(Pahs) and to Emphasize the Human Health Effects That May Result from Exposure to Them
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reactivity and Functionalization of Naphthalene and Anthracene Complexes of {Tpw(NO)(Pme3)}
Reactivity and Functionalization of Naphthalene and Anthracene Complexes of {TpW(NO)(PMe3)} Laura Jessica Strausberg Baltimore, Maryland B.A., Hollins University, 2008 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Chemistry University of Virginia July, 2013 ii Abstract Chapter 1 introduces the organic chemistry of aromatic hydrocarbons, with attention paid to regiochemical outcomes of organic reactions. The binding of naphthalene and anthracene to metal complexes is discussed, along with organic transformations they undergo as a result of their complexation. The previous work on osmium and rhenium complexes of naphthalene from the Harman group is explored. Finally, some spectroscopic techniques for exploring the chemistry of {TpW(NO)(PMe3)} complexes of naphthalene and anthracene are introduced. Chapter 2 discusses the highly distorted allyl complexes formed from {TpW(NO)(PMe3)} and the exploration of their origin. Attempts at stereoselectively deprotonating these cationic complexes is also discussed. 2 Chapter 3 describes our study of TpW(NO)(PMe3)(3,4-η -naphthalene)’s ability to undergo a Diels-Alder reaction with N-methylmaleimide. A solvent study suggested that this reaction proceeds by a concerted mechanism. To probe the mechanism further, we synthesized a series of methylated and methoxylated naphthalene complexes and measured their rates of reaction with N-methylmaleimide compared to the parent complex. We found that 1- substitution on the naphthalene increased the rate of cycloaddition, even if the substituent was in the unbound ring, while 2-substitution slowed the reaction rate when in the bound ring. This information is consistent with a concerted mechanism, as a 2-substituted product would be less able to isomerize to form the active isomer for the cycloaddition to occur. -
Crystal Structure of Methyl 10-(Pyridin-4-Yl)-Anthracene-9
Z. Kristallogr. NCS 2018; 233(3): 441–443 Xiang Huang and Da-Bin Shi* Crystal structure of methyl 10-(pyridin-4-yl)- anthracene-9-carboxylate, C21H15NO2 Table 1: Data collection and handling. Crystal: Block, colorless Size: 0.30 × 0.20 × 0.10 mm Wavelength: Mo Kα radiation (0.71073 Å) µ: 0.09 mm−1 Diffractometer, scan mode: Bruker SMART, φ and ω-scans θmax, completeness: 27.6°, >99% N(hkl)measured, N(hkl)unique, Rint: 9199, 3516, 0.027 Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2700 N(param)refined: 218 Programs: Bruker programs [1], SHELX [2, 3] before stirring for 2 h at 65 °C. Crude 10-bromo-anthracene- 9-carboxylic acid was precipitated by adding the acetic acid solution to 800 mL of ice/water slush, followed by suc- https://doi.org/10.1515/ncrs-2017-0334 tion filtration. The residue on the filter was dissolved in Received October 31, 2017; accepted February 20, 2018; available 500 mL of a 5% aquaeus solution of K2CO3 followed by online March 6, 2018 gravity filtration to remove undissolved side products such as 9,10-dibromoanthracene. The filtrate was acidified with Abstract concentrated HCl to precipitate crude 10-bromo-anthracene- Aba a = C21H15NO2, orthorhombic, 2 (no. 41), 22.149(2) Å, 9-carboxylic acid, which was recrystallized from 100 mL b = c = V = 3 Z = 13.2899(12) Å, 10.6679(10) Å, 3140.2(5) Å , 8, ethanol to yield 5.76 g of yellow needles. R F = wR F2 = T = gt( ) 0.0418, ref( ) 0.0953, 296(2) K. -
Mild Synthesis of Perylene Tetracarboxylic Monoanhydrides with Potential Applications in Organic Optoelectronics
City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 5-2019 Mild Synthesis of Perylene Tetracarboxylic Monoanhydrides with Potential Applications in Organic Optoelectronics Xizhe Zhao The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/3258 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Mild Synthesis of Perylene Tetracarboxylic Monoanhydrides with Potential Applications in Organic Optoelectronics By Xizhe Zhao A dissertation submitted to the Graduate Faculty in Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy The City University of New York. 2019 © 2019 Xizhe Zhao All Rights Reserved ii Mild Synthesis of Perylene Tetracarboxylic Monoanhydrides with Potential Applications in Organic Optoelectronics by Xizhe Zhao This manuscript has been read and accepted for the Graduate Faculty in Chemistry in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. 04/29/19 Prof. Shi Jin _________________________ __________________________________________________ Date Chair of Examining Committee 04/29/19 Prof. Brian R. Gibney _________________________ __________________________________________________ Date Executive Officer Supervisory Committee: Prof. Krishnaswami Raja Prof. Sanjai Kumar Pathak THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT Mild Synthesis of Perylene Tetracarboxylic Monoanhydrides with Potential Applications in Organic Optoelectronics By Xizhe Zhao Advisor: Professor Shi Jin Perylene tetracarboxylic derivatives are considered good n-type semi-conductors. In past decades, there has been extensive study on their synthesis and electronic properties. -
Polycyclic Aromatic Hydrocarbon Structure Index
NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type. -
Construction of Novel Molecular Architectures from Anthracene Units and Acetylene Linkers*
Pure Appl. Chem., Vol. 84, No. 4, pp. 917–929, 2012. http://dx.doi.org/10.1351/PAC-CON-11-09-07 © 2012 IUPAC, Publication date (Web): 9 February 2012 Construction of novel molecular architectures from anthracene units and acetylene linkers* Shinji Toyota‡ Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan Abstract: To create novel π-conjugated compounds, we constructed various molecular archi- tectures from anthracene units and acetylene linkers. Several cyclic oligomers ranging from dimers to dodecamers were synthesized by macrocyclization of acyclic precursors with metal-catalyzed coupling reactions. The structures, dynamic behavior, and spectroscopic fea- tures were greatly influenced by the number of anthracene units and the combination of building units and linkers. Optically active and circular dichroism (CD)-active enantiomers of some chiral cyclic oligomers were resolved by chiral high-performance liquid chromato - graphy (HPLC). Conformational analysis of hexamers and higher oligomers was performed with the aid of density functional theory (DFT) calculations. Acyclic oligomers underwent reversible folding–unfolding processes via photochemical and thermal reactions. These results suggest that transannular π–π interactions between anthracene units are important fac- tors in controlling the structural and spectroscopic properties and functions of π-conjugated compounds. The scope and perspectives of this molecular design are discussed on the basis of previous studies. Keywords: aromatic compounds; alkynes; π–π interactions; stereochemistry; structure. INTRODUCTION In the chemistry of aromatic compounds, oligomeric structures consisting of simple repeating units are fascinating motifs for the creation of new compounds. The merits of this molecular design are the acces- sibility to a large number of compounds from simple building units as well as the ease of tuning elec- tronic properties by structural modifications. -
Basis for Listing Hazardous Waste
NEBRASKA ADMINISTRATIVE CODE Title 128 - Department of Environmental Quality Appendix II - BASIS FOR LISTING HAZARDOUS WASTE EPA Hazardous Hazardous Constituents For Which Listed Waste No. F001 Tetrachloroethylene; methylene chloride; trichloroethylene; 1,1,1-trichloroethane; carbon tetrachloride; chlorinated fluorocarbons. F002 Tetrachloroethylene; methylene chloride; trichloroethylene; 1,1,1-trichloroethane; 1,1,2-trichloroethane; chlorobenzene; 1,1,2-trichloro-1,2,2-trichfluoroethane; ortho- dichlorobenzene; trichlorofluoromethane. F003 N.A. F004 Cresols and cresylic acid, nitrobenzene. F005 Toluene, methyl ethyl ketone, carbon disulfide, isobutanol, pyridine, 2-ethoxyethanol, benzene, 2-nitropropane. F006 Cadmium, hexavalent chromium, nickel, cyanide (complexed). F007 Cyanide (salts). F008 Cyanide (salts). F009 Cyanide (salts). F010 Cyanide (salts). F011 Cyanide (salts). F012 Cyanide (complexed). F019 Hexavalent chromium, cyanide (complexed). F020 Tetra- and pentachlorodibenzo-p-dioxins; tetra- and pentachlorodibenzofurans; tri- and tetrachlorophenols and their chlorophenoxy derivative acids, esters, ethers, amine and other salts. Effective Date: 01/03/07 II-1 Title 128 Appendix II EPA Hazardous Hazardous Constituents For Which Listed Waste No. F021 Penta- and hexachlorodibenzo-p-dioxins; penta- and hexachlorodibenzofurans; pentachlorophenol and its derivatives. F022 Tetra-, penta-, and hexachlorodibenzo-p-dioxins; tetra-, penta-, and hexachlorodibenzofurans. F023 Tetra-, and pentachlorodibenzo-p-dioxins; tetra- and pentachlorodibenzofurans; -
Radical-Radical Reactions, Pyrene Nucleation, and Incipient Soot
Available online at www.sciencedirect.com Proceedings of the Combustion Institute 36 (2017) 799–806 www.elsevier.com/locate/proci Radical–radical reactions, pyrene nucleation, and incipient soot formation in combustion a b b K. Olof Johansson , Tyler Dillstrom , Paolo Elvati , a a c ,d Matthew F. Campbell , Paul E. Schrader , Denisia M. Popolan-Vaida , c c b ,e Nicole K. Richards-Henderson , Kevin R. Wilson , Angela Violi , a , ∗ Hope A. Michelsen a Combustion Research Facility, Sandia National Laboratories, P. O. Box 969, MS 9055, Livermore, CA 94551, USA b Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA c Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA d Department of Chemistry, University of California, Berkeley, CA 94720, USA e Departments of Chemical Engineering, Biomedical Engineering, Macromolecular Science and Engineering, Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA Received 3 December 2015; accepted 31 July 2016 Available online 12 October 2016 Abstract We present a combined experimental and probabilistic simulation study of soot-precursor. The experi- ments were conducted using aerosol mass spectrometry coupled with tunable vacuum ultraviolet radiation from the Advanced Light Source at Lawrence Berkeley National Laboratory. Mass spectra and photoion- ization efficiency (PIE) curves of soot precursor species were measured at different heights in a premixed flat flame and in a counter-flow diffusion flame fueled by ethylene and oxygen. The PIE curves at the pyrene mass from these flames were compared with reference PIE scans recorded for pyrene. The results demonstrate that other C 16 H 10 isomers than pyrene are major components among species condensed onto incipient soot in this study, which is in agreement with the simulations. -
Highly Soluble Monoamino-Substituted Perylene Tetracarboxylic Dianhydrides: Synthesis, Optical and Electrochemical Properties
Int. J. Mol. Sci. 2014, 15, 22642-22660; doi:10.3390/ijms151222642 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Highly Soluble Monoamino-Substituted Perylene Tetracarboxylic Dianhydrides: Synthesis, Optical and Electrochemical Properties Kew-Yu Chen * and Che-Wei Chang Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-4-2451-7250 (ext. 3683); Fax: +886-4-2451-0890. External Editor: Dennis N. Kevill Received: 8 November 2014; in revised form: 21 November 2014 / Accepted: 1 December 2014 / Published: 8 December 2014 Abstract: Three dialkylamino-substituted perylene tetracarboxylic dianhydrides with different n-alkyl chain lengths (n = 6, 12 or 18), 1a–1c, were synthesized under mild conditions in high yields and were characterized by 1H NMR, 13C NMR and high resolution mass spectroscopy. Their optical and electrochemical properties were measured using UV-Vis and emission spectroscopic techniques, as well as cyclic voltammetry (CV). This is the first time that the structures and the properties of monoamino-substituted perylene tetracarboxylic dianhydrides have been reported. These molecules show a deep green color in both solution and the solid state and are soluble in most organic solvents. They all show a unique charge transfer emission in the near-infrared region, and the associated peaks exhibit solvatochromism. The dipole moments of the compounds have been estimated using the Lippert-Mataga equation, and upon excitation, they show slightly larger dipole moment changes than those of corresponding perylene diimides, 2a–2c. -
Polycyclic Aromatic Hydrocarbon Structure Index
United States Department of Commerce Technology Administration National Institute of Standards and Technology NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.922e2020 NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.922e2020 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology Errata for SP 922 (printed document) Corrected entries are listed below 2 1 3 19 Acephenanthrylene CH 9 10 4 201-06-9 16 10 202 1.291 8 5 Cyclopenta[jk]phenanthrene 11.70 7 6 9.067 3.890 10 1 9 2 27208-37-3 226 1.200 33 8 3 Cyclopenta[cd]pyrene CH18 10 7 4 11.52 6 5 Acepyrene Acepyrylene 9.602 3.887 10 9 1 34 Benz[mno]aceanthrylene 203-13-4 CH 226 8 2 18 10 1.222 7 3 Naphtho[1,8,7,6-cdef]fluorene 11.83 6 5 4 9.679 3.884 2 HC2 1 3 41 11 4 1H-Cyclopenta[e]pyrene 109587-09-9 CH19 12 240 10 5 9 8 6 7 11 1 10 2 9 3 52 5H-Benzo[cd]pyrene 191-34-4 CH19 12 240 1.233 8 5 4 7 6 Pyrenindene 11.92 C 9.674 H2 4.207 14 1 13 2 12 3 160 4 Cyclopent[b]indeno[4,5-g]- 72088-81-4 CH24 14 302 10 11 9 phenanthrene 8 5 7 6 2 3 1 4 14 5 Cyclopent[b]indeno[5,6-g]- 72088-82-5 CH 302 161 6 24 14 12 13 phenanthrene 11 10 7 89 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. -
Dissolved Organic Matter-Mediated Photodegradation of Anthracene and Pyrene in Water Siyu Zhao, Shuang Xue*, Jinming Zhang, Zhaohong Zhang & Jijun Sun
www.nature.com/scientificreports OPEN Dissolved organic matter-mediated photodegradation of anthracene and pyrene in water Siyu Zhao, Shuang Xue*, Jinming Zhang, Zhaohong Zhang & Jijun Sun Toxicity and transformation process of polycyclic aromatic hydrocarbons (PAHs) is strongly depended on the interaction between PAHs and dissolved organic matters (DOM). In this study, a 125W high- pressure mercury lamp was used to simulate the sunlight experiment to explore the inhibition mechanism of four dissolved organic matters (SRFA, LHA, ESHA, UMRN) on the degradation of anthracene and pyrene in water environment. Results indicated that the photodegradation was the main degradation approach of PAHs, which accorded with the frst-order reaction kinetics equation. The extent of degradation of anthracene and pyrene was 36% and 24%, respectively. DOM infuence mechanism on PAHs varies depending upon its source. SRFA, LHA and ESHA inhibit the photolysis of anthracene, however, except for SRFA, the other three DOM inhibit the photolysis of pyrene. Fluorescence quenching mechanism is the main inhibiting mechanism, and the binding ability of DOM and PAHs is dominantly correlated with its inhibiting efect. FTIR spectroscopies and UV–Visible were used to analyze the main structural changes of DOM binding PAHs. Generally, the stretching vibration of N–H and C–O of polysaccharide carboxylic acid was the key to afect its binding with anthracene and C–O–C in aliphatic ring participated in the complexation of DOM and pyrene. Polycyclic aromatic hydrocarbons (PAHs) are typical persistent organic pollutants with two or more fused ben- zene rings that are widely distributed in multi-media, such as atmosphere, water, sediment, snow, and biota1–4. -
Polycyclic Aromatic Hydrocarbons (Pahs)
Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet 4th edition Donata Lerda JRC 66955 - 2011 The mission of the JRC-IRMM is to promote a common and reliable European measurement system in support of EU policies. European Commission Joint Research Centre Institute for Reference Materials and Measurements Contact information Address: Retiewseweg 111, 2440 Geel, Belgium E-mail: [email protected] Tel.: +32 (0)14 571 826 Fax: +32 (0)14 571 783 http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 66955 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Belgium Table of contents Chemical structure of PAHs................................................................................................................................. 1 PAHs included in EU legislation.......................................................................................................................... 6 Toxicity of PAHs included in EPA and EU -
Anthracene Related to Carcinogenicity1
[CANCER RESEARCH 29,506—509,March1969] Molecular Site of Substituents of Benz(a)anthracene Related to Carcinogenicity1 JohnPatakiandCharlesHuggins The Ben May Laboratory for Cancer Research, The University ofChicago, Chicago, Illinois 60637 SUMMARY The tumor-producing effect of dibenz(a,h)anthracene led Cook (5) to undertake experiments showing that 9-isopropyl Benz(a)anthracene did not induce tumors in rats, but its BA is a (weak) carcinogenand Fieseret aL (9) synthesizedthe derivatives were highly and equally carcinogenic when they stronger cancer-producing substances 7-methyl-BA and possessed two or three methyl groups in any combination at 7,8-DMBA. Considerably later it was found that 7,12-DMBA the following special sites: positions 6, 7, 8, or 12. Derivatives (1), 7,8,12-TMBA (1), and 6,7,8-TMBA (21) are very powerful of benz(a)anthracene with pairs of methyl groups at sites 1 carcinogens. It was evident that substitution of BA at positions and 12 or 3 and 9 were not carcinogenic. 7,12-Dimethylbenz 7 and 8 to form cholanthrene or 7,8-DMBA was more effective (a)anthracene and 7,8,12-trimethylbenz(a)anthracene are in promoting carcinogenic potency than substitution of BA at equivalent in their ability to elicit neoplasms in rats and far positions 8 and 9 was, irrespective of whether a new ring was exceed 3-methylcholanthrene and benzo(a)pyrene in this formed or the substituents remained as alkyl groups. regard. MATERIALSANDMEThODS INTRODUCTION Chemicals. Of 26 compounds which were tested, four were In this paper it will be demonstrated that the addition of new.