potential of Ardisia solonaceae Roxb. root extract BAHAAR ANJUM1, RAVENDRA KUMAR1 *, RANDEEP KUMAR1, OM PRAKASH1, R.M. SRIVASTAVA2, D.S. RAWAT3 AND A.K. PANT1 1Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India 2Department of Entomology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India 3Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India ABSTRACT ARTICLE HISTORY The objectives of this research were to investigate the qualitative and quantitative analysis Received: 19 March 2020 of Ethyl Acetate Root Extract of Ardisia solanacea Roxb. (EREAS) and estimation of its Revised: 08 June 2020 biological activities. Phytochemical screening of EREAS showed the abundance of total Accepted: 05 October 2020 phenolics, flavanoids, ortho-dihydric phenols, alkaloids, diterpenes and triterpenes etc. The ePublished: 02 December 2020 quantitative analysis of EREAS was also carried out by GC/MS and α-amyrenone (13.3%) was found to be the major component. Antifeeding activity monitored through no choice leaf dip method against Spilosoma oblique. The results revealed dose and time dependent KEYWORDS antifeeding activity, where the 100% mortality was observed signifying the intense insecticidal activity. The herbicidal activity of extracts was evaluated against the Raphanus raphanistrum α-Amyrenone seeds.
    [Show full text]
  • Chapter 6 ENUMERATION
    Chapter 6 ENUMERATION . ENUMERATION The spermatophytic plants with their accepted names as per The Plant List [http://www.theplantlist.org/ ], through proper taxonomic treatments of recorded species and infra-specific taxa, collected from Gorumara National Park has been arranged in compliance with the presently accepted APG-III (Chase & Reveal, 2009) system of classification. Further, for better convenience the presentation of each species in the enumeration the genera and species under the families are arranged in alphabetical order. In case of Gymnosperms, four families with their genera and species also arranged in alphabetical order. The following sequence of enumeration is taken into consideration while enumerating each identified plants. (a) Accepted name, (b) Basionym if any, (c) Synonyms if any, (d) Homonym if any, (e) Vernacular name if any, (f) Description, (g) Flowering and fruiting periods, (h) Specimen cited, (i) Local distribution, and (j) General distribution. Each individual taxon is being treated here with the protologue at first along with the author citation and then referring the available important references for overall and/or adjacent floras and taxonomic treatments. Mentioned below is the list of important books, selected scientific journals, papers, newsletters and periodicals those have been referred during the citation of references. Chronicles of literature of reference: Names of the important books referred: Beng. Pl. : Bengal Plants En. Fl .Pl. Nepal : An Enumeration of the Flowering Plants of Nepal Fasc.Fl.India : Fascicles of Flora of India Fl.Brit.India : The Flora of British India Fl.Bhutan : Flora of Bhutan Fl.E.Him. : Flora of Eastern Himalaya Fl.India : Flora of India Fl Indi.
    [Show full text]
  • A Preliminary List of the Vascular Plants and Wildlife at the Village Of
    A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths.
    [Show full text]
  • A Dictionary of the Plant Names of the Philippine Islands," by Elmer D
    4r^ ^\1 J- 1903.—No. 8. DEPARTMEl^T OF THE IE"TEIlIOIi BUREAU OF GOVERNMENT LABORATORIES. A DICTIONARY OF THE PLAIT NAMES PHILIPPINE ISLANDS. By ELMER D, MERRILL, BOTANIST. MANILA: BUREAU OP rUKLIC I'RIN'TING. 8966 1903. 1903.—No. 8. DEPARTMEE^T OF THE USTTERIOR. BUREAU OF GOVEENMENT LABOEATOEIES. r.RARV QaRDON A DICTIONARY OF THE PLANT PHILIPPINE ISLANDS. By ELMER D. MERRILL, BOTANIST. MANILA: BUREAU OF PUBLIC PRINTING. 1903. LETTEE OF TEANSMITTAL. Department of the Interior, Bureau of Government Laboratories, Office of the Superintendent of Laboratories, Manila, P. I. , September 22, 1903. Sir: I have the honor to submit herewith manuscript of a paper entitled "A dictionary of the plant names of the Philippine Islands," by Elmer D. Merrill, Botanist. I am, very respectfully. Paul C. Freer, Superintendent of Government Laboratories. Hon. James F. Smith, Acting Secretary of the Interior, Manila, P. I. 3 A DICTIONARY OF THE NATIVE PUNT NAMES OF THE PHILIPPINE ISLANDS. By Elmer D. ^Ikkrii.i., Botanist. INTRODUCTIOX. The preparation of the present work was undertaken at the request of Capt. G. P. Ahern, Chief of the Forestry Bureau, the objeet being to facihtate the work of the various employees of that Bureau in identifying the tree species of economic importance found in the Arcliipelago. For the interests of the Forestry Bureau the names of the va- rious tree species only are of importance, but in compiling this list all plant names avaliable have been included in order to make the present Avork more generally useful to those Americans resident in the Archipelago who are interested in the vegetation about them.
    [Show full text]
  • Threatenedtaxa.Org Journal Ofthreatened 26 June 2020 (Online & Print) Vol
    10.11609/jot.2020.12.9.15967-16194 www.threatenedtaxa.org Journal ofThreatened 26 June 2020 (Online & Print) Vol. 12 | No. 9 | Pages: 15967–16194 ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) JoTT PLATINUM OPEN ACCESS TaxaBuilding evidence for conservaton globally ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Informaton Liaison Development Society Zoo Outreach Organizaton www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampat - Kalapat Road, Saravanampat, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Informaton Liaison Development (WILD) Society & Zoo Outreach Organizaton (ZOO), 12 Thiruvannamalai Nagar, Saravanampat, Coimbatore, Tamil Nadu 641035, Web Design India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetng Dr. Neelesh Dahanukar Indian Insttute of Science Educaton and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communicatons Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016–2018 Fungi Editorial Board Ms. Sally Walker Dr. B.
    [Show full text]
  • Observations on Invasive Plant Species in American Samoa
    Observations on invasive plant species in American Samoa James C Space and Tim Flynn1 This is a continuation of the survey of islands in Micronesia and American Samoa for invasive plant species requested by the Pacific Islands Committee, Council of Western State Foresters. A survey of selected Micronesian islands was conducted in 1998 and was discussed in a previous report2. This report is based on perceptions gained from a trip to American Samoa from 16 to 23 July 1999, including the islands of Tutuila, Ofu, Olosega and Ta'u. The objectives were three-fold: (1) To identify plant species on the islands that are presently causing problems to natural and semi-natural ecosystems; (2) to identify species that, even though they are not presently a major problem, could spread more widely or spread to other islands where they are not present, potentially causing problems; and (3) to confirm the absence of species that are a problem elsewhere and, if introduced to American Samoa, could be a threat there. During our visit local experts showed us sites of known infestations3. We also had available copies of various botanical and weed surveys conducted in the past (see Appendix 1, References). A weeklong trip does not permit an exhaustive survey of the weed biota of the islands. However, the intent was to conduct an overall survey. Surveys of individual species or sensitive areas (such as the 1 Former Director, Pacific Southwest Research Station, USDA Forest Service (now retired) and Curator of the Herbarium, National Tropical Botanical Garden, respectively. 2 Space, James C. and Marjorie Falanruw (1999).
    [Show full text]
  • Changes in Vegetation on Mount Agung Volcano Bali Indonesia
    Journal of Tropical Biodiversity and Biotechnology Volume 04, Issue 02 (2019): 54 — 61 DOI: 10.22146/jtbb.41008 Research Article Changes in Vegetation on Mount Agung Volcano Bali Indonesia Sutomo1,2*, Luthfi Wahab2 1) Research Centre for Plant Conservation and Botanic Garden-Indonesian Institute of Sciences (LIPI), Bali Botanical Garden, Candikuning, Baturiti, Bali, Indonesia. 2) AF GIS and Remote Sensing Consultant and Training, Karanggayam, Yogyakarta, Indonesia. *Corresponding author, email: [email protected] Keywords: ABSTRACT Vegetation Volcanic activity is a major natural disturbance that can catastrophically change an Mt. Agung ecosystem over a short time scale. The eruption of Mt. Agung strato-volcano in 1963- Bali 1964 was considered among the most important volcanic event of the 20th century LANDSAT due to its effect on global climate. Studies on vegetation and landscape of Mt. Agung REMAP post-1970-1980 has been scarce. The current eruption of Mount Agung in June-July 2018, brought awareness of the importance urge to document the past and current Article history: landscape along with vegetation on Mt. Agung. Our study aimed to utilize remote Submitted 16/11/2018 sensing technique to explore the pattern of current (2017) land cover and vegetation density on Mt. Agung and estimate of vegetated areas and whether it has changed from Revised 08/05/2019 the past. LANDSAT 8 images (www.earthexplorer.usgs.gov/) were used in this study. Accepted 17/05/2019 Supervised classification in ENVI was employed to obtain land use or land cover of the Mt. Agung area. Normalized Difference Vegetation Index (NDVI) was also calculated using the feature in the ARC GIS.
    [Show full text]