Mechanisms of Staphylococcus Aureus Persistence And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phd Thesis ZHANG Kaixi.Pdf
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Glycosylated cationic block co‑beta‑peptide as antimicrobial and anti‑biofilm agents against Gram‑positive bacteria Zhang, Kaixi 2019 Zhang, K. (2019). Glycosylated cationic block co‑beta‑peptide as antimicrobial and anti‑biofilm agents against Gram‑positive bacteria. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/137037 https://doi.org/10.32657/10356/137037 This work is licensed under a Creative Commons Attribution‑NonCommercial 4.0 International License (CC BY‑NC 4.0). Downloaded on 11 Oct 2021 00:27:16 SGT GLYCOSYLATED CATIONIC BLOCK CO-BETA-PEPTIDE AS ANTIMICROBIAL AND ANTI-BIOFILM AGENTS AGAINST GRAM- POSITIVE BACTERIA ZHANG KAIXI Interdisciplinary Graduate School HealthTech NTU 2019 Sample of first page in hard bound thesis I Glycosylated cationic block co-beta-peptide as antimicrobial and anti-biofilm agents against Gram-positive bacteria ZHANG KAIXI Interdisciplinary Graduate School HealthTech NTU A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2019 i Statement of Originality I hereby certify that the work embodied in this thesis is the result of original research, is free of plagiarised materials, and has not been submitted for a higher degree to any other University or Institution. 18 Dec 2019 Date ZHANG KAIXI ii Supervisor Declaration Statement I have reviewed the content and presentation style of this thesis and declare it is free of plagiarism and of sufficient grammatical clarity to be examined. To the best of my knowledge, the research and writing are those of the candidate except as acknowledged in the Author Attribution Statement. -
Use of Ceragenins As a Potential Treatment for Urinary Tract Infections Urszula Wnorowska1, Ewelina Piktel1, Bonita Durnaś2, Krzysztof Fiedoruk3, Paul B
Wnorowska et al. BMC Infectious Diseases (2019) 19:369 https://doi.org/10.1186/s12879-019-3994-3 RESEARCH ARTICLE Open Access Use of ceragenins as a potential treatment for urinary tract infections Urszula Wnorowska1, Ewelina Piktel1, Bonita Durnaś2, Krzysztof Fiedoruk3, Paul B. Savage4 and Robert Bucki1* Abstract Background: Urinary tract infections (UTIs) are one of the most common bacterial infections. High recurrence rates and the increasing antibiotic resistance among uropathogens constitute a large social and economic problem in current public health. We assumed that combination of treatment that includes the administration ceragenins (CSAs), will reinforce the effect of antimicrobial LL-37 peptide continuously produced by urinary tract epithelial cells. Such treatment might be an innovative approach to enhance innate antibacterial activity against multidrug- resistant E. coli. Methods: Antibacterial activity measured using killing assays. Biofilm formation was assessed using crystal violet staining. Viability of bacteria and bladder epithelial cells subjected to incubation with tested agents was determined using MTT assays. We investigated the effects of chosen molecules, both alone and in combinations against four clinical strains of E. coli, obtained from patients diagnosed with recurrent UTI. Results: We observed that the LL-37 peptide, whose concentration increases at sites of urinary infection, exerts increased bactericidal effect against E. coli when combined with ceragenins CSA-13 and CSA-131. Conclusion: We suggest that the employment of combination of natural peptide LL-37 with synthetic analogs might be a potential solution to treat urinary tract infections caused by drug-resistant bacteria. Keywords: Urinary tract infection, LL-37 peptide, Ceragenins, Bacterial drug resistance Background trimethoprim/sulphamethoxazole, may no longer be used Urinary tract infections (UTIs) are one of the most com- for empiric treatment due to high resistance rates [7]. -
Antimicrobials: Killing Persisters While They Sleep
RESEARCH HIGHLIGHTS ANTIMICROBIALS Killing persisters while they sleep Bacterial persisters are a certain metabolites can enhance of mannitol enhanced gentamicin subpopulation of dormant cells the killing of both Gram-negative killing of persister cells by more than that have been implicated in a and Gram-positive persisters by two orders of magnitude. Similarly, it may be possible range of chronic and recurrent aminoglycosides. in mice that were implanted with to eradicate infections through their ability Aminoglycoside uptake into the catheters which had been colonized bacterial to survive antibiotic treatments. bacterium is energy dependent, by a uropathogenic E. coli strain, Although most cellular processes are leading the authors to investigate administration of mannitol together persisters in a completely shut down in persisters, whether metabolic stimulation with gentamicin reduced the viability clinical setting translation still occurs, albeit at a enhances the killing of persister of biofilm bacteria on the catheter by stimulating reduced rate, making the use of cells by increasing the uptake of by more than an order of magnitude. their underlying aminoglycoside antibiotics (which these antibiotics. They found that Finally, the authors tested whether metabolic activity target the ribosome) an attractive the addition of glucose, mannitol, metabolite addition enhanced option. However, aminoglycosides fructose or pyruvate increased the aminoglycoside killing of Gram- concurrently have only weak activity against this killing of isolated Escherichia coli positive bacteria; whereas mannitol, with antibiotic subpopulation of cells. Writing persisters by gentamicin, kanamycin glucose and pyruvate had no effect, treatment. in Nature, Collins and colleagues and streptomycin by more than three the addition of fructose enhanced now show that the addition of orders of magnitude. -
Biographical Sketch Format Page
OMB No. 0925-0001 and 0925-0002 (Rev. 11/16 Approved Through 10/31/2018) BIOGRAPHICAL SKETCH Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. DO NOT EXCEED FIVE PAGES. NAME: DICK, Thomas eRA COMMONS USER NAME: TDICK367 POSITION TITLE: Member, Centre for Discovery and Innovation, Hackensack Meridian Health. EDUCATION/TRAINING Completion DEGREE FIELD OF STUDY INSTITUTION AND LOCATION Date University of Heidelberg, Germany MSc 08/1987 Biology University of Heidelberg, Germany PhD 08/1990 Bacteriology Institute of Molecular and Cell Biology, Singapore Postdoc 08/1996 Developmental biology A. Personal Statement I have 20 years of experience in antibacterial drug discovery and R&D program management. Prior to my current appointment as Member at the Center for Discovery and Innovation, Hackensack Meridian Health (CDI-HMH), I was Tuberculosis (TB) disease area head at Novartis and served as professor at the National University of Singapore and at Rutgers, Newark. My research focuses on the discovery of new medicines for the treatment of TB and lung disease caused by Non-Tuberculous Mycobacteria (NTM). At CDI-HMH I i) established a fully enabled drug discovery platform, and ii) developed an attractive portfolio of repositioning and de novo drug discovery projects with partners from industry and academia. Publications on antibiotic resistance and discovery: >100; h-index = 43. B. Positions and Honors Positions and Employment 1996-2003 Head, Mycobacterium Biology -
Antimicrobial Activity of Actinomycetes and Characterization of Actinomycin-Producing Strain KRG-1 Isolated from Karoo, South Africa
Brazilian Journal of Pharmaceutical Sciences Article http://dx.doi.org/10.1590/s2175-97902019000217249 Antimicrobial activity of actinomycetes and characterization of actinomycin-producing strain KRG-1 isolated from Karoo, South Africa Ivana Charousová 1,2*, Juraj Medo2, Lukáš Hleba2, Miroslava Císarová3, Soňa Javoreková2 1 Apha medical s.r.o., Clinical Microbiology Laboratory, Slovak Republic, 2 Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Slovak Republic, 3 University of SS. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biology, Slovak Republic In the present study we reported the antimicrobial activity of actinomycetes isolated from aridic soil sample collected in Karoo, South Africa. Eighty-six actinomycete strains were isolated and purified, out of them thirty-four morphologically different strains were tested for antimicrobial activity. Among 35 isolates, 10 (28.57%) showed both antibacterial and antifungal activity. The ethyl acetate extract of strain KRG-1 showed the strongest antimicrobial activity and therefore was selected for further investigation. The almost complete nucleotide sequence of the 16S rRNA gene as well as distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain KRG-1 led to the identification ofStreptomyces antibioticus KRG-1 (GenBank accession number: KX827270). The ethyl acetate extract of KRG-1 was fractionated by HPLC method against the most suppressed bacterium Staphylococcus aureus (Newman). LC//MS analysis led to the identification of the active peak that exhibited UV-VIS maxima at 442 nm and the ESI-HRMS spectrum + + showing the prominent ion clusters for [M-H2O+H] at m/z 635.3109 and for [M+Na] at m/z 1269.6148. -
Design and Synthesis of Metallo-Β-Lactamase Inhibitors
Design and synthesis of metallo-β-lactamase inhibitors Ricky Michael Cain Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Chemistry July 2015 - ii - The candidate confirms that the work submitted is his own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 4 contains work described in the publication ‘Applications of structure-based design to antibacterial drug discovery’, as published in the journal, Bio-organic Chemistry. The candidate carried out the literature review and manuscript preparation with S. Narramore. The candidate also conducted all work relating to metallo-β-lactamase inhibitor discovery. M. McPhillie and K. Simmons provided information on triclosan derivative and DHODH respectively, and C. Fishwick helped with manuscript preparation. Chapter 8 contains work described in the publication ‘Assay Platform for Clinically Relevant Metallo-β-lactamases’, as published in the journal, Journal of Medicinal Chemistry. The candidate contributed in silico studies, S. van Berkel, J. Brem and A. Rydzik carried out biological evaluation, R.Salimraj, A. Verma and R. Owens expressed the relevant proteins., and C. Fishwick, J. Spencer and C. Schofield prepared the manuscript. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Ricky Michael Cain to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. -
Bactericidal Activity of Alpha-Bromocinnamaldehyde
RESEARCH ARTICLE Bactericidal activity of alpha- bromocinnamaldehyde against persisters in Escherichia coli Qingshan Shen1☯, Wei Zhou1☯, Liangbin Hu1*, Yonghua Qi2, Hongmei Ning2, Jian Chen3, Haizhen Mo1* 1 Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China, 2 Department of Animal Science, Henan Institute of Science and Technology, Xinxiang, China, 3 Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Science, Nanjing, China a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] (LH); [email protected] (HM) a1111111111 a1111111111 a1111111111 Abstract Persisters are tolerant to multiple antibiotics, and widely distributed in bacteria, fungi, para- sites, and even cancerous human cell populations, leading to recurrent infections and OPEN ACCESS relapse after therapy. In this study, we investigated the potential of cinnamaldehyde and its Citation: Shen Q, Zhou W, Hu L, Qi Y, Ning H, derivatives to eradicate persisters in Escherichia coli. The results showed that 200 μg/ml of Chen J, et al. (2017) Bactericidal activity of alpha- alpha-bromocinnamaldehyde (Br-CA) was capable of killing all E. coli cells during the expo- bromocinnamaldehyde against persisters in nential phase. Considering the heterogeneous nature of persisters, multiple types of persist- Escherichia coli. PLoS ONE 12(7): e0182122. ers were induced and exposed to Br-CA. Our results indicated that no cells in the ppGpp- https://doi.org/10.1371/journal.pone.0182122 overproducing strain or TisB-overexpressing strain survived the treatment of Br-CA Editor: Christophe Beloin, Institut Pasteur, FRANCE although considerable amounts of persisters to ampicillin (Amp) and ciprofloxacin (Cip) Received: January 14, 2017 were induced. -
Metabolic Products of Microorganisms. 207* Haloquinone, a New Antibiotic Active Against Halobacteria
VOL. XXXIV NO. 12 THE JOURNAL OF ANTIBIOTICS 1531 METABOLIC PRODUCTS OF MICROORGANISMS. 207* HALOQUINONE, A NEW ANTIBIOTIC ACTIVE AGAINST HALOBACTERIA I. ISOLATION, CHARACTERIZATION AND BIOLOGICAL PROPERTIES BEATEEWERSMEYER-WENK and HANSZAHNER** Institut fur Biologic II, Lehrstuhl Mikrobiologie I, Universitat Tubingen, Auf der Morgenstelle 28, D-7400 Tubingen, W. Germany BERNDKRONE and AXEL ZEECK Organisch-Chemisches Institut, Universitat Gottingen, Tammannstr. 2, D-3400 Gottingen, W. Germany (Received for publication June 8, 1981) Haloquinone, a new antibiotic produced by Streptomyces venezuelae ssp. xantlzophaeus (Lindenbein) strain Tu 2115, was isolated from the mycelium (pH 4.5) by extraction with methanol and chromatography on acid-treated silica gel. The new compound, molecular formula C1,H120~, has been isolated with respect to its activity against halobacteria; it also inhibits Gram-positive and to a smaller extent Gram-negative bacteria. The antibiotic has an effect on DNA synthesis. In the course of our research for new antibiotics produced by actinomyces, we screened for activity against halobacteria. These, classified as archaebacteria, possess besides other characteristics a special kind of cell wall, containing a glycoprotein very similar to that of eucariotic cells'-'). Compared with Bacillus subtilis several strains of halobacteria showed a remarkably low sensitivity to most of the 50 known antibiotics tested (see below). These observation led us to search for other antibiotics active against halobacteria. In the following we describe the fermentation, isolation, physicochemical charac- terization and biological properties of such a new compound, named haloquinone. The determination of the structure is the subject of the following publication'). Fermentation and Isolation Strain Til 2115 was isolated in 1978 from a soil sample from the Peruvian jungle near Pucallpa and classified as Streptomyces venezuelae ssp. -
BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] http://bmjopen.bmj.com/ on September 26, 2021 by guest. Protected copyright. BMJ Open BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from Treatment of stable chronic obstructive pulmonary disease: a protocol for a systematic review and evidence map Journal: BMJ Open ManuscriptFor ID peerbmjopen-2018-027935 review only Article Type: Protocol Date Submitted by the 15-Nov-2018 Author: Complete List of Authors: Dobler, Claudia; Mayo Clinic, Evidence-Based Practice Center, Robert D. -
Chiral Separations by Capillary Electrophoresis and Related Techniques with Different Chiral Selectors: a Review
K. Şarkaya et al. / Hacettepe J. Biol. & Chem., 2021, 49 (3), 253-303 Hacettepe Journal of Biology and Chemistry Review Article journal homepage: www.hjbc.hacettepe.edu.tr Chiral Separations by Capillary Electrophoresis and Related Techniques with Different Chiral Selectors: A Review Farklı Kiral Selektörler ile Kapiler Elektroforez ve İlgili Tekniklerle Kiral Ayrımlar: Bir Derleme Koray Şarkaya1 , Ilgım Göktürk2 , Fatma Yılmaz3 , Adil Denizli2* 1Pamukkale University, Department of Chemistry, Faculty of Science and Art, Denizli, Turkey. 2Department of Chemistry, Hacettepe University, Ankara, Turkey. 3Vocational School of Gerede, Department of Chemistry Technology, Bolu Abant Izzet Baysal University, Bolu, Turkey. ABSTRACT ecognition mechanism and enantiomerically separations of the chiral compounds are subjects that always stimulate Rthe great interest of researchers in pharmacology and natural sciences, who are interested in finding solutions for both analytical purity and preparative purposes. Capillary Electrophoresis has become one of the most important analytical approaches for enantiomeric separations due to its superior properties, such as high resolution and high efficiency of chiral selectors. In this field, where researchers continue to be interested, the distinctions continue to develop day by day, with the introduction of new techniques developed on the basis of Capillary Electrophoresis philosophy in parallel with the development process of technology, as well as the chiral selectors of many different forms. In this review, besides some descriptive theoretical information about capillary electrophoresis and the techniques associated with it, studies on chiral separations using different chiral selectors or different chiral additives, such as molecularly imprinted polymers, cyclodextrins, Metal-organic frameworks, ionic liquids, nanoparticles and monoliths in the last nearly 10 years (2010-2020) were examined. -
Eradication of Bacterial Persisters with Antibiotic-Generated Hydroxyl Radicals
Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals Sarah Schmidt Grant a,b,c,1, Benjamin B. Kaufmanna,c,d,1, Nikhilesh S. Chandd,e, Nathan Haseleya,d,f, and Deborah T. Hunga,b,c,d,2 aBroad Institute of MIT and Harvard, Cambridge, MA 02142; bDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02114; cDepartment of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114; dDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; eDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and fHarvard–MIT Division of Health Sciences and Technology, Cambridge, MA 02139 Edited by* Eric S. Lander, Broad Institute of MIT and Harvard, Cambridge, MA, and approved June 11, 2012 (received for review March 2, 2012) During Mycobacterium tuberculosis infection, a population of bac- terial cell numbers but do not sterilize the mouse (8). A plateau teria likely becomes refractory to antibiotic killing in the absence of is typically reached during which numbers of viable bacteria genotypic resistance, making treatment challenging. We describe stabilize. In addition to the mouse infection model, the inability an in vitro model capable of yielding a phenotypically antibi- to sterilize has been observed in the zebra fish (Mycobacterium otic-tolerant subpopulation of cells, often called persisters, within marinum), guinea pig (M. tuberculosis), and macrophage populations of Mycobacterium smegmatis and M. tuberculosis.We (M. tuberculosis) infection models (9–11). In vitro, the survival find that persisters are distinct from the larger antibiotic-suscepti- of a similar small subpopulation can also be observed when ble population, as a small drop in dissolved oxygen (DO) satura- a culture is exposed to high doses of antibiotics (12, 13). -
Phenol-Soluble Modulins Modulate Persister Cell Formation In
Phenol-Soluble Modulins Modulate Persister Cell Formation in Staphylococcus aureus Baldry, Mara; Bojer, Martin S; Najarzadeh, Zahra; Vestergaard, Martin; Meyer, Rikke Louise; Otzen, Daniel Erik; Ingmer, Hanne Published in: Frontiers in Microbiology DOI: 10.3389/fmicb.2020.573253 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Baldry, M., Bojer, M. S., Najarzadeh, Z., Vestergaard, M., Meyer, R. L., Otzen, D. E., & Ingmer, H. (2020). Phenol-Soluble Modulins Modulate Persister Cell Formation in Staphylococcus aureus. Frontiers in Microbiology, 11, 573253. https://doi.org/10.3389/fmicb.2020.573253 Download date: 23. sep.. 2021 ORIGINAL RESEARCH published: 09 November 2020 doi: 10.3389/fmicb.2020.573253 Phenol-Soluble Modulins Modulate Persister Cell Formation in Staphylococcus aureus Mara Baldry 1†, Martin S. Bojer 1, Zahra Najarzadeh 2, Martin Vestergaard 1, Rikke Louise Meyer 2, Daniel Erik Otzen 2 and Hanne Ingmer 1* 1Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark, 2Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark Edited by: Thomas Keith Wood, Pennsylvania State University (PSU), Staphylococcus aureus is a human pathogen that can cause chronic and recurrent United States infections and is recalcitrant to antibiotic chemotherapy. This trait is partly attributed to Reviewed by: Jie Feng, its ability to form persister cells, which are subpopulations of cells that are tolerant to lethal Lanzhou University Medical College, concentrations of antibiotics. Recently, we showed that the phenol-soluble modulins China (PSMs) expressed by S. aureus reduce persister cell formation.