Setophoma Spp. on Camellia Sinensis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Full Article in PDF Format
cryptogamie Mycologie 2019 ● 40 ● 7 Vittaliana mangrovei Devadatha, Nikita, A.Baghela & V.V.Sarma, gen. nov, sp. nov. (Phaeosphaeriaceae), from mangroves near Pondicherry (India), based on morphology and multigene phylogeny Bandarupalli DEVADATHA, Nikita MEHTA, Dhanushka N. WANASINGHE, Abhishek BAGHELA & V. Venkateswara SARMA art. 40 (7) — Published on 8 November 2019 www.cryptogamie.com/mycologie DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Bart BuyCk ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Étienne CAyEuX ([email protected]) MISE EN PAGE / PAGE LAYOUT : Étienne CAyEuX RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Slavomír AdAmčík Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, Sk-84523, Bratislava, Slovakia André APTROOT ABL Herbarium, G.v.d. Veenstraat 107, NL-3762 Xk Soest, The Netherlands Cony decock Mycothèque de l’université catholique de Louvain, Earth and Life Institute, Microbiology, université catholique de Louvain, Croix du Sud 3, B-1348 Louvain-la- Neuve, Belgium André FRAITURE Botanic Garden Meise, Domein van Bouchout, B-1860 Meise, Belgium kevin HYDE School of Science, Mae Fah Luang university, 333 M.1 T.Tasud Muang District - Chiang Rai 57100, Thailand Valérie HOFSTETTER Station de recherche Agroscope Changins-Wädenswil, Dépt. Protection des plantes, Mycologie, CH-1260 Nyon 1, Switzerland Sinang HONGSANAN College of life science and oceanography, ShenZhen university, 1068, Nanhai Avenue, Nanshan, ShenZhen 518055, China egon HorAk Schlossfeld 17, A-6020 Innsbruck, Austria Jing LUO Department of Plant Biology & Pathology, Rutgers university New Brunswick, NJ 08901, uSA ruvishika S. JAYAWARDENA Center of Excellence in Fungal Research, Mae Fah Luang university, 333 M. -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
Phylogeny and Morphology of Premilcurensis Gen
Phytotaxa 236 (1): 040–052 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.1.3 Phylogeny and morphology of Premilcurensis gen. nov. (Pleosporales) from stems of Senecio in Italy SAOWALUCK TIBPROMMA1,2,3,4,5, ITTHAYAKORN PROMPUTTHA6, RUNGTIWA PHOOKAMSAK1,2,3,4, SARANYAPHAT BOONMEE2, ERIO CAMPORESI7, JUN-BO YANG1,2, ALI H. BHAKALI8, ERIC H. C. MCKENZIE9 & KEVIN D. HYDE1,2,4,5,8 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 7A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand *Corresponding author: Dr. Itthayakorn Promputtha, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand. -
A Survey of Trunk Disease Pathogens Within Citrus Trees in Iran
plants Article A Survey of Trunk Disease Pathogens within Citrus Trees in Iran Nahid Espargham 1, Hamid Mohammadi 1,* and David Gramaje 2,* 1 Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran; [email protected] 2 Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, 26007 Logroño, Spain * Correspondence: [email protected] (H.M.); [email protected] (D.G.); Tel.: +98-34-3132-2682 (H.M.); +34-94-1899-4980 (D.G.) Received: 4 May 2020; Accepted: 12 June 2020; Published: 16 June 2020 Abstract: Citrus trees with cankers and dieback symptoms were observed in Bushehr (Bushehr province, Iran). Isolations were made from diseased cankers and branches. Recovered fungal isolates were identified using cultural and morphological characteristics, as well as comparisons of DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, translation elongation factor 1α, β-tubulin, and actin gene regions. Dothiorella viticola, Lasiodiplodia theobromae, Neoscytalidium hyalinum, Phaeoacremonium (P.) parasiticum, P. italicum, P. iranianum, P. rubrigenum, P. minimum, P. croatiense, P. fraxinopensylvanicum, Phaeoacremonium sp., Cadophora luteo-olivacea, Biscogniauxia (B.) mediterranea, Colletotrichum gloeosporioides, C. boninense, Peyronellaea (Pa.) pinodella, Stilbocrea (S.) walteri, and several isolates of Phoma, Pestalotiopsis, and Fusarium species were obtained from diseased trees. The pathogenicity tests were conducted by artificial inoculation of excised shoots of healthy acid lime trees (Citrus aurantifolia) under controlled conditions. Lasiodiplodia theobromae was the most virulent and caused the longest lesions within 40 days of inoculation. According to literature reviews, this is the first report of L. -
A Survey of Trunk Disease Pathogens Within Citrus Trees in Iran
plants Article A Survey of Trunk Disease Pathogens within Citrus Trees in Iran Nahid Esparham 1, Hamid Mohammadi 1,* and David Gramaje 2,* 1 Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran; [email protected] 2 Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, 26007 Logroño, Spain * Correspondence: [email protected] (H.M.); [email protected] (D.G.); Tel.: +98-34-3132-2682 (H.M.); +34-94-1899-4980 (D.G.) Received: 4 May 2020; Accepted: 12 June 2020; Published: 16 June 2020 Abstract: Citrus trees with cankers and dieback symptoms were observed in Bushehr (Bushehr province, Iran). Isolations were made from diseased cankers and branches. Recovered fungal isolates were identified using cultural and morphological characteristics, as well as comparisons of DNA sequence data of the nuclear ribosomal DNA-internal transcribed spacer region, translation elongation factor 1α, β-tubulin, and actin gene regions. Dothiorella viticola, Lasiodiplodia theobromae, Neoscytalidium hyalinum, Phaeoacremonium (P.) parasiticum, P. italicum, P. iranianum, P. rubrigenum, P. minimum, P. croatiense, P. fraxinopensylvanicum, Phaeoacremonium sp., Cadophora luteo-olivacea, Biscogniauxia (B.) mediterranea, Colletotrichum gloeosporioides, C. boninense, Peyronellaea (Pa.) pinodella, Stilbocrea (S.) walteri, and several isolates of Phoma, Pestalotiopsis, and Fusarium species were obtained from diseased trees. The pathogenicity tests were conducted by artificial inoculation of excised shoots of healthy acid lime trees (Citrus aurantifolia) under controlled conditions. Lasiodiplodia theobromae was the most virulent and caused the longest lesions within 40 days of inoculation. According to literature reviews, this is the first report of L. -
Genetic Diversity and Host Range of Powdery Mildews on Papaveraceae
Mycol Progress (2016) 15: 36 DOI 10.1007/s11557-016-1178-8 ORIGINAL ARTICLE Genetic diversity and host range of powdery mildews on Papaveraceae Katarína Pastirčáková1 & Tünde Jankovics2 & Judit Komáromi3 & Alexandra Pintye2 & Martin Pastirčák4 Received: 29 September 2015 /Revised: 19 February 2016 /Accepted: 23 February 2016 /Published online: 10 March 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Because of the strong morphological similarity of of papaveraceous hosts. Although E. macleayae occurred nat- the powdery mildew fungi that infect papaveraceous hosts, a urally on Macleaya cordata, Macleaya microcarpa, M. total of 39 samples were studied to reveal the phylogeny and cambrica,andChelidonium majus only, our inoculation tests host range of these fungi. ITS and 28S sequence analyses revealed that the fungus was capable of infecting Argemone revealed that the isolates identified earlier as Erysiphe grandiflora, Glaucium corniculatum, Papaver rhoeas, and cruciferarum on papaveraceous hosts represent distinct line- Papaver somniferum, indicating that these plant species may ages and differ from that of E. cruciferarum sensu stricto on also be taken into account as potential hosts. Erysiphe brassicaceous hosts. The taxonomic status of the anamorph cruciferarum originating from P. somniferum was not able to infecting Eschscholzia californica was revised, and therefore, infect A. grandiflora, C. majus, E. californica, M. cordata, a new species name, Erysiphe eschscholziae, is proposed. The and P. rhoeas. The emergence of E. macleayae on M. taxonomic position of the Pseudoidium anamorphs infecting microcarpa is reported here for the first time from the Glaucium flavum, Meconopsis cambrica, Papaver dubium, Czech Republic and Slovakia. The appearance of chasmothecia and Stylophorum diphyllum remain unclear. -
Genetic Diversity of Ampelomyces Mycoparasites Isolated from Different Powdery Mildew Species in China Inferred from Analyses of Rdna ITS Sequences
Fungal Diversity Genetic diversity of Ampelomyces mycoparasites isolated from different powdery mildew species in China inferred from analyses of rDNA ITS sequences Chen Liang1, Jiarong Yang2, Gábor M. Kovács3, Orsolya Szentiványi4, Baodu Li1, XiangMing Xu5 and Levente Kiss4∗ 1Plant Protection Department, Laiyang Agricultural College, Chunyang Road, Chengyang, Qingdao, 266109, Shandong Province, PR China 2Institute of Crop Protection, Northwest Sci-Tech University of Agriculture and Forestry, Yangling, Shaanxi Province, PR China 3Eötvös Loránd University, Department of Plant Anatomy, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary 4Plant Protection Institute of the Hungarian Academy of Sciences, H-1525 Budapest, PO Box 102, Hungary 5East Malling Research, East Malling, Kent, ME19 6BJ, UK Liang, C., Yang, J., Kovács, G.M., Szentiványi, O., Li, B., Xu, X.M. and Kiss, L. (2007). Genetic diversity of Ampelomyces mycoparasites isolated from different powdery mildew species in China inferred from analyses of rDNA ITS sequences. Fungal Diversity 24: 225- 240. Pycnidial fungi belonging to the genus Ampelomyces are common intracellular mycoparasites of the Erysiphaceae worldwide. As a part of a project which aimed to isolate and test potential biocontrol agents of powdery mildew infections of economically important crops in China, a total of 23 Ampelomyces isolates were obtained from many different species of the Erysiphaceae in five provinces of China. In addition, four new Ampelomyces isolates were obtained in Europe for this study. Mycoparasitic tests showed that all the 27 new isolates produced intracellular pycnidia in the conidiophores of Podosphaera xanthii and/or Golovinomyces orontii when these powdery mildew species were inoculated with conidial suspensions of the isolates. -
Freshwater Ascomycetes: Minutisphaera (Dothideomycetes) Revisited, Including One New Species from Japan
Mycologia, 105(4), 2013, pp. 959–976. DOI: 10.3852/12-313 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 Freshwater Ascomycetes: Minutisphaera (Dothideomycetes) revisited, including one new species from Japan Huzefa A. Raja1 likelihood and Bayesian analyses of combined 18S Nicholas H. Oberlies and 28S, and separate ITS sequences, as well as Mario Figueroa examination of morphology, we describe and illus- Department of Chemistry and Biochemistry, University trate a new species, M. japonica. One collection from of North Carolina at Greensboro, Greensboro, North North Carolina is confirmed as M. fimbriatispora, Carolina 27412 while two other collections are Minutisphaera-like Kazuaki Tanaka fungi that had a number of similar diagnostic Kazuyuki Hirayama morphological characters but differed only slightly Akira Hashimoto in ascospore sizes. The phylogeny inferred from the Faculty of Agriculture and Life Sciences, Hirosaki internal transcribed spacer region suggested that two University, Bunkyo-cho, Hiroskaki, Aomori 036-8561, out of the three North Carolina collections may be Japan novel and perhaps cryptic species within Minuti- Andrew N. Miller sphaera. Organic extracts of Minutisphaera from USA, Illinois Natural History Survey, University of Illinois, M. fimbriatispora (G155-1) and Minutisphaera-like Champaign, Illinois 61820 taxon (G156-1), revealed the presence of palmitic acid and (E)-hexadec-9-en-1-ol as major chemical Steven E. Zelski constituents. We discuss the placement of the Minuti- Carol A. Shearer sphaera -
Insights to Plant–Microbe Interactions Provide Opportunities to Improve Resistance Breeding Against Root Diseases in Grain Legumes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Organic Eprints Received: 31 December 2017 Revised: 26 March 2018 Accepted: 27 March 2018 DOI: 10.1111/pce.13214 REVIEW Insights to plant–microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes Lukas Wille1,2 | Monika M. Messmer1 | Bruno Studer2 | Pierre Hohmann1 1 Department of Crop Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Abstract Frick, Switzerland Root and foot diseases severely impede grain legume cultivation worldwide. Breeding 2 Molecular Plant Breeding, Institute of lines with resistance against individual pathogens exist, but these resistances are Agricultural Sciences, ETH Zürich, 8092 Zurich, Switzerland often overcome by the interaction of multiple pathogens in field situations. Novel Correspondence tools allow to decipher plant–microbiome interactions in unprecedented detail and Pierre Hohmann, Department of Crop provide insights into resistance mechanisms that consider both simultaneous attacks Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland. of various pathogens and the interplay with beneficial microbes. Although it has Email: [email protected] become clear that plant‐associated microbes play a key role in plant health, a system- atic picture of how and to what extent plants can shape their own detrimental or Funding information Project “resPEAct”, World Food System Cen- beneficial microbiome remains to be drawn. There is increasing evidence for the exis- ter and Mercator Foundation Switzerland; tence of genetic variation in the regulation of plant–microbe interactions that can be Project LIVESEED, Horizon 2020 Societal Challenges, Grant/Award Number: 727230; exploited by plant breeders. -
Cladosporium Epichloës, a Rare European Fungus, with Notes on Other Fungicolous Species*
Polish Botanical Journal 55(2): 359–371, 2010 CLADOSPORIUM EPICHLOËS, A RARE EUROPEAN FUNGUS, WITH NOTES ON OTHER FUNGICOLOUS SPECIES* MAŁGORZATA RUSZKIEWICZ-MICHALSKA Abstract. Cladosporium epichloës Lobik, associated with Epichloë typhina (Pers.) Tul. & C. Tul. and known from three records worldwide, is reported from Poland for the fi rst time. The morphology and distribution data of this species as well as the fi rst records of Cladosporium uredinicola Speg. and Phoma glomerata (Corda) Wollenw. & Hochapfel as parasites of powdery mil- dews in Poland are presented. Information concerning specimens of fi ve other hyperparasitic species deposited in Herbarium Universitatis Lodziensis (LOD) is provided. Key words: Cladosporium, Phoma glomerata, Sphaerellopsis fi lum, Ampelomyces, Tuberculina, hyperparasite, fungicolous fungi, chorology, Poland Małgorzata Ruszkiewicz-Michalska, Department of Mycology, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland; e-mail: [email protected] INTRODUCTION The term ‘fungicolous fungi’ covers species that spores via appresorium-like structures (Płachecka occur on other fungi as parasites, commensals or 2005 and literature cited therein). saprobionts (Kirk et al. 2008). The nature of the A reliable estimate of the number of fungi- interfungal relationships is not always clear, es- colous species is not available (Kirk et al. 2008). pecially for intimate mycoparasitic interactions Hawksworth (1981), however, traced 1100 an- (Jeffries & Young 1994). Opinions on the type of amorphic species recorded on other species of relations of particular species with their mycohosts fungi. Fungicolous fungi include members of all vary considerably. The status of the mycoparasite higher taxa of true fungi (Chytridiomycota, Zygo- Ampelomyces quisqualis Ces., considered to be mycota, Ascomycota including anamorphic taxa, an intracellular necrotroph vs. -
Taxonomic and Phylogenetic Placement of Nodulosphaeria
Mycol Progress (2016) 15:34 DOI 10.1007/s11557-016-1176-x ORIGINAL ARTICLE Taxonomic and phylogenetic placement of Nodulosphaeria Ausana Mapook1,2,4,5 & Saranyaphat Boonmee 5 & Hiran A. Ariyawansa4,5,9 & Saowaluck Tibpromma4,5 & Erio Campesori6,7,8 & E. B. Gareth Jones3 & Ali H. Bahkali3 & K. D. Hyde1,2,3,5 Received: 27 August 2015 /Revised: 15 February 2016 /Accepted: 17 February 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Nodulosphaeria is a ubiquitous genus that com- the family Phaeosphaeriaceae as a distinct genus. The sexual prises saprobic, endophytic and pathogenic species associated morphs of Nodulosphaeria hirta and N. spectabilis are de- with a wide variety of substrates and has 64 species epithets scribed and illustrated using modern concepts. Two new listed in Index Fungorum. The classification of species in the Nodulosphaeria species are introduced. The phylogenetic re- genus has been a major challenge due to a lack of understand- lationships and taxonomy of the genus Nodulosphaeria are ing of the importance of characters used to distinguish taxa, as discussed, but further sampling with fresh collections, refer- well as the lack of reference strains. The present study clarifies ence or ex-type strains and molecular data are needed to obtain the phylogenetic placement of the genus and related species, a better and natural classification for the genus. using fresh collections from Italy. Four Nodulosphaeria spe- cies are characterized based on multi-loci analyses of ITS, LSU, SSU, TEF and RPB2 sequence datasets. Phylogenetic Keywords Dothideomycetes . Phaeosphaeriaceae . analyses indicate that Nodulosphaeria species group within Phylogeny . Taxonomy Section Editor: Franz Oberwinkler * K. -
Microfungi Associated with Camellia Sinensis: a Case Study of Leaf and Shoot Necrosis on Tea in Fujian, China
Mycosphere 12(1): 430–518 (2021) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/12/1/6 Microfungi associated with Camellia sinensis: A case study of leaf and shoot necrosis on Tea in Fujian, China Manawasinghe IS1,2,4, Jayawardena RS2, Li HL3, Zhou YY1, Zhang W1, Phillips AJL5, Wanasinghe DN6, Dissanayake AJ7, Li XH1, Li YH1, Hyde KD2,4 and Yan JY1* 1Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Tha iland 3 Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an 355015, People’s Republic of China 4Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People’s Republic of China 5Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749–016 Lisbon, Portugal 6 CAS, Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 7School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China Manawasinghe IS, Jayawardena RS, Li HL, Zhou YY, Zhang W, Phillips AJL, Wanasinghe DN, Dissanayake AJ, Li XH, Li YH, Hyde KD, Yan JY 2021 – Microfungi associated with Camellia sinensis: A case study of leaf and shoot necrosis on Tea in Fujian, China. Mycosphere 12(1), 430– 518, Doi 10.5943/mycosphere/12/1/6 Abstract Camellia sinensis, commonly known as tea, is one of the most economically important crops in China.