Mechanisms of Staphylococcus Aureus Persistence And

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Staphylococcus Aureus Persistence And MECHANISMS OF STAPHYLOCOCCUS AUREUS PERSISTENCE AND ERADICATION OF CHRONIC STAPHYLOCOCCAL INFECTIONS by Rebecca Yee A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland December, 2018 ABSTRACT Bacteria can exist in different phenotypic states depending on environmental conditions. Under stressed conditions, such as antibiotic exposure, bacteria can develop into persister cells that allow them to stay dormant until the stress is removed, when they can revert back to a growing state. The interconversion of non-growing persister cells and actively growing cells is the underlying basis of relapsing and chronic persistent infections. Eradication and better treatment of chronic, persistent infections caused by Staphylococcus aureus requires a multi- faceted approach, including a deeper understanding of how the bacteria persist under stressed conditions, regulate its cell death pathways, and development of novel drug therapies. Persisters were first discovered in the 1940s in a staphylococcal culture in which penicillin failed to kill a small subpopulation of the cells. Despite the discovery many decades ago, the specific mechanisms of Staphylococcus aureus persistence is largely unknown. Recently renewed interest has emerged due to the rise of chronic infections caused by pathogens such as M. tuberculosis, B. burgdorferi, S. aureus, P. aeruginosa, and E. coli. Treatments for chronic infections are lacking and antibiotic resistance is becoming a bigger issue. The goal of our research is to define the mechanisms involved in S. aureus persistence and cell death to improve our knowledge of genes and molecular pathways that can be used as targets for drugs to eradicate chronic infections. Using several high-throughput genetic screens, we identified and confirmed several core regulators of bacterial persistence and cell death upon exposure to bactericidal antibiotics and environmental stresses such as heat and acid stress. Currently, drug combinations approved for clinical usage do not target persister cells. One exception is the treatment regimen for tuberculosis that includes pyrazinamide, an anti- persister drug that targets unconventional drug targets such as proteins involved in energy ii metabolism and trans-translation. Upon the addition of pyrazinamide, which kill persister bacteria to the combination of rifampin and isoniazid which kill growing bacteria, the duration of tuberculosis treatment was shortened from 9-12 months to 6 months. Here, using the treatment for tuberculosis as an example that demonstrates the powerful activity of an anti-persister drug such as pyrazinamide, we screened for drugs with high activity against growing and non-growing forms of S. aureus to formulate drug combinations that can effectively kill the heterogeneous population of bacteria in biofilms. To test this approach in a clinically-relevant animal model, we established a chronic, skin infection mouse model of S. aureus to validate the improved efficacy of drug combinations in clearing persistent skin infections than currently-approved regimens used in the clinics. Our findings reveal that drug combinations consisting of drugs targeting both actively growing bacteria and persister cells, such as the combination of meropenem + daptomycin + clinafloxacin, can eradicate biofilms more effectively than doxycycline + rifampin, a combination used currently on patients. Our in vivo mouse model studies further validate the efficacy of such drug combinations in clearing the bacteria in the lesions, reducing the pathology, and completely healing the chronic lesions formed on the skin. These findings have important implications for treating other persistent bacterial infections. Advisor: Dr. Ying Zhang Thesis Committee: Dr. Jie Xiao Dr. J. Marie Hardwick Dr. Meghan Davis Dr. Nicole Parrish Alternates: Dr. Valeria Culotta Dr. Gary Ketner iii ACKNOWLEDGEMENTS I would first like to express my gratitude to my advisor, Dr. Ying Zhang, for his support and encouragement throughout the years. I gained independence, a wide range of experience in bacteriology research, and confidence as a scientist. Thank you for listening to me when I expressed interest to pursue research on S. aureus and allowing me to conduct research not limited to the genetic basis of S. aureus persistence but also treatment and even diagnostics. I am extremely grateful for your support of my ultimate career goal in becoming a clinical microbiologist and for your creative research ideas that were applicable to the clinical field. Thank you for giving me the freedom to explore and grow. It has been an amazing time working with the past and present members of the Zhang lab. Thank you all for keeping the lab exciting and lively at all times. I especially have to thank Dr. Wanliang Shi for training me during my rotation in the lab and providing a positive experience that drew me back to joining the lab. I would like to thank my thesis committee members (both past and present), Dr. Jie Xiao, Dr. J. Marie Hardwick, Dr. Meghan Davis, Dr. Nicole Parrish, and Dr. Arturo Casadevall for providing constructive feedback and also having conversations about my career goals along the way. In particular, I would like to thank both Dr. Hardwick and Dr. Parrish who have been with me since the beginning of my PhD career, from my preliminary oral exam to my final oral exam. You both watched me grow and I appreciated all our conversations ranging from personal to professional career advice. The members of the Hardwick lab (Zach, Jason, Heather, and Madhura) were also instrumental in helping me execute some of my studies. I also need to thank my past exam committee members, Dr. David Sullivan, Dr. Winnie Tang, and Dr. Randy Bryant, who still periodically check up on me about the progress that I have made. I thank you all for the continuous support throughout the years. iv Special thanks go to my classmates and colleagues at Johns Hopkins University. To my collaborators, Naina and Andreina, we came to know each other very well after some unsuccessful but then successful experiments together. I am happy to be able to learn a lot from you both but more importantly, we are friends and not simply colleagues. From MMI, a special big thanks to Snow, Phil, Jane, Yuting, Jasmine, and Gail. Thank you all for your friendship, encouragement, and our random conversations after Forum or Seminar. It's great to have a life outside of lab! A bigger thanks to my roommate, Jessie, for being a great roommate, scientist, friend and confidant as we both navigated our PhD journey together. And, the biggest thanks go to my partner, Eric. Thanks for being a great listener and constant supply of humor, optimism, laughter, food, and bubble tea. I always knew you all would have my back and made sure I was not falling through anywhere. I will miss you all but I am confident that we will all do great things in the future and we will cross paths once again. Lastly, I express much thanks to my family members. Thank you for letting me pursue my dreams and despite the long duration spent in education, you only encouraged me to push further with your unconditional love and support. I thank my parents, especially my father who was a teacher in his past career, for instilling the importance of education and discipline at a young age. By forcing me to memorize my multiplication tables and perfect my cursive before any of my peers did taught me how a strong work ethic during times of struggle will lead to many successes, such as a PhD. Thank you to my sister Jessica for being around to pick up the slack when I could not be home. I'm glad we have each other during the good and bad times. v TABLE OF CONTENTS Abstract ........................................................................................................................................... ii Acknowledgements ........................................................................................................................ iv Table of Contents ........................................................................................................................... vi List of Figures .............................................................................................................................. viii List of Tables ...................................................................................................................................x Chapter 1: Introduction ....................................................................................................................1 Staphylococcus aureus ...............................................................................................................2 Antibiotic Resistant S. aureus .....................................................................................................3 Mechanisms of Antibiotic Resistance ..........................................................................................4 Drug Resistance Mechanisms in S. aureus ..................................................................................5 Detection of Antibiotic Resistance in Bacteria ............................................................................6 The Phenomenon of Antibiotic Persistence .................................................................................7 Persisters and Persistent Infections ..............................................................................................8 Biofilms
Recommended publications
  • Phd Thesis ZHANG Kaixi.Pdf
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Glycosylated cationic block co‑beta‑peptide as antimicrobial and anti‑biofilm agents against Gram‑positive bacteria Zhang, Kaixi 2019 Zhang, K. (2019). Glycosylated cationic block co‑beta‑peptide as antimicrobial and anti‑biofilm agents against Gram‑positive bacteria. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/137037 https://doi.org/10.32657/10356/137037 This work is licensed under a Creative Commons Attribution‑NonCommercial 4.0 International License (CC BY‑NC 4.0). Downloaded on 11 Oct 2021 00:27:16 SGT GLYCOSYLATED CATIONIC BLOCK CO-BETA-PEPTIDE AS ANTIMICROBIAL AND ANTI-BIOFILM AGENTS AGAINST GRAM- POSITIVE BACTERIA ZHANG KAIXI Interdisciplinary Graduate School HealthTech NTU 2019 Sample of first page in hard bound thesis I Glycosylated cationic block co-beta-peptide as antimicrobial and anti-biofilm agents against Gram-positive bacteria ZHANG KAIXI Interdisciplinary Graduate School HealthTech NTU A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2019 i Statement of Originality I hereby certify that the work embodied in this thesis is the result of original research, is free of plagiarised materials, and has not been submitted for a higher degree to any other University or Institution. 18 Dec 2019 Date ZHANG KAIXI ii Supervisor Declaration Statement I have reviewed the content and presentation style of this thesis and declare it is free of plagiarism and of sufficient grammatical clarity to be examined. To the best of my knowledge, the research and writing are those of the candidate except as acknowledged in the Author Attribution Statement.
    [Show full text]
  • Use of Ceragenins As a Potential Treatment for Urinary Tract Infections Urszula Wnorowska1, Ewelina Piktel1, Bonita Durnaś2, Krzysztof Fiedoruk3, Paul B
    Wnorowska et al. BMC Infectious Diseases (2019) 19:369 https://doi.org/10.1186/s12879-019-3994-3 RESEARCH ARTICLE Open Access Use of ceragenins as a potential treatment for urinary tract infections Urszula Wnorowska1, Ewelina Piktel1, Bonita Durnaś2, Krzysztof Fiedoruk3, Paul B. Savage4 and Robert Bucki1* Abstract Background: Urinary tract infections (UTIs) are one of the most common bacterial infections. High recurrence rates and the increasing antibiotic resistance among uropathogens constitute a large social and economic problem in current public health. We assumed that combination of treatment that includes the administration ceragenins (CSAs), will reinforce the effect of antimicrobial LL-37 peptide continuously produced by urinary tract epithelial cells. Such treatment might be an innovative approach to enhance innate antibacterial activity against multidrug- resistant E. coli. Methods: Antibacterial activity measured using killing assays. Biofilm formation was assessed using crystal violet staining. Viability of bacteria and bladder epithelial cells subjected to incubation with tested agents was determined using MTT assays. We investigated the effects of chosen molecules, both alone and in combinations against four clinical strains of E. coli, obtained from patients diagnosed with recurrent UTI. Results: We observed that the LL-37 peptide, whose concentration increases at sites of urinary infection, exerts increased bactericidal effect against E. coli when combined with ceragenins CSA-13 and CSA-131. Conclusion: We suggest that the employment of combination of natural peptide LL-37 with synthetic analogs might be a potential solution to treat urinary tract infections caused by drug-resistant bacteria. Keywords: Urinary tract infection, LL-37 peptide, Ceragenins, Bacterial drug resistance Background trimethoprim/sulphamethoxazole, may no longer be used Urinary tract infections (UTIs) are one of the most com- for empiric treatment due to high resistance rates [7].
    [Show full text]
  • Antimicrobials: Killing Persisters While They Sleep
    RESEARCH HIGHLIGHTS ANTIMICROBIALS Killing persisters while they sleep Bacterial persisters are a certain metabolites can enhance of mannitol enhanced gentamicin subpopulation of dormant cells the killing of both Gram-negative killing of persister cells by more than that have been implicated in a and Gram-positive persisters by two orders of magnitude. Similarly, it may be possible range of chronic and recurrent aminoglycosides. in mice that were implanted with to eradicate infections through their ability Aminoglycoside uptake into the catheters which had been colonized bacterial to survive antibiotic treatments. bacterium is energy dependent, by a uropathogenic E. coli strain, Although most cellular processes are leading the authors to investigate administration of mannitol together persisters in a completely shut down in persisters, whether metabolic stimulation with gentamicin reduced the viability clinical setting translation still occurs, albeit at a enhances the killing of persister of biofilm bacteria on the catheter by stimulating reduced rate, making the use of cells by increasing the uptake of by more than an order of magnitude. their underlying aminoglycoside antibiotics (which these antibiotics. They found that Finally, the authors tested whether metabolic activity target the ribosome) an attractive the addition of glucose, mannitol, metabolite addition enhanced option. However, aminoglycosides fructose or pyruvate increased the aminoglycoside killing of Gram- concurrently have only weak activity against this killing of isolated Escherichia coli positive bacteria; whereas mannitol, with antibiotic subpopulation of cells. Writing persisters by gentamicin, kanamycin glucose and pyruvate had no effect, treatment. in Nature, Collins and colleagues and streptomycin by more than three the addition of fructose enhanced now show that the addition of orders of magnitude.
    [Show full text]
  • Biographical Sketch Format Page
    OMB No. 0925-0001 and 0925-0002 (Rev. 11/16 Approved Through 10/31/2018) BIOGRAPHICAL SKETCH Provide the following information for the Senior/key personnel and other significant contributors. Follow this format for each person. DO NOT EXCEED FIVE PAGES. NAME: DICK, Thomas eRA COMMONS USER NAME: TDICK367 POSITION TITLE: Member, Centre for Discovery and Innovation, Hackensack Meridian Health. EDUCATION/TRAINING Completion DEGREE FIELD OF STUDY INSTITUTION AND LOCATION Date University of Heidelberg, Germany MSc 08/1987 Biology University of Heidelberg, Germany PhD 08/1990 Bacteriology Institute of Molecular and Cell Biology, Singapore Postdoc 08/1996 Developmental biology A. Personal Statement I have 20 years of experience in antibacterial drug discovery and R&D program management. Prior to my current appointment as Member at the Center for Discovery and Innovation, Hackensack Meridian Health (CDI-HMH), I was Tuberculosis (TB) disease area head at Novartis and served as professor at the National University of Singapore and at Rutgers, Newark. My research focuses on the discovery of new medicines for the treatment of TB and lung disease caused by Non-Tuberculous Mycobacteria (NTM). At CDI-HMH I i) established a fully enabled drug discovery platform, and ii) developed an attractive portfolio of repositioning and de novo drug discovery projects with partners from industry and academia. Publications on antibiotic resistance and discovery: >100; h-index = 43. B. Positions and Honors Positions and Employment 1996-2003 Head, Mycobacterium Biology
    [Show full text]
  • Antimicrobial Activity of Actinomycetes and Characterization of Actinomycin-Producing Strain KRG-1 Isolated from Karoo, South Africa
    Brazilian Journal of Pharmaceutical Sciences Article http://dx.doi.org/10.1590/s2175-97902019000217249 Antimicrobial activity of actinomycetes and characterization of actinomycin-producing strain KRG-1 isolated from Karoo, South Africa Ivana Charousová 1,2*, Juraj Medo2, Lukáš Hleba2, Miroslava Císarová3, Soňa Javoreková2 1 Apha medical s.r.o., Clinical Microbiology Laboratory, Slovak Republic, 2 Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Microbiology, Slovak Republic, 3 University of SS. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biology, Slovak Republic In the present study we reported the antimicrobial activity of actinomycetes isolated from aridic soil sample collected in Karoo, South Africa. Eighty-six actinomycete strains were isolated and purified, out of them thirty-four morphologically different strains were tested for antimicrobial activity. Among 35 isolates, 10 (28.57%) showed both antibacterial and antifungal activity. The ethyl acetate extract of strain KRG-1 showed the strongest antimicrobial activity and therefore was selected for further investigation. The almost complete nucleotide sequence of the 16S rRNA gene as well as distinctive matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) profile of whole-cell proteins acquired for strain KRG-1 led to the identification ofStreptomyces antibioticus KRG-1 (GenBank accession number: KX827270). The ethyl acetate extract of KRG-1 was fractionated by HPLC method against the most suppressed bacterium Staphylococcus aureus (Newman). LC//MS analysis led to the identification of the active peak that exhibited UV-VIS maxima at 442 nm and the ESI-HRMS spectrum + + showing the prominent ion clusters for [M-H2O+H] at m/z 635.3109 and for [M+Na] at m/z 1269.6148.
    [Show full text]
  • Design and Synthesis of Metallo-Β-Lactamase Inhibitors
    Design and synthesis of metallo-β-lactamase inhibitors Ricky Michael Cain Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Chemistry July 2015 - ii - The candidate confirms that the work submitted is his own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 4 contains work described in the publication ‘Applications of structure-based design to antibacterial drug discovery’, as published in the journal, Bio-organic Chemistry. The candidate carried out the literature review and manuscript preparation with S. Narramore. The candidate also conducted all work relating to metallo-β-lactamase inhibitor discovery. M. McPhillie and K. Simmons provided information on triclosan derivative and DHODH respectively, and C. Fishwick helped with manuscript preparation. Chapter 8 contains work described in the publication ‘Assay Platform for Clinically Relevant Metallo-β-lactamases’, as published in the journal, Journal of Medicinal Chemistry. The candidate contributed in silico studies, S. van Berkel, J. Brem and A. Rydzik carried out biological evaluation, R.Salimraj, A. Verma and R. Owens expressed the relevant proteins., and C. Fishwick, J. Spencer and C. Schofield prepared the manuscript. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Ricky Michael Cain to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Bactericidal Activity of Alpha-Bromocinnamaldehyde
    RESEARCH ARTICLE Bactericidal activity of alpha- bromocinnamaldehyde against persisters in Escherichia coli Qingshan Shen1☯, Wei Zhou1☯, Liangbin Hu1*, Yonghua Qi2, Hongmei Ning2, Jian Chen3, Haizhen Mo1* 1 Department of Food Science, Henan Institute of Science and Technology, Xinxiang, China, 2 Department of Animal Science, Henan Institute of Science and Technology, Xinxiang, China, 3 Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Science, Nanjing, China a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] (LH); [email protected] (HM) a1111111111 a1111111111 a1111111111 Abstract Persisters are tolerant to multiple antibiotics, and widely distributed in bacteria, fungi, para- sites, and even cancerous human cell populations, leading to recurrent infections and OPEN ACCESS relapse after therapy. In this study, we investigated the potential of cinnamaldehyde and its Citation: Shen Q, Zhou W, Hu L, Qi Y, Ning H, derivatives to eradicate persisters in Escherichia coli. The results showed that 200 μg/ml of Chen J, et al. (2017) Bactericidal activity of alpha- alpha-bromocinnamaldehyde (Br-CA) was capable of killing all E. coli cells during the expo- bromocinnamaldehyde against persisters in nential phase. Considering the heterogeneous nature of persisters, multiple types of persist- Escherichia coli. PLoS ONE 12(7): e0182122. ers were induced and exposed to Br-CA. Our results indicated that no cells in the ppGpp- https://doi.org/10.1371/journal.pone.0182122 overproducing strain or TisB-overexpressing strain survived the treatment of Br-CA Editor: Christophe Beloin, Institut Pasteur, FRANCE although considerable amounts of persisters to ampicillin (Amp) and ciprofloxacin (Cip) Received: January 14, 2017 were induced.
    [Show full text]
  • Metabolic Products of Microorganisms. 207* Haloquinone, a New Antibiotic Active Against Halobacteria
    VOL. XXXIV NO. 12 THE JOURNAL OF ANTIBIOTICS 1531 METABOLIC PRODUCTS OF MICROORGANISMS. 207* HALOQUINONE, A NEW ANTIBIOTIC ACTIVE AGAINST HALOBACTERIA I. ISOLATION, CHARACTERIZATION AND BIOLOGICAL PROPERTIES BEATEEWERSMEYER-WENK and HANSZAHNER** Institut fur Biologic II, Lehrstuhl Mikrobiologie I, Universitat Tubingen, Auf der Morgenstelle 28, D-7400 Tubingen, W. Germany BERNDKRONE and AXEL ZEECK Organisch-Chemisches Institut, Universitat Gottingen, Tammannstr. 2, D-3400 Gottingen, W. Germany (Received for publication June 8, 1981) Haloquinone, a new antibiotic produced by Streptomyces venezuelae ssp. xantlzophaeus (Lindenbein) strain Tu 2115, was isolated from the mycelium (pH 4.5) by extraction with methanol and chromatography on acid-treated silica gel. The new compound, molecular formula C1,H120~, has been isolated with respect to its activity against halobacteria; it also inhibits Gram-positive and to a smaller extent Gram-negative bacteria. The antibiotic has an effect on DNA synthesis. In the course of our research for new antibiotics produced by actinomyces, we screened for activity against halobacteria. These, classified as archaebacteria, possess besides other characteristics a special kind of cell wall, containing a glycoprotein very similar to that of eucariotic cells'-'). Compared with Bacillus subtilis several strains of halobacteria showed a remarkably low sensitivity to most of the 50 known antibiotics tested (see below). These observation led us to search for other antibiotics active against halobacteria. In the following we describe the fermentation, isolation, physicochemical charac- terization and biological properties of such a new compound, named haloquinone. The determination of the structure is the subject of the following publication'). Fermentation and Isolation Strain Til 2115 was isolated in 1978 from a soil sample from the Peruvian jungle near Pucallpa and classified as Streptomyces venezuelae ssp.
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] http://bmjopen.bmj.com/ on September 26, 2021 by guest. Protected copyright. BMJ Open BMJ Open: first published as 10.1136/bmjopen-2018-027935 on 5 May 2019. Downloaded from Treatment of stable chronic obstructive pulmonary disease: a protocol for a systematic review and evidence map Journal: BMJ Open ManuscriptFor ID peerbmjopen-2018-027935 review only Article Type: Protocol Date Submitted by the 15-Nov-2018 Author: Complete List of Authors: Dobler, Claudia; Mayo Clinic, Evidence-Based Practice Center, Robert D.
    [Show full text]
  • Chiral Separations by Capillary Electrophoresis and Related Techniques with Different Chiral Selectors: a Review
    K. Şarkaya et al. / Hacettepe J. Biol. & Chem., 2021, 49 (3), 253-303 Hacettepe Journal of Biology and Chemistry Review Article journal homepage: www.hjbc.hacettepe.edu.tr Chiral Separations by Capillary Electrophoresis and Related Techniques with Different Chiral Selectors: A Review Farklı Kiral Selektörler ile Kapiler Elektroforez ve İlgili Tekniklerle Kiral Ayrımlar: Bir Derleme Koray Şarkaya1 , Ilgım Göktürk2 , Fatma Yılmaz3 , Adil Denizli2* 1Pamukkale University, Department of Chemistry, Faculty of Science and Art, Denizli, Turkey. 2Department of Chemistry, Hacettepe University, Ankara, Turkey. 3Vocational School of Gerede, Department of Chemistry Technology, Bolu Abant Izzet Baysal University, Bolu, Turkey. ABSTRACT ecognition mechanism and enantiomerically separations of the chiral compounds are subjects that always stimulate Rthe great interest of researchers in pharmacology and natural sciences, who are interested in finding solutions for both analytical purity and preparative purposes. Capillary Electrophoresis has become one of the most important analytical approaches for enantiomeric separations due to its superior properties, such as high resolution and high efficiency of chiral selectors. In this field, where researchers continue to be interested, the distinctions continue to develop day by day, with the introduction of new techniques developed on the basis of Capillary Electrophoresis philosophy in parallel with the development process of technology, as well as the chiral selectors of many different forms. In this review, besides some descriptive theoretical information about capillary electrophoresis and the techniques associated with it, studies on chiral separations using different chiral selectors or different chiral additives, such as molecularly imprinted polymers, cyclodextrins, Metal-organic frameworks, ionic liquids, nanoparticles and monoliths in the last nearly 10 years (2010-2020) were examined.
    [Show full text]
  • Eradication of Bacterial Persisters with Antibiotic-Generated Hydroxyl Radicals
    Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals Sarah Schmidt Grant a,b,c,1, Benjamin B. Kaufmanna,c,d,1, Nikhilesh S. Chandd,e, Nathan Haseleya,d,f, and Deborah T. Hunga,b,c,d,2 aBroad Institute of MIT and Harvard, Cambridge, MA 02142; bDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02114; cDepartment of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114; dDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; eDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and fHarvard–MIT Division of Health Sciences and Technology, Cambridge, MA 02139 Edited by* Eric S. Lander, Broad Institute of MIT and Harvard, Cambridge, MA, and approved June 11, 2012 (received for review March 2, 2012) During Mycobacterium tuberculosis infection, a population of bac- terial cell numbers but do not sterilize the mouse (8). A plateau teria likely becomes refractory to antibiotic killing in the absence of is typically reached during which numbers of viable bacteria genotypic resistance, making treatment challenging. We describe stabilize. In addition to the mouse infection model, the inability an in vitro model capable of yielding a phenotypically antibi- to sterilize has been observed in the zebra fish (Mycobacterium otic-tolerant subpopulation of cells, often called persisters, within marinum), guinea pig (M. tuberculosis), and macrophage populations of Mycobacterium smegmatis and M. tuberculosis.We (M. tuberculosis) infection models (9–11). In vitro, the survival find that persisters are distinct from the larger antibiotic-suscepti- of a similar small subpopulation can also be observed when ble population, as a small drop in dissolved oxygen (DO) satura- a culture is exposed to high doses of antibiotics (12, 13).
    [Show full text]
  • Phenol-Soluble Modulins Modulate Persister Cell Formation In
    Phenol-Soluble Modulins Modulate Persister Cell Formation in Staphylococcus aureus Baldry, Mara; Bojer, Martin S; Najarzadeh, Zahra; Vestergaard, Martin; Meyer, Rikke Louise; Otzen, Daniel Erik; Ingmer, Hanne Published in: Frontiers in Microbiology DOI: 10.3389/fmicb.2020.573253 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Baldry, M., Bojer, M. S., Najarzadeh, Z., Vestergaard, M., Meyer, R. L., Otzen, D. E., & Ingmer, H. (2020). Phenol-Soluble Modulins Modulate Persister Cell Formation in Staphylococcus aureus. Frontiers in Microbiology, 11, 573253. https://doi.org/10.3389/fmicb.2020.573253 Download date: 23. sep.. 2021 ORIGINAL RESEARCH published: 09 November 2020 doi: 10.3389/fmicb.2020.573253 Phenol-Soluble Modulins Modulate Persister Cell Formation in Staphylococcus aureus Mara Baldry 1†, Martin S. Bojer 1, Zahra Najarzadeh 2, Martin Vestergaard 1, Rikke Louise Meyer 2, Daniel Erik Otzen 2 and Hanne Ingmer 1* 1Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark, 2Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark Edited by: Thomas Keith Wood, Pennsylvania State University (PSU), Staphylococcus aureus is a human pathogen that can cause chronic and recurrent United States infections and is recalcitrant to antibiotic chemotherapy. This trait is partly attributed to Reviewed by: Jie Feng, its ability to form persister cells, which are subpopulations of cells that are tolerant to lethal Lanzhou University Medical College, concentrations of antibiotics. Recently, we showed that the phenol-soluble modulins China (PSMs) expressed by S. aureus reduce persister cell formation.
    [Show full text]