Secondary Metabolites and Biodiversity of Actinomycetes Manal Selim Mohamed Selim, Sayeda Abdelrazek Abdelhamid* and Sahar Saleh Mohamed

Total Page:16

File Type:pdf, Size:1020Kb

Secondary Metabolites and Biodiversity of Actinomycetes Manal Selim Mohamed Selim, Sayeda Abdelrazek Abdelhamid* and Sahar Saleh Mohamed Selim et al. Journal of Genetic Engineering and Biotechnology (2021) 19:72 Journal of Genetic Engineering https://doi.org/10.1186/s43141-021-00156-9 and Biotechnology REVIEW Open Access Secondary metabolites and biodiversity of actinomycetes Manal Selim Mohamed Selim, Sayeda Abdelrazek Abdelhamid* and Sahar Saleh Mohamed Abstract Background: The ability to produce microbial bioactive compounds makes actinobacteria one of the most explored microbes among prokaryotes. The secondary metabolites of actinobacteria are known for their role in various physiological, cellular, and biological processes. Main body: Actinomycetes are widely distributed in natural ecosystem habitats such as soil, rhizosphere soil, actinmycorrhizal plants, hypersaline soil, limestone, freshwater, marine, sponges, volcanic cave—hot spot, desert, air, insects gut, earthworm castings, goat feces, and endophytic actinomycetes. The most important features of microbial bioactive compounds are that they have specific microbial producers: their diverse bioactivities and their unique chemical structures. Actinomycetes represent a source of biologically active secondary metabolites like antibiotics, biopesticide agents, plant growth hormones, antitumor compounds, antiviral agents, pharmacological compounds, pigments, enzymes, enzyme inhibitors, anti-inflammatory compounds, single-cell protein feed, and biosurfactant. Short conclusions: Further highlight that compounds derived from actinobacteria can be applied in a wide range of industrial applications in biomedicines and the ecological habitat is under-explored and yet to be investigated for unknown, rare actinomycetes diversity. Keywords: Actinomycetes, Biodiversity, Bioactive compound, Secondary metabolites Background explored bioactive secondary metabolites, remarkably The inquiry and discovery of novel microorganisms that antibiotics, anticancer agents, anti-inflammatory agents, produce new secondary metabolites can be required to and enzymes [3, 4]. In light of the amazing reputation of stay critical in the race against new and rising diseases actinomycetes, a lot of achievement has been centered and antibiotic-resistant pathogens [1, 2]. Actinomycetes on the fruitful isolation of new actinomycetes from vari- are broadly distributed in natural and man-made condi- ous sources for medication screening programs in the tions and assume a vital role in organic matter degrad- past 50 years [5]. In the previous two decades, there has ation. They are additionally notable as a rich source of been a decrease in the revelation of new critical com- bioactive secondary metabolites [1]. Secondary metabo- pounds from basic soil derived actinomycetes where they lites are known as organic compounds which are not have produced huge numbers of previously described specifically associated with the normal growth of an or- secondary metabolites [6, 7]. Consequently, this prompts ganism, improvement, or propagation of it. The diversity increment in the finding of new actinomycete taxa from of Actinomycetes and their capacity to produce novel abnormal environments which thus prompts make new substances put this class in a noticeable position. They age of drug specialists [8]. Actinomycetes produce a are in charge of the generation of about 50% of the wide array of biologically active compounds such as anti- biotics, enzymes, and enzyme inhibitors [9, 10]. As of * Correspondence: [email protected] late, the rate of discovery of new compounds from acti- Microbial Biotechnology Department—Genetic Engineering Division, nomycetes of terrestrial sources has been diminished, National Research Centre, Giza, Egypt © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Selim et al. Journal of Genetic Engineering and Biotechnology (2021) 19:72 Page 2 of 13 while the rate of re-isolation of known compounds has considered a good source of lytic enzymes, antibiotics, likewise been expanded. Consequently, it is significant and other bioactive metabolites. that new actinomycetes taxa from underexploited or from unexplored habitats consider as very important Actinmycorrhizal plants sources of new bioactive compounds [11, 12]. Hence, These plants are characterized by formation in their this article would concentrate on the recent scenario roots nitrogen fixation nodules in combination with about diverse actinomycetes and their secondary actinomycetes like Frankia sp. It was mentioned that metabolites. a novel antibiotic called calcimycin was produced by Frankia sp. [17]. Distribution of actinomycetes Actinomycetes are capable of surviving in different habi- Hypersaline soil tats and are widely distributed in natural ecosystems. Hypersaline habitats are known as typical extreme envi- Actinomycetes are known as Gram +ve bacteria and ronments which include saline lakes, saline soils and characterized by the formation of aerial and substrate salterns. Hypersaline soils contain 9 to 23% salts. Exam- mycelium on solid media, also the presence of spores ples of actinomycetes genera that isolated from hypersa- with different spore surfaces (Figs. 1 and 2), and high line soils and showed antifungal activity against Guanine + Cytosine content of DNA [13]. Based on of Fusarium solani, Aspergillus niger, and Cryptococcus sp. morphological and chemical criteria, actinomycetes have were Streptomyces alboflavus, Nocardia sp., Micromo- been grouped into different genera (Table 1); Streptomy- nospora sp., and Streptomyces griseoflavus [3, 11]. While ces is the most commonly isolated genera of the order some actinomycetes showed antibacterial activity against Actinomycetales due to its great importance in medical Staphylococcus aureus and Escherichia coli were Strepto- science, ecology, and the biotechnology industry [11]. myces exfoliates, Streptomyces diasticus, Streptomyces albus, and Streptomyces albidoflavus [18]. Soil Actinomycetes population has been known as soil inhab- Limestone itant. It was stated that only 10% of the actinomycetes Limestone is different crystal form of CaCO3 and also has been isolated from nature [14]. So the researchers known as a sedimentary rock which contains aragonite need to screen more actinomycetes that have not been beside minerals calcite [19]. These hard conditions are discovered and capable of producing new antibiotics ac- very promising for isolation and screening for new iso- tive against bacteria that are resistant to current antibi- lates that produce novel bioactive compounds where otics [15]. Streptomyces sp. MBRL 10 showed antifungal activity against Rhizoctonia solani [20]. Rhizosphere soil There are several groups of actinomycetes that are stable Freshwater in bulk soil and in rhizosphere plants. Actinomycetes are It was known in recent years that the value of freshwater very important for many plants, where rhizospheric as a source of actinomycetes where genus Streptomyces streptomycetes can protect plant roots by inhibiting the was dominant in the river water while genus Micromo- growth of fungal pathogen a character based on their nospora was dominated in the sediments of the river. ability to produce antifungal antibiotics in vitro [16]. These actinomycetes have antifungal activity from this Due to their metabolic diversity, actinomycetes are habitat and it might be new sources for antimycotic Fig. 1 Aerial mycelium of Streptomyces sp. Selim et al. Journal of Genetic Engineering and Biotechnology (2021) 19:72 Page 3 of 13 Fig. 2 Different types of spore surface of Streptomyces sp. a (spiny), b (smooth), and c (warty) agents against yeast and molds that affect patients with [22]. Actinomycetes founded in unusual marine condi- the terminal disease [21]. tions, for example in marine deep-sea gas hydrate reser- voirs and organic aggregates, where they are the main Marine components of the microbial communities. In the Wad- The distribution of actinomycetes in the aquatic envir- den Sea, the actinomycetes isolated from the marine or- onment has been to a great extent undiscovered and the ganic aggregates in it exhibited high antagonistic activity existence of primitive marine actinomycetes in the within this community. These marine actinobacteria oceans stays a mystery. This is due to the absence of at- yield valuable compounds are used in the pharmaceut- tempt in the discovering of marine actinomycetes taxa, ical industry [23]. Bonafide actinomycetes are widely dis- while actinomycetes of terrestrial habitats have been, tributed in different marine ecosystems not only exist in until lately, a useful source of new bioactive compound the oceans [22]. It was stated that marine actinobacteria Table 1 Different groups of actinomycetes Section Characteristics Nocardioformactinomycetes Aerobic, may be acid-alcohol
Recommended publications
  • Phd Thesis ZHANG Kaixi.Pdf
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Glycosylated cationic block co‑beta‑peptide as antimicrobial and anti‑biofilm agents against Gram‑positive bacteria Zhang, Kaixi 2019 Zhang, K. (2019). Glycosylated cationic block co‑beta‑peptide as antimicrobial and anti‑biofilm agents against Gram‑positive bacteria. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/137037 https://doi.org/10.32657/10356/137037 This work is licensed under a Creative Commons Attribution‑NonCommercial 4.0 International License (CC BY‑NC 4.0). Downloaded on 11 Oct 2021 00:27:16 SGT GLYCOSYLATED CATIONIC BLOCK CO-BETA-PEPTIDE AS ANTIMICROBIAL AND ANTI-BIOFILM AGENTS AGAINST GRAM- POSITIVE BACTERIA ZHANG KAIXI Interdisciplinary Graduate School HealthTech NTU 2019 Sample of first page in hard bound thesis I Glycosylated cationic block co-beta-peptide as antimicrobial and anti-biofilm agents against Gram-positive bacteria ZHANG KAIXI Interdisciplinary Graduate School HealthTech NTU A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2019 i Statement of Originality I hereby certify that the work embodied in this thesis is the result of original research, is free of plagiarised materials, and has not been submitted for a higher degree to any other University or Institution. 18 Dec 2019 Date ZHANG KAIXI ii Supervisor Declaration Statement I have reviewed the content and presentation style of this thesis and declare it is free of plagiarism and of sufficient grammatical clarity to be examined. To the best of my knowledge, the research and writing are those of the candidate except as acknowledged in the Author Attribution Statement.
    [Show full text]
  • Download Download
    http://wjst.wu.ac.th Natural Sciences Diversity Analysis of an Extremely Acidic Soil in a Layer of Coal Mine Detected the Occurrence of Rare Actinobacteria Megga Ratnasari PIKOLI1,*, Irawan SUGORO2 and Suharti3 1Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Ciputat, Tangerang Selatan, Indonesia 2Center for Application of Technology of Isotope and Radiation, Badan Tenaga Nuklir Nasional, Jakarta Selatan, Indonesia 3Department of Chemistry, Faculty of Science and Computation, Universitas Pertamina, Simprug, Jakarta Selatan, Indonesia (*Corresponding author’s e-mail: [email protected], [email protected]) Received: 7 September 2017, Revised: 11 September 2018, Accepted: 29 October 2018 Abstract Studies that explore the diversity of microorganisms in unusual (extreme) environments have become more common. Our research aims to predict the diversity of bacteria that inhabit an extreme environment, a coal mine’s soil with pH of 2.93. Soil samples were collected from the soil at a depth of 12 meters from the surface, which is a clay layer adjacent to a coal seam in Tanjung Enim, South Sumatera, Indonesia. A culture-independent method, the polymerase chain reaction based denaturing gradient gel electrophoresis, was used to amplify the 16S rRNA gene to detect the viable-but-unculturable bacteria. Results showed that some OTUs that have never been found in the coal environment and which have phylogenetic relationships to the rare actinobacteria Actinomadura, Actinoallomurus, Actinospica, Streptacidiphilus, Aciditerrimonas, and Ferrimicrobium. Accordingly, the highly acidic soil in the coal mine is a source of rare actinobacteria that can be explored further to obtain bioactive compounds for the benefit of biotechnology.
    [Show full text]
  • Streptomyces As a Prominent Resource of Future Anti-MRSA Drugs
    REVIEW published: 24 September 2018 doi: 10.3389/fmicb.2018.02221 Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs Hefa Mangzira Kemung 1,2, Loh Teng-Hern Tan 1,2,3, Tahir Mehmood Khan 1,2,4, Kok-Gan Chan 5,6*, Priyia Pusparajah 3*, Bey-Hing Goh 1,2,7* and Learn-Han Lee 1,2,3,7* 1 Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia, 2 Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia, 3 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia, 4 The Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan, 5 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, 6 International Genome Centre, Jiangsu University, Zhenjiang, China, 7 Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as Edited by: they tend to cause severe infections in vulnerable populations and are difficult to treat Miklos Fuzi, due to a limited range of effective antibiotics and also their ability to form biofilm. These Semmelweis University, Hungary organisms were once limited to hospital acquired infections but are now widely present Reviewed by: Dipesh Dhakal, in the community and even in animals. Furthermore, these organisms are constantly Sun Moon University, South Korea evolving to develop resistance to more antibiotics.
    [Show full text]
  • Biologically Active Secondary Metabolites from Actinomycetes
    Cent. Eur. J. Biol. • 7(3) • 2012 • 373-390 DOI: 10.2478/s11535-012-0036-1 Central European Journal of Biology Biologically active secondary metabolites from Actinomycetes Review Article Jolanta Solecka*, Joanna Zajko, Magdalena Postek, Aleksandra Rajnisz Laboratory of Biologically Active Compounds, National Institute of Public Health - National Institute of Hygiene, 00-791 Warsaw, Poland Received 01 September 2011; Accepted 05 March 2012 Abstract: Secondary metabolites obtained from Actinomycetales provide a potential source of many novel compounds with antibacterial, antitumour, antifungal, antiviral, antiparasitic and other properties. The majority of these compounds are widely used as medicines for combating multidrug-resistant Gram-positive and Gram-negative bacterial strains. Members of the genus Streptomyces are profile producers of previously-known secondary metabolites. Actinomycetes have been isolated from terrestrial soils, from the rhizospheres of plant roots, and recently from marine sediments. This review demonstrates the diversity of secondary metabolites produced by actinomycete strains with respect to their chemical structure, biological activity and origin. On the basis of this diversity, this review concludes that the discovery of new bioactive compounds will continue to pose a great challenge for scientists. Keywords: Bioactive • Secondary metabolites • Antibacterial properties • Cytotoxicity • Streptomyces sp. © Versita Sp. z o.o. 1. Introduction (8 600) are of fungal origin [1,3]. Among filamentous actinomycetes, about 75% (7 600) of metabolites are Bioactive metabolites are products of primary and produced by species of the genus Streptomyces [3,4] secondary metabolism of different organisms (plants, (Figure 1). animals, fungi, bacteria). They often demonstrate More than 140 actinomycete genera have been biological activity [1]. Secondary metabolites have described to date.
    [Show full text]
  • Mechanisms of Staphylococcus Aureus Persistence And
    MECHANISMS OF STAPHYLOCOCCUS AUREUS PERSISTENCE AND ERADICATION OF CHRONIC STAPHYLOCOCCAL INFECTIONS by Rebecca Yee A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland December, 2018 ABSTRACT Bacteria can exist in different phenotypic states depending on environmental conditions. Under stressed conditions, such as antibiotic exposure, bacteria can develop into persister cells that allow them to stay dormant until the stress is removed, when they can revert back to a growing state. The interconversion of non-growing persister cells and actively growing cells is the underlying basis of relapsing and chronic persistent infections. Eradication and better treatment of chronic, persistent infections caused by Staphylococcus aureus requires a multi- faceted approach, including a deeper understanding of how the bacteria persist under stressed conditions, regulate its cell death pathways, and development of novel drug therapies. Persisters were first discovered in the 1940s in a staphylococcal culture in which penicillin failed to kill a small subpopulation of the cells. Despite the discovery many decades ago, the specific mechanisms of Staphylococcus aureus persistence is largely unknown. Recently renewed interest has emerged due to the rise of chronic infections caused by pathogens such as M. tuberculosis, B. burgdorferi, S. aureus, P. aeruginosa, and E. coli. Treatments for chronic infections are lacking and antibiotic resistance is becoming a bigger issue. The goal of our research is to define the mechanisms involved in S. aureus persistence and cell death to improve our knowledge of genes and molecular pathways that can be used as targets for drugs to eradicate chronic infections.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Biographical Sketch Format Page
    OMB No. 0925-0001 and 0925-0002 (Rev. 11/16 Approved Through 10/31/2018) BIOGRAPHICAL SKETCH Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. DO NOT EXCEED FIVE PAGES. NAME: DICK, Thomas eRA COMMONS USER NAME: TDICK367 POSITION TITLE: Member, Centre for Discovery and Innovation, Hackensack Meridian Health. EDUCATION/TRAINING Completion DEGREE FIELD OF STUDY INSTITUTION AND LOCATION Date University of Heidelberg, Germany MSc 08/1987 Biology University of Heidelberg, Germany PhD 08/1990 Bacteriology Institute of Molecular and Cell Biology, Singapore Postdoc 08/1996 Developmental biology A. Personal Statement I have 20 years of experience in antibacterial drug discovery and R&D program management. Prior to my current appointment as Member at the Center for Discovery and Innovation, Hackensack Meridian Health (CDI-HMH), I was Tuberculosis (TB) disease area head at Novartis and served as professor at the National University of Singapore and at Rutgers, Newark. My research focuses on the discovery of new medicines for the treatment of TB and lung disease caused by Non-Tuberculous Mycobacteria (NTM). At CDI-HMH I i) established a fully enabled drug discovery platform, and ii) developed an attractive portfolio of repositioning and de novo drug discovery projects with partners from industry and academia. Publications on antibiotic resistance and discovery: >100; h-index = 43. B. Positions and Honors Positions and Employment 1996-2003 Head, Mycobacterium Biology
    [Show full text]
  • Gopalakrishnan Subramaniam Sathya Arumugam Vijayabharathi
    Gopalakrishnan Subramaniam Sathya Arumugam Vijayabharathi Rajendran Editors Plant Growth Promoting Actinobacteria A New Avenue for Enhancing the Productivity and Soil Fertility of Grain Legumes Plant Growth Promoting Actinobacteria ThiS is a FM Blank Page Gopalakrishnan Subramaniam • Sathya Arumugam • Vijayabharathi Rajendran Editors Plant Growth Promoting Actinobacteria A New Avenue for Enhancing the Productivity and Soil Fertility of Grain Legumes Editors Gopalakrishnan Subramaniam Sathya Arumugam Bio-Control, Grain Legumes Bio-Control, Grain Legumes ICRISAT, Patancheru, Hyderabad ICRISAT, Patancheru, Hyderabad Telangana, India Telangana, India Vijayabharathi Rajendran Bio-Control, Grain Legumes ICRISAT, Patancheru, Hyderabad Telangana, India ISBN 978-981-10-0705-7 ISBN 978-981-10-0707-1 (eBook) DOI 10.1007/978-981-10-0707-1 Library of Congress Control Number: 2016939389 # Springer Science+Business Media Singapore 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Antimicrobial Activity of Actinomycetes and Characterization of Actinomycin-Producing Strain KRG-1 Isolated from Karoo, South Africa
    Brazilian Journal of Pharmaceutical Sciences Article http://dx.doi.org/10.1590/s2175-97902019000217249 Antimicrobial activity of actinomycetes and characterization of actinomycin-producing strain KRG-1 isolated from Karoo, South Africa Ivana Charousová 1,2*, Juraj Medo2, Lukáš Hleba2, Miroslava Císarová3, Soňa Javoreková2 1 Apha medical s.r.o., Clinical Microbiology Laboratory, Slovak Republic, 2 Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Slovak Republic, 3 University of SS. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biology, Slovak Republic In the present study we reported the antimicrobial activity of actinomycetes isolated from aridic soil sample collected in Karoo, South Africa. Eighty-six actinomycete strains were isolated and purified, out of them thirty-four morphologically different strains were tested for antimicrobial activity. Among 35 isolates, 10 (28.57%) showed both antibacterial and antifungal activity. The ethyl acetate extract of strain KRG-1 showed the strongest antimicrobial activity and therefore was selected for further investigation. The almost complete nucleotide sequence of the 16S rRNA gene as well as distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain KRG-1 led to the identification ofStreptomyces antibioticus KRG-1 (GenBank accession number: KX827270). The ethyl acetate extract of KRG-1 was fractionated by HPLC method against the most suppressed bacterium Staphylococcus aureus (Newman). LC//MS analysis led to the identification of the active peak that exhibited UV-VIS maxima at 442 nm and the ESI-HRMS spectrum + + showing the prominent ion clusters for [M-H2O+H] at m/z 635.3109 and for [M+Na] at m/z 1269.6148.
    [Show full text]
  • Analyses Génomiques Et Recherche De Production De Molécules
    Analyses génomiques et recherche de production de molécules naturelles antimicrobiennes d’une souche de Streptomyces fulvissimus chez l’hôte natif et par transfert hétérologue chez un hôte alternatif Mémoire Xavier Murphy Després Maîtrise en biochimie - avec mémoire Maître ès sciences (M. Sc.) Québec, Canada © Xavier Murphy Després, 2019 Analyses génomiques et recherche de production de molécules naturelles antimicrobiennes d’une souche de Streptomyces fulvissimus chez l’hôte natif et par transfert hétérologue chez un hôte alternatif Mémoire de Maîtrise en biochimie Xavier Murphy Després Sous la direction de : Manon Couture directrice de recherche Rong Shi, codirecteur de recherche Résumé Développé dans le contexte mondial de lutte aux souches microbiennes résistantes aux antibiotiques, ce projet de maîtrise a pour but d’isoler et de caractériser un opéron de synthèse d’une molécule naturelle potentiellement bioactive, un tétramate polycyclique macrolactame (PTM), provenant d’une souche de streptomycète peu caractérisée mais dont le génome a été récemment séquencé1. L’objectif principal est de transférer l’opéron dans une souche spécialisée de Escherichia coli pour son expression et sa caractérisation. Nous avons observé que la souche d’intérêt, Streptomyces fulvissimus ATCC27431 / DSM 40593, produisait effectivement une molécule capable d’inhiber la croissance d’une levure. Nous n’avons cependant pas été en mesure de réaliser l’isolation et le transfert hétérologue de l’opéron, malgré l’utilisation de trois approches différentes. La première approche consistait à obtenir directement les gènes de l’opéron via une amplification PCR à partir d’ADN génomique de S. fulvissimus. La seconde approche comportait l’assemblage de gènes synthétisés chimiquement pour reconstituer l’opéron sur deux plasmides.
    [Show full text]
  • Design and Synthesis of Metallo-Β-Lactamase Inhibitors
    Design and synthesis of metallo-β-lactamase inhibitors Ricky Michael Cain Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Chemistry July 2015 - ii - The candidate confirms that the work submitted is his own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 4 contains work described in the publication ‘Applications of structure-based design to antibacterial drug discovery’, as published in the journal, Bio-organic Chemistry. The candidate carried out the literature review and manuscript preparation with S. Narramore. The candidate also conducted all work relating to metallo-β-lactamase inhibitor discovery. M. McPhillie and K. Simmons provided information on triclosan derivative and DHODH respectively, and C. Fishwick helped with manuscript preparation. Chapter 8 contains work described in the publication ‘Assay Platform for Clinically Relevant Metallo-β-lactamases’, as published in the journal, Journal of Medicinal Chemistry. The candidate contributed in silico studies, S. van Berkel, J. Brem and A. Rydzik carried out biological evaluation, R.Salimraj, A. Verma and R. Owens expressed the relevant proteins., and C. Fishwick, J. Spencer and C. Schofield prepared the manuscript. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Ricky Michael Cain to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]