Geocompressor 2020 Update 3 User Guide

Total Page:16

File Type:pdf, Size:1020Kb

Geocompressor 2020 Update 3 User Guide GeoCompressor 2020 Update 3 User Guide Version 16.6.0 Update 3 11 February 2021 Contents What’s New ................................................................................................................................. 4 Overview ..................................................................................................................................... 8 Architecture .............................................................................................................................. 9 Supported Environments ........................................................................................................ 10 Installation Guide ..................................................................................................................... 11 Windows ................................................................................................................................. 11 Installation ........................................................................................................................... 11 Uninstallation ....................................................................................................................... 14 Linux ....................................................................................................................................... 15 Installation ........................................................................................................................... 15 Uninstallation ....................................................................................................................... 18 Licensing .................................................................................................................................. 19 Overview ................................................................................................................................. 19 Functionality Matrix ................................................................................................................. 20 Installation and Configuration ................................................................................................. 20 GeoCompressor Usage ........................................................................................................... 21 Overview ................................................................................................................................. 21 Image Compressor Usage ....................................................................................................... 24 Wizard Mode .......................................................................................................................... 24 Command-Line Mode ............................................................................................................. 32 Input .................................................................................................................................... 34 Output ................................................................................................................................. 34 Options ................................................................................................................................ 35 Reporting Example .............................................................................................................. 45 Usage Examples ................................................................................................................. 47 ECW v3 Update Example ....................................................................................................... 48 XML Project File ..................................................................................................................... 51 Supported Input Formats ........................................................................................................ 53 Null Block Analysis ................................................................................................................. 55 Comparison ......................................................................................................................... 56 Point Compressor Usage ........................................................................................................ 60 Wizard Mode .......................................................................................................................... 60 Command-Line Mode ............................................................................................................. 61 Input .................................................................................................................................... 62 Output ................................................................................................................................. 62 Options ................................................................................................................................ 62 Reporting Example .............................................................................................................. 64 Usage Examples ................................................................................................................. 65 2 Upload Usage ........................................................................................................................... 67 GUI Mode ............................................................................................................................... 67 Input File ............................................................................................................................. 70 Bearer Token ...................................................................................................................... 70 Options ................................................................................................................................ 70 GeoCompressor Viewer Usage ............................................................................................... 71 Overview ................................................................................................................................. 71 Toolbar Functions ................................................................................................................... 72 Standard Toolbar ................................................................................................................ 72 View Toolbar ....................................................................................................................... 72 Navigation Toolbar .............................................................................................................. 73 ECW or JP2 Toolbar ........................................................................................................... 73 Viewing Images ...................................................................................................................... 73 Viewing ECWP Images ........................................................................................................... 73 Map Properties ....................................................................................................................... 75 Layer Properties ..................................................................................................................... 75 ECW Layer Properties ............................................................................................................ 79 Preferences ............................................................................................................................ 80 About ...................................................................................................................................... 82 Appendix A: Mosaic to Multiple Output Workflow Example ................................................. 83 Appendix B: Troubleshooting ................................................................................................. 90 Low Memory Issues During Compression .............................................................................. 90 Unexpected Application Closure / Crash ................................................................................ 90 Appendix C: FAQ ..................................................................................................................... 91 General ................................................................................................................................... 91 Image Compressor ................................................................................................................. 92 Point Compressor ................................................................................................................... 95 Appendix D: ECW Header Editor CLI Parameters ................................................................. 96 Support ..................................................................................................................................... 97 3 What’s New 2020 Update 3 • Maintenance release • Added resampling options Nearest Neighbour, Bilinear, Cubic, Cubic Spline, Lanczos, Average, Mode or Gauss when resizing data. #GC-1174 • ECW check is now more accurate when determining validity of files and prints better warnings. #EC-2444 • ECW check on Linux reports not enough disk space errors #GC-1194 • GeoCompressor cannot remove bands from the input image
Recommended publications
  • Automatic Generation of a 3D City Model
    UNIVERSITY OF CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA COMPUTER ENGINEERING DEGREE DEGREE FINAL PROJECT Automatic generation of a 3D city model David Murcia Pacheco June, 2017 AUTOMATIC GENERATION OF A 3D CITY MODEL Escuela Superior de Informática UNIVERSITY OF CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA Information Technology and Systems SPECIFIC TECHNOLOGY OF COMPUTER ENGINEERING DEGREE FINAL PROJECT Automatic generation of a 3D city model Author: David Murcia Pacheco Director: Dr. Félix Jesús Villanueva Molina June, 2017 David Murcia Pacheco Ciudad Real – Spain E-mail: [email protected] Phone No.:+34 625 922 076 c 2017 David Murcia Pacheco Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". i TRIBUNAL: Presidente: Vocal: Secretario: FECHA DE DEFENSA: CALIFICACIÓN: PRESIDENTE VOCAL SECRETARIO Fdo.: Fdo.: Fdo.: ii Abstract HIS document collects all information related to the Degree Final Project (DFP) of Com- T puter Engineering Degree of the student David Murcia Pacheco, tutorized by Dr. Félix Jesús Villanueva Molina. This work has been developed during 2016 and 2017 in the Escuela Superior de Informática (ESI), in Ciudad Real, Spain. It is based in one of the proposed sub- jects by the faculty of this university for this year, called "Generación automática del modelo en 3D de una ciudad".
    [Show full text]
  • Standards and Guidelines for Cadastral Surveys Using GPS
    Table of Contents Foreword ........................................................................................................................................ 3 Part One: Standards for Positional Accuracy ................................................................................ 4 Part Two: GPS Survey Guidelines ................................................................................................ 5 Section One: Field Data Acquisition Methods Section Two: Field Survey Operations and Procedures Cadastral Project Control Cadastral Measurements Section Three: Data Processing and Analysis Section Four: Project Documentation Appendix A: Definitions ............................................................................................................. 16 Appendix B: Computation of Accuracies ................................................................................... 18 Appendix C: References ............................................................................................................. 19 Attachment 1-2 Foreword These Standards and Guidelines provide guidance to the Government cadastral surveyor and other land surveyors in the use of Global Positioning System (GPS) technology to perform Public Land Survey System (PLSS) surveys of the Public Lands of the United States of America. Many sources were consulted during the preparation of this document. These sources included other GPS survey standards and guidelines, technical reports and manuals. Opinions and reviews were also sought from public and
    [Show full text]
  • National Spatial Reference System: "Positioning Changes for 2022"
    National Spatial Reference System “Positioning Changes for 2022” Civil GPS Service Interface Committee Meeting Miami, Florida September 24, 2018 Denis Riordan, PSM NOAA, National Geodetic Survey [email protected] U.S. Department of Commerce National Oceanic & Atmospheric Administration National Geodetic Survey Mission: To define, maintain & provide access to the National Spatial Reference System (NSRS) to meet our Nation’s economic, social & environmental needs National Spatial Reference System * Latitude * Scale * Longitude * Gravity * Height * Orientation & their variations in time U. S. Geometric Datums in 2022 National Spatial Reference System (NSRS) Improvements in the Horizontal Datums TIME NETWORK METHOD NETWORK SPAN ACCURACY OF REFERENCE NAD 27 1927-1986 10 meter (1 part in 100,000) TRAVERSE & TRIANGULATION - GROUND MARKS USED FOR NAD83(86) 1986-1990 1 meter REFERENCING (1 part THE in 100,000) NSRS. NAD83(199x)* 1990-2007 0.1 meter GPS B- orderBECOMES (1 part THE in MEANS 1 million) OF POSITIONING – STILL GRND MARKS. HARN A-order (1 part in 10 million) NAD83(2007) 2007 - 2011 0.01 meter 0.01 meter GPS – CORS STATIONS ARE MEANS (CORS) OF REFERENCE FOR THE NSRS. NAD83(2011) 2011 - 2022 0.01 meter 0.01 meter (CORS) NSRS Reference Basis Old Method - Ground Current Method - GNSS Stations Marks (Terrestrial) (CORS) Why Replace NAD83? • Datum based on best known information about the earth’s size and shape from the early 1980’s (45 years old), and the terrestrial survey data of the time. • NAD83 is NON-geocentric & hence inconsistent w/GNSS . • Necessary for agreement with future ubiquitous positioning of GNSS capability. Future Geometric (3-D) Reference Frame Blueprint for 2022: Part 1 – Geometric Datum • Replace NAD83 with new geometric reference frame – by 2022.
    [Show full text]
  • Lossy Image Compression Based on Prediction Error and Vector Quantisation Mohamed Uvaze Ahamed Ayoobkhan* , Eswaran Chikkannan and Kannan Ramakrishnan
    Ayoobkhan et al. EURASIP Journal on Image and Video Processing (2017) 2017:35 EURASIP Journal on Image DOI 10.1186/s13640-017-0184-3 and Video Processing RESEARCH Open Access Lossy image compression based on prediction error and vector quantisation Mohamed Uvaze Ahamed Ayoobkhan* , Eswaran Chikkannan and Kannan Ramakrishnan Abstract Lossy image compression has been gaining importance in recent years due to the enormous increase in the volume of image data employed for Internet and other applications. In a lossy compression, it is essential to ensure that the compression process does not affect the quality of the image adversely. The performance of a lossy compression algorithm is evaluated based on two conflicting parameters, namely, compression ratio and image quality which is usually measured by PSNR values. In this paper, a new lossy compression method denoted as PE-VQ method is proposed which employs prediction error and vector quantization (VQ) concepts. An optimum codebook is generated by using a combination of two algorithms, namely, artificial bee colony and genetic algorithms. The performance of the proposed PE-VQ method is evaluated in terms of compression ratio (CR) and PSNR values using three different types of databases, namely, CLEF med 2009, Corel 1 k and standard images (Lena, Barbara etc.). Experiments are conducted for different codebook sizes and for different CR values. The results show that for a given CR, the proposed PE-VQ technique yields higher PSNR value compared to the existing algorithms. It is also shown that higher PSNR values can be obtained by applying VQ on prediction errors rather than on the original image pixels.
    [Show full text]
  • Top 10 Reasons to Choose Autocad Raster Design 2010
    Top 10 Reasons to Choose AutoCAD Raster Design 2010 The Power of AutoCAD Minimize Costly Redrafting and Data Entry Time 1 Convert your scanned paper drawings to vector with Raster Design interactive and semiautomatic conversion tools. Use dynamic dimensioning and grip editing with vectorization Extend the power of AutoCAD® and tools to speed up the conversion and verification of raster AutoCAD-based software with AutoCAD® primitives such as lines, arcs, and circles. Easily convert Raster Design software. Make the most of continuous raster entities into AutoCAD polylines and 3D rasterized scanned drawings, maps, aerial polylines with vectorization following tools. Create and photos, satellite imagery, and digital elevation effectively manage hybrid drawings by converting only the models. Get more out of your raster data and necessary raster geometry, thereby speeding document enhance your designs, plans, presentations, and drawing revisions and updates. In addition, use optical and maps. AutoCAD Raster Design enables character recognition (OCR) functionality to recognize you to work in an AutoCAD environment, machine- and hand-printed text and tables on raster significantly reducing the need to purchase images to create AutoCAD text or multiline text (mtext). and learn multiple applications. RESULT: Speed project completion by unlocking and making the most of existing scanned engineering drawings, plans, Now Is the Time and maps. Use the Imagery You Require Take a look at how AutoCAD Raster Design AutoCAD Raster Design software supports a wide variety can help you improve your design process. 2 of industry-standard file formats, including single-image and multispectral file formats such as CALS, ER Mapper For more information about ECW, GIF, JPEG, JPEG 2000, LizardTech™ MrSID, TGA, AutoCAD Raster Design, go to TIFF, and more.
    [Show full text]
  • Brian Paint Breakdown 1.Qxd
    Digital Matte Painting Reel Breakdown Brian LaFrance Run Time: 2 Minutes 949-302-2085 [email protected] Big Hero 6: Baymax and Hiro Flying Sequence Description: Lead Set Extension Artist. helped develop sky pano from source HDR's, which fed lighting dept. 360 degree seaming of ocean/sky horizon, land, atmosphere blending. Painted East Bay city. Made 3d fog volumes in houdini, rendered with scene lighting for reference, which informed the painting of multiple fog lay- ers, which were blended into the scene using zdepth "slices" for holdouts, integrating the fog into the landscape. Software Used: Photoshop, Maya, Nuke, Houdini, Terragen, Hyperion(Disney Prop. Rendering software) Big Hero 6: Bridge Description: Painted sky, ground fog slices and lights, projected in nuke. Software Used: Photoshop, Maya, Nuke, Terragen, Hyperion Big Hero 6: City Description: Painted sky, moving ground fog clouds. Clouds integrated into digital set using zdepth "slices" for holdouts, integrating fog into the landscape. Software Used: Photoshop, Maya, Nuke R.I.P.D.: City Shots Description: Blocked out city compositions with simple geometry, projected texture onto that geometry. Software Used: Photoshop, Rampage (Rhythm and Hues Prop. Projection software) The Seventh Son: Multiple Shots Description: Modeled simple geom, sculpted in zbrush for balcony shot, textured/lit/rendered in mental ray, painted over in photoshop, projected onto modeled or simplified geometry in rampage. Software Used: Photoshop, Maya, Mental Ray, Zbrush, Rampage Elysium: Earth Description: Provided a Terragen "Planet Rig" to Image Engine for them to render views of earth, as well as a large render of whole earth to be used as source for matte painting(s).
    [Show full text]
  • DOTD Standards for GPS Data Collection Accuracy
    Louisiana Transportation Research Center Final Report 539 DOTD Standards for GPS Data Collection Accuracy by Joshua D. Kent Clifford Mugnier J. Anthony Cavell Larry Dunaway Louisiana State University 4101 Gourrier Avenue | Baton Rouge, Louisiana 70808 (225) 767-9131 | (225) 767-9108 fax | www.ltrc.lsu.edu TECHNICAL STANDARD PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/LA.539 4. Title and Subtitle 5. Report Date DOTD Standards for GPS Data Collection Accuracy September 2015 6. Performing Organization Code 127-15-4158 7. Author(s) 8. Performing Organization Report No. Kent, J. D., Mugnier, C., Cavell, J. A., & Dunaway, L. Louisiana State University Center for GeoInformatics 9. Performing Organization Name and Address 10. Work Unit No. Center for Geoinformatics Department of Civil and Environmental Engineering 11. Contract or Grant No. Louisiana State University LTRC Project Number: 13-6GT Baton Rouge, LA 70803 State Project Number: 30001520 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Louisiana Department of Transportation and Final Report Development 6/30/2014 P.O. Box 94245 Baton Rouge, LA 70804-9245 14. Sponsoring Agency Code 15. Supplementary Notes Conducted in Cooperation with the U.S. Department of Transportation, Federal Highway Administration 16. Abstract The Center for GeoInformatics at Louisiana State University conducted a three-part study addressing accurate, precise, and consistent positional control for the Louisiana Department of Transportation and Development. First, this study focused on Departmental standards of practice when utilizing Global Navigational Satellite Systems technology for mapping-grade applications. Second, the recent enhancements to the nationwide horizontal and vertical spatial reference framework (i.e., datums) is summarized in order to support consistent and accurate access to the National Spatial Reference System.
    [Show full text]
  • Oracle Spatial 11G Release 2 New Features Deep Dive Siva Ravada Director of Development, Oracle Spatial
    Title of Presentation Oracle Spatial 11g Release 2 New Features Deep Dive Siva Ravada Director of Development, Oracle Spatial Michael Smith US Army Corps of Engineers Agenda • Introduction to Oracle Spatial <Insert Picture Here> • Spatial Engine • SQL Developer • GeoRaster • Network Data Model • Moving Objects • 3D Support Oracle Spatial Features – Oracle Locator: Feature of Oracle Database XE, SE, EE – Oracle Spatial: Priced option to HTTP Oracle Database EE Fusion Middleware – MapViewer*: Java application and map rendering feature of Fusion MapViewer Middleware – Bundled Map Content: Major roads, JDBC administrative boundaries (city, county, state, country) - worldwide Oracle Database coverage from Navteq Oracle Locator Oracle Spatial Bundled Map Content Supports all Geospatial Data types Polygons (admin, sales territories, Locations high risk zones) Networks (points of interest) (roads, utilities) Data Imagery 3D data type (satellite imagery) Topology (city models) (data provider) LIDAR Data Type TIN Data Type Open Platform for Leading Applications and Tools MapInfo Leica ADE Bentley Manifold Oracle Spatial 11g Enabled Applications Scrollable, Interactive Maps Spatial Web Services 3D, Point Clouds, and LIDAR Geocoding & Routing Oracle BI Dashboards Raster Imagery Spatial Engine Spatial on Exadata • We achieve performance improvements based on the exploitation of the processing power, bandwidth, and parallelism of the Exadata machine • Parallel query and partitioning help improve Spatial performance • All the row level functions are also parallel enabled to take advantage of parallel query • Speedups of up to 40 times (compared to a 1-core CPU box) for the typical SDO_ANYINTERACT spatial query • Spatial predicates are not currently pushed into the Exadata storage nodes 9 Spatial Index Parallel Creation on Exadata • Build a Local Spatial Index on Partitioned Table: each slave can build a different index partition in parallel.
    [Show full text]
  • UNIT-II GPS Systems:NAVSTAR-GLONAAS-Beidou-QZSS-IRNSS-GPS Receivers Based On: Data Type and Yield-Realization of Channels-Signal
    UNIT-II GPS systems:NAVSTAR-GLONAAS-Beidou-QZSS-IRNSS-GPS receivers based on: Data type and yield-Realization of channels-Signal structure:Course Acquisition(code)-Carrier ranging and Navigational message Global Positioning System (GPS), originally Navstar GPS,[1] is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force.[2] It is one of the global navigation satellite systems (GNSS) that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites.[3] Obstacles such as mountains and buildings block the relatively weak GPS signals. The GPS does not require the user to transmit any data, and it operates independently of any telephonic or internet reception, though these technologies can enhance the usefulness of the GPS positioning information. The GPS provides critical positioning capabilities to military, civil, and commercial users around the world. The United States government created the system, maintains it, and makes it freely accessible to anyone with a GPS receiver.[4][better source needed] The GPS project was started by the U.S. Department of Defense in 1973, with the first prototype spacecraft launched in 1978 and the full constellation of 24 satellites operational in 1993. Originally limited to use by the United States military, civilian use was allowed from the 1980s following an executive order from President Ronald Reagan.[5] Advances in technology and new demands on the existing system have now led to efforts to modernize the GPS and implement the next generation of GPS Block IIIA satellites and Next Generation Operational Control System (OCX).[6] Announcements from Vice President Al Gore and the Clinton Administration in 1998 initiated these changes, which were authorized by the U.S.
    [Show full text]
  • Understanding Compression of Geospatial Raster Imagery
    Understanding Compression of Geospatial Raster Imagery Document Overview This document was created for the North Carolina Geographic Information and Coordinating Council (GICC), http://ncgicc.com, by the GIS Technical Advisory Committee (TAC). Its purpose is to serve as a best practice or guidance document for GIS professionals that are compressing raster images. This document only addresses compressing geospatial raster data and specifically aerial or orthorectified imagery. It does not address compressing LiDAR data. Compression Overview Compression is the process of making data more compact so it occupies less disk storage space. The primary benefit of compressing raster data is reduction in file size. An added benefit is greatly improved performance over a network, because the user is transferring less data from a server to an application; however, compressed data must be decompressed to display in GIS software. The result may be slower raster display in GIS software than data that is not compressed. Compressed data can also increase CPU requirements on the server or desktop. Glossary of Common Terms Raster is a spatial data model made of rows and columns of cells. Each cell contains an attribute value identifying its color and location coordinate. Geospatial raster data like satellite images and aerial photographs are typically larger on average than vector data (predominately points, lines, or polygons). Compression is the process of making a (raster) file smaller while preserving all or most of the data it contains. Imagery compression enables storage of more data (image files) on a disk than if they were uncompressed. Compression ratio is the amount or degree of reduction of an image's file size.
    [Show full text]
  • Gou, Zaiyong, Ph.D
    Order Number 9411950 Scientific visualization and exploratory data analysis of a large spatial flow dataset Gou, Zaiyong, Ph.D. The Ohio State University, 1993 U M I 300 N. Zeeb Rd. Ann Arbor, MI 48106 SCIENTIFIC VISUALIZATION AND EXPLORATORY DATA ANALYSIS OF A LARGE SPATIAL FLOW DATASET DISSERTATION Presented in Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy in the Graduate School of The Ohio Stale University By Zaiyong Gou, B.S., M.A. $ * + $ * The Ohio State University 1993 Dissertation Committee: Approved by Duane F. Marble Morton E. O’Kelly 7 Duane F. Marble Randy W. Jackson Department of Geography DEDICATION To My Parents ACKNOWLEDGEMENT Of my thirteen years of being a geographer, the last four years under the supervision of Prof. Duane F. Marble at The Ohio State University has been the most exciting and most memorable. His wisdom and profound academic insight showed me what geography as an extraordinarily difficult discipline should be and could be. He is always the person who stands very high and sees very far, exploring the most challenging frontiers of geography relentlessly. As my academic adviser, his unfailing encouragement, guidance, patience and professional courtesy have always been my inspiration to work more creatively and more enthusiastically. He leads us to a high intellectual plateau and offers us the unlimited freedom to face the challenges and to pursue academic excellence. I am always grateful for the paths and opportunities you have pointed out to me. My gratitude also goes to Prof. Edward J. Taaffe, Prof. Morton E. O’Kelly and Prof.
    [Show full text]
  • Image Formats
    Image Formats Ioannis Rekleitis Many different file formats • JPEG/JFIF • Exif • JPEG 2000 • BMP • GIF • WebP • PNG • HDR raster formats • TIFF • HEIF • PPM, PGM, PBM, • BAT and PNM • BPG CSCE 590: Introduction to Image Processing https://en.wikipedia.org/wiki/Image_file_formats 2 Many different file formats • JPEG/JFIF (Joint Photographic Experts Group) is a lossy compression method; JPEG- compressed images are usually stored in the JFIF (JPEG File Interchange Format) >ile format. The JPEG/JFIF >ilename extension is JPG or JPEG. Nearly every digital camera can save images in the JPEG/JFIF format, which supports eight-bit grayscale images and 24-bit color images (eight bits each for red, green, and blue). JPEG applies lossy compression to images, which can result in a signi>icant reduction of the >ile size. Applications can determine the degree of compression to apply, and the amount of compression affects the visual quality of the result. When not too great, the compression does not noticeably affect or detract from the image's quality, but JPEG iles suffer generational degradation when repeatedly edited and saved. (JPEG also provides lossless image storage, but the lossless version is not widely supported.) • JPEG 2000 is a compression standard enabling both lossless and lossy storage. The compression methods used are different from the ones in standard JFIF/JPEG; they improve quality and compression ratios, but also require more computational power to process. JPEG 2000 also adds features that are missing in JPEG. It is not nearly as common as JPEG, but it is used currently in professional movie editing and distribution (some digital cinemas, for example, use JPEG 2000 for individual movie frames).
    [Show full text]