Careers & Opensource
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Communications of the Acm
COMMUNICATIONS CACM.ACM.ORG OF THEACM 11/2014 VOL.57 NO.11 Scene Understanding by Labeling Pixels Evolution of the Product Manager The Data on Diversity On Facebook, Most Ties Are Weak Keeping Online Reviews Honest Association for Computing Machinery tvx-full-page.pdf-newest.pdf 1 11/10/2013 12:03 3-5 JUNE, 2015 BRUSSELS, BELGIUM Course and Workshop C proposals by M 15 November 2014 Y CM Paper Submissions by MY 12 January 2015 CY CMY K Work in Progress, Demos, DC, & Industrial Submissions by 2 March 2015 Welcoming Submissions on Content Production Systems & Infrastructures Devices & Interaction Techniques Experience Design & Evaluation Media Studies Data Science & Recommendations Business Models & Marketing Innovative Concepts & Media Art TVX2015.COM [email protected] ACM Books M MORGAN& CLAYPOOL &C PUBLISHERS Publish your next book in the ACM Digital Library ACM Books is a new series of advanced level books for the computer science community, published by ACM in collaboration with Morgan & Claypool Publishers. I’m pleased that ACM Books is directed by a volunteer organization headed by a dynamic, informed, energetic, visionary Editor-in-Chief (Tamer Özsu), working closely with a forward-looking publisher (Morgan and Claypool). —Richard Snodgrass, University of Arizona books.acm.org ACM Books ◆ will include books from across the entire spectrum of computer science subject matter and will appeal to computing practitioners, researchers, educators, and students. ◆ will publish graduate level texts; research monographs/overviews of established and emerging fields; practitioner-level professional books; and books devoted to the history and social impact of computing. ◆ will be quickly and attractively published as ebooks and print volumes at affordable prices, and widely distributed in both print and digital formats through booksellers and to libraries and individual ACM members via the ACM Digital Library platform. -
Also Includes Slides and Contents From
The Compilation Toolchain Cross-Compilation for Embedded Systems Prof. Andrea Marongiu ([email protected]) Toolchain The toolchain is a set of development tools used in association with source code or binaries generated from the source code • Enables development in a programming language (e.g., C/C++) • It is used for a lot of operations such as a) Compilation b) Preparing Libraries Most common toolchain is the c) Reading a binary file (or part of it) GNU toolchain which is part of d) Debugging the GNU project • Normally it contains a) Compiler : Generate object files from source code files b) Linker: Link object files together to build a binary file c) Library Archiver: To group a set of object files into a library file d) Debugger: To debug the binary file while running e) And other tools The GNU Toolchain GNU (GNU’s Not Unix) The GNU toolchain has played a vital role in the development of the Linux kernel, BSD, and software for embedded systems. The GNU project produced a set of programming tools. Parts of the toolchain we will use are: -gcc: (GNU Compiler Collection): suite of compilers for many programming languages -binutils: Suite of tools including linker (ld), assembler (gas) -gdb: Code debugging tool -libc: Subset of standard C library (assuming a C compiler). -bash: free Unix shell (Bourne-again shell). Default shell on GNU/Linux systems and Mac OSX. Also ported to Microsoft Windows. -make: automation tool for compilation and build Program development tools The process of converting source code to an executable binary image requires several steps, each with its own tool. -
Riscv-Software-Stack-Tutorial-Hpca2015
Software Tools Bootcamp RISC-V ISA Tutorial — HPCA-21 08 February 2015 Albert Ou UC Berkeley [email protected] Preliminaries To follow along, download these slides at http://riscv.org/tutorial-hpca2015.html 2 Preliminaries . Shell commands are prefixed by a “$” prompt. Due to time constraints, we will not be building everything from source in real-time. - Binaries have been prepared for you in the VM image. - Detailed build steps are documented here for completeness but are not necessary if using the VM. Interactive portions of this tutorial are denoted with: $ echo 'Hello world' . Also as a reminder, these slides are marked with an icon in the upper-right corner: 3 Software Stack . Many possible combinations (and growing) . But here we will focus on the most common workflows for RISC-V software development 4 Agenda 1. riscv-tools infrastructure 2. First Steps 3. Spike + Proxy Kernel 4. QEMU + Linux 5. Advanced Cross-Compiling 6. Yocto/OpenEmbedded 5 riscv-tools — Overview “Meta-repository” with Git submodules for every stable component of the RISC-V software toolchain Submodule Contents riscv-fesvr RISC-V Frontend Server riscv-isa-sim Functional ISA simulator (“Spike”) riscv-qemu Higher-performance ISA simulator riscv-gnu-toolchain binutils, gcc, newlib, glibc, Linux UAPI headers riscv-llvm LLVM, riscv-clang submodule riscv-pk RISC-V Proxy Kernel (riscv-linux) Linux/RISC-V kernel port riscv-tests ISA assembly tests, benchmark suite All listed submodules are hosted under the riscv GitHub organization: https://github.com/riscv 6 riscv-tools — Installation . Build riscv-gnu-toolchain (riscv*-*-elf / newlib target), riscv-fesvr, riscv-isa-sim, and riscv-pk: (pre-installed in VM) $ git clone https://github.com/riscv/riscv-tools $ cd riscv-tools $ git submodule update --init --recursive $ export RISCV=<installation path> $ export PATH=${PATH}:${RISCV}/bin $ ./build.sh . -
Operating Systems and Applications for Embedded Systems >>> Toolchains
>>> Operating Systems And Applications For Embedded Systems >>> Toolchains Name: Mariusz Naumowicz Date: 31 sierpnia 2018 [~]$ _ [1/19] >>> Plan 1. Toolchain Toolchain Main component of GNU toolchain C library Finding a toolchain 2. crosstool-NG crosstool-NG Installing Anatomy of a toolchain Information about cross-compiler Configruation Most interesting features Sysroot Other tools POSIX functions AP [~]$ _ [2/19] >>> Toolchain A toolchain is the set of tools that compiles source code into executables that can run on your target device, and includes a compiler, a linker, and run-time libraries. [1. Toolchain]$ _ [3/19] >>> Main component of GNU toolchain * Binutils: A set of binary utilities including the assembler, and the linker, ld. It is available at http://www.gnu.org/software/binutils/. * GNU Compiler Collection (GCC): These are the compilers for C and other languages which, depending on the version of GCC, include C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go. They all use a common back-end which produces assembler code which is fed to the GNU assembler. It is available at http://gcc.gnu.org/. * C library: A standardized API based on the POSIX specification which is the principle interface to the operating system kernel from applications. There are several C libraries to consider, see the following section. [1. Toolchain]$ _ [4/19] >>> C library * glibc: Available at http://www.gnu.org/software/libc. It is the standard GNU C library. It is big and, until recently, not very configurable, but it is the most complete implementation of the POSIX API. * eglibc: Available at http://www.eglibc.org/home. -
A.5.1. Linux Programming and the GNU Toolchain
Making the Transition to Linux A Guide to the Linux Command Line Interface for Students Joshua Glatt Making the Transition to Linux: A Guide to the Linux Command Line Interface for Students Joshua Glatt Copyright © 2008 Joshua Glatt Revision History Revision 1.31 14 Sept 2008 jg Various small but useful changes, preparing to revise section on vi Revision 1.30 10 Sept 2008 jg Revised further reading and suggestions, other revisions Revision 1.20 27 Aug 2008 jg Revised first chapter, other revisions Revision 1.10 20 Aug 2008 jg First major revision Revision 1.00 11 Aug 2008 jg First official release (w00t) Revision 0.95 06 Aug 2008 jg Second beta release Revision 0.90 01 Aug 2008 jg First beta release License This document is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License [http:// creativecommons.org/licenses/by-nc-sa/3.0/us/]. Legal Notice This document is distributed in the hope that it will be useful, but it is provided “as is” without express or implied warranty of any kind; without even the implied warranties of merchantability or fitness for a particular purpose. Although the author makes every effort to make this document as complete and as accurate as possible, the author assumes no responsibility for errors or omissions, nor does the author assume any liability whatsoever for incidental or consequential damages in connection with or arising out of the use of the information contained in this document. The author provides links to external websites for informational purposes only and is not responsible for the content of those websites. -
The Strange Birth and Long Life of Unix - IEEE Spectrum Page 1 of 6
The Strange Birth and Long Life of Unix - IEEE Spectrum Page 1 of 6 COMPUTING / SOFTWARE FEATURE The Strange Birth and Long Life of Unix The classic operating system turns 40, and its progeny abound By WARREN TOOMEY / DECEMBER 2011 They say that when one door closes on you, another opens. People generally offer this bit of wisdom just to lend some solace after a misfortune. But sometimes it's actually true. It certainly was for Ken Thompson and the late Dennis Ritchie, two of the greats of 20th-century information technology, when they created the Unix operating system, now considered one of the most inspiring and influential pieces of software ever written. A door had slammed shut for Thompson and Ritchie in March of 1969, when their employer, the American Telephone & Telegraph Co., withdrew from a collaborative project with the Photo: Alcatel-Lucent Massachusetts Institute of KEY FIGURES: Ken Thompson [seated] types as Dennis Ritchie looks on in 1972, shortly Technology and General Electric after they and their Bell Labs colleagues invented Unix. to create an interactive time- sharing system called Multics, which stood for "Multiplexed Information and Computing Service." Time-sharing, a technique that lets multiple people use a single computer simultaneously, had been invented only a decade earlier. Multics was to combine time-sharing with other technological advances of the era, allowing users to phone a computer from remote terminals and then read e -mail, edit documents, run calculations, and so forth. It was to be a great leap forward from the way computers were mostly being used, with people tediously preparing and submitting batch jobs on punch cards to be run one by one. -
The Strange Birth and Long Life of Unix - IEEE Spectrum
The Strange Birth and Long Life of Unix - IEEE Spectrum http://spectrum.ieee.org/computing/software/the-strange-birth-and-long-li... COMPUTING / SOFTWARE FEATURE The Strange Birth and Long Life of Unix The classic operating system turns 40, and its progeny abound By WARREN TOOMEY / DECEMBER 2011 They say that when one door closes on you, another opens. People generally offer this bit of wisdom just to lend some solace after a misfortune. But sometimes it's actually true. It certainly was for Ken Thompson and the late Dennis Ritchie, two of the greats of 20th-century information technology, when they created the Unix operating system, now considered one of the most inspiring and influential pieces of software ever written. A door had slammed shut for Thompson and Ritchie in March of 1969, when their employer, the American Telephone & Telegraph Co., withdrew from a collaborative project with the Photo: Alcatel-Lucent Massachusetts Institute of KEY FIGURES: Ken Thompson [seated] types as Dennis Ritchie looks on in 1972, shortly Technology and General Electric after they and their Bell Labs colleagues invented Unix. to create an interactive time-sharing system called Multics, which stood for "Multiplexed Information and Computing Service." Time-sharing, a technique that lets multiple people use a single computer simultaneously, had been invented only a decade earlier. Multics was to combine time-sharing with other technological advances of the era, allowing users to phone a computer from remote terminals and then read e-mail, edit documents, run calculations, and so forth. It was to be a great leap forward from the way computers were mostly being used, with people tediously preparing and submitting batch jobs on punch cards to be run one by one. -
Debian Med Integrated Software Environment for All Medical Purposes Based on Debian GNU/Linux
Debian Med Integrated software environment for all medical purposes based on Debian GNU/Linux Andreas Tille Debian OSWC, Malaga 2008 1 / 18 Structure 1 What is Debian Med 2 Realisation 3 Debian Med for service providers 2 / 18 Motivation Free Software in medicine not widely established yet Some subareas well covered Medical data processing more than just practice and patient management Preclinical research of microbiology and genetics as well as medical imaging ! Pool of existing free medical software 3 / 18 Profile of the envisaged user Focus on medicine not computers Unreasonable effort to install upstream programs No interest in administration Interest reduced onto free medical software Easy usage Security and confidence Native-language documentation and interface 4 / 18 Customising Debian Debian > 20000 packages Focus on medical subset of those packages Packaging and integrating other medical software Easy installation and configuration Maintaining a general infrastructure for medical users General overview about free medical software Propagate the idea of Free Software in medicine Completely integrated into Debian - no fork 5 / 18 Special applications 6 / 18 Basic ideas Do not make a separate distribution but make Debian fit for medical care No development of medical software - just smooth integration of third-party software Debian-Developer = missing link between upstream author and user 7 / 18 Debian - adaptable for any purpose? Developed by more than 1000 volunteers Flexible, not bound on commercial interest Strict rules (policy) glue all things together Common interest of each individual developer: Get the best operating system for himself. Some developers work in the field of medicine In contrast to employees of companies every single Debian developer has the freedom and ability to realize his vision Every developer is able to influence the development of Debian - he just has to do it. -
Lecture 10: File Systems File Systems, Databases, Cloud Storage
Lecture 10: File systems File systems, databases, cloud storage • file: a sequence of bytes stored on a computer – content is arbitrary (just bytes); any structure is imposed by the creator of the file, not by the operating system • file system: software that provides hierarchical storage and organization of files, usually on a single computer (or nearby) – a significant part of the operating system • database: an integrated collection of logically related records – data is organized and structured for efficient systematic access – may be distributed across lots of machines & geographically dispersed • database system: software that provides efficient access to information in a database – not usually part of the operating system • cloud storage: the same thing, but on someone else's computer(s) File systems: managing stored information • logical structure: users and programs see a hierarchy of folders (or directories) and files – a folder contains references to folder and files – "root" folder ultimately leads to all others – a file is just a sequence of bytes contents determined and interpreted by programs, not the operating system – a folder is a special file that contains names of other folders & files plus other information like size, time of change, etc. contents are completely controlled by the operating system • physical structure: disk drives operate in tracks, sectors, etc. – other storage devices have other physical properties • the operating system converts between these two views – does whatever is necessary to maintain the file/folder -
Annual Report
[Credits] Licensed under Creative Commons Attribution license (CC BY 4.0). All text by John Hsieh and Georgia Young, except the Letter from the Executive Director, which is by John Sullivan. Images (name, license, and page location): Wouter Velhelst: cover image; Kori Feener, CC BY-SA 4.0: inside front cover, 2-4, 8, 14-15, 20-21, 23-25, 27-29, 32-33, 36, 40-41; Michele Kowal: 5; Anonymous, CC BY 3.0: 7, 16, 17; Ruben Rodriguez, CC BY-SA 4.0: 10, 13, 34-35; Anonymous, All rights reserved: 16 (top left); Pablo Marinero & Cecilia e. Camero, CC BY 3.0: 17; Free This report highlights activities Software Foundation, CC BY-SA 4.0: 18-19; Tracey Hughes, CC BY-SA 4.0: 30; Jose Cleto Hernandez Munoz, CC BY-SA 3.0: 31, Pixabay/stevepb, CC0: 37. and detailed financials for Fiscal Year 2016 Fonts: Letter Gothic by Roger Roberson; Orator by John Scheppler; Oswald by (October 1, 2015 - September 30, 2016) Vernon Adams, under the OFL; Seravek by Eric Olson; Jura by Daniel Johnson. Created using Inkscape, GIMP, and PDFsam. Designer: Tammy from Creative Joe. 1] LETTER FROM THE EXECUTIVE DIRECTOR 2] OUR MISSION 3] TECH 4] CAMPAIGNS 5] LIBREPLANET 2016 6] LICENSING & COMPLIANCE 7] CONFERENCES & EVENTS 7 8] LEADERSHIP & STAFF [CONTENTS] 9] FINANCIALS 9 10] OUR DONORS CONTENTS our most important [1] measure of success is support for the ideals of LETTER FROM free software... THE EXECUTIVE we have momentum DIRECTOR on our side. LETTER FROM THE 2016 EXECUTIVE DIRECTOR DEAR SUPPORTERS For almost 32 years, the FSF has inspired people around the Charity Navigator gave the FSF its highest rating — four stars — world to be passionate about computer user freedom as an ethical with an overall score of 99.57/100 and a perfect 100 in the issue, and provided vital tools to make the world a better place. -
GNU Toolchain for Atmel ARM Embedded Processors
RELEASE NOTES GNU Toolchain for Atmel ARM Embedded Processors Introduction The Atmel ARM GNU Toolchain (5.3.1.487) supports Atmel ARM® devices. The ARM toolchain is based on the free and open-source GCC. This toolchain is built from sources published by ARM's "GNU Tools for ARM Embedded Processors" project at launchpad.net (https://launchpad.net/gcc-arm-embedded). The toolchain includes compiler, assembler, linker, binutils (GCC and binutils), GNU Debugger (GDB with builtin simulator) and Standard C library (newlib, newlib nano). 42368A-MCU-06/2016 Table of Contents Introduction .................................................................................... 1 1. Supported Configuration ......................................................... 3 1.1. Supported Hosts ................................................................... 3 1.2. Supported Targets ................................................................. 3 2. Downloading, Installing, and Upgrading ................................. 4 2.1. Downloading/Installing on Windows .......................................... 4 2.2. Downloading/Installing on Linux ............................................... 4 2.3. Downloading/Installing on Mac OS ........................................... 4 2.4. Upgrading ............................................................................ 4 3. Layout and Components ......................................................... 5 3.1. Layout ................................................................................. 5 3.2. Components -
Unix and Shell Programming
UNIX AND SHELL PROGRAMMING OBJECTIVE: UNIX – Born in the dark and somber portals of Bell Labs, it was a dream that one man nurtured and cherished. Like a parent, he reared the infant with compassion and zeal. And as the fledgling grew and spread its wings, it caught the attention of the world. This chapter will explore through the basics of UNIX, along with certain commands which itself are categorized accordingly. The File System and Some File Handling Commands: The file system is one of the its simplest and it lets users not to access files not belonging to them, You will be learning about categorization of files, the significance of HOME directory, mkdir, rmdir, and absolute, relative path name. Kenneth T. Moras 8/21/2007 BRIEF HISTORY 1966 The Multiplexed Time Sharing and Computing System or MULTICS project was a joint attempt by General Electric (GE), AT&T Bell Labs and the Massachusetts Institute of Technology (MIT) at developing a stable multiuser operating system The aim is to create an operating system that could support a lot of simultaneous users (thousands!). Multics stands for Multiplexed Information and Computer service. Left Ken Thompson, Right Dennis Ritchie The people involved in the project at this time are Ken Thompson, Dennis Ritchie, Joseph Ossanna, Stuart Feldman, Doug McIIroy and Bob Morris. Although a very simple version of MULTICS could now run on a GE645 computer, it could only support 3 people and therefore the original goals of this operating system had not been met, the research and development is just so expensive and Bell Labs withdraws their sponsorship.