J Turk Acad Dermatol 2014; 8 (2): 1482R1

Total Page:16

File Type:pdf, Size:1020Kb

J Turk Acad Dermatol 2014; 8 (2): 1482R1 Review DOI: 10.6003/jtad.1482r1 Treating Onychomycosis Sevim Harman Baysak,1 MD, Uğur Çelik,2*MD, Burhan Engin,2 MD, Yalçın Tüzün,2 MD Address: 1Dışkapı Resarch and Training Hospital, Department of Dermatology, Ankara, 2İstanbul University, Cerrahpaşa Medical Faculty, Department of Dermatology, İstanbul, Turkey E-mail: [email protected] * Corresponding Author: Dr Uğur Çelik, İstanbul University, Cerrahpaşa Medical Faculty, Department of Dermatology, İstanbul, Turkey. Published: J Turk Acad Dermatol 2014; 8 (2): 1482r1. This article is available from: http://www.jtad.org/2014/2/jtad1482r1.pdf Key Words: Onychomycosis, tinea unguium, treatment. Abstract Background: Onychomycosis means fungal infection of nails. Causative agents are yeasts and dermatophyte or nondermatophyte molds. Toenail onychomycosis mainly caused by dermatophytes while yeasts come into prominence for fingernails. Risk factors are genetic predisposition, age, swimming, tinea pedis, psoriasis, diabetes and immunodeficiency. It is important to consider differential diagnosis including trauma, eczema, psoriasis, lichen planus, onychogryphosis before starting antimycotic treatment. Although there are different clinical forms such as distal subungual, proximal subungual, white superficial, nondermatophytic and yeast onychomycosis, treatment options are similar. Topical therapies for onychomycosis are generally not effective so systemic antifungals are required. Introduction rubrum. In white superficial form, T. menta- grophytes takes over. Candida albicans is Onychomycosis is fungal infection of nails major yeast causing onychomycosis [1, 2, 3]. caused by yeasts, dermatophyte and nonder- matophyte molds. This term expresses infec- tion of nails with any fungal agent differently Diagnosis from the term tinea unguium that means only dermatophytic infection of nails. Onychomy- Nail dystrophies are caused not only by fun- cosis of toenails mainly caused by dermato- gal infections but also trauma, eczema, pso- phytes (so called tinea unguium) while yeasts riasis, lichen planus and onychogryphosis. It are main pathogens for fingernails [1, 2]. is important to mind differantial diagnoses Patients usually have concomitant tinea before starting antimycotic treatment. KOH pedis. Genetic predisposition, age, swimming, examination of scrapings is useful to observe psoriasis, diabetes and immunodeficiency are dermatophytic hyphae and spores. Nail cul- other risk factors for onychomycosis. The pre- ture on Sabouraud’s medium is helpful to de- velance is 4 to 18 percent and most of them termine causative agent but it takes four are toenail involvement. Tinea unguium has weeks and has one third false negative ratio. three clinical forms consisting of distal sub- The dermatophyte test medium (DTM) is an ungual, proximal subungual and white su- alternative culture and results are available perficial with the former is most frequent. The in seven days. Histopathological examination causative agent is mainly Trichophyton of the nail plate with PAS staining is more Page 1 of 6 (page number not for citation purposes) J Turk Acad Dermatol 2014; 8 (2): 1482r1. http://www.jtad.org/2014/2/jtad1482r1.pdf sensitive method for diagnosis but also more oral itraconazole for nondermatophyte ony- expensive one. Polymerase chain reaction test chomycosis and yeast onychomycosis. is also sensitive but not widely used [1, 4]. Griseofulvin Treatment Griseofulvin is the first approved antimycotic Onychomycosis may cause physical discomfort drug for onychomycosis treatment and is beside generating cosmetic worry. It may also effective only against dermatophytes [6, 7]. The increase the risk of bacterial infections. Treat- mechanism of action is arresting fungal cell ment is indicated for patients having history of mitosis by blocking the formation of mitotic cellulitis or predisposition such as venous in- spindle [5, 6]. It is ineffective against yeasts sufficiency, and also for patients having cos- and nondermatophyte molds [7]. Prolonged metic worry. There are different clinical forms administration, up to 18 months, is required such as distal subungual, proximal subun- because it takes a long time to reach gual, white superficial, nondermatophytic and therapeutic concentrations in nail plate [6, 8]. yeast onychomycosis, but treatment options Griseofulvin has lower clinical cure rates and are similar. Topical therapies for onychomyco- higher recurrence rates than terbinafin and sis are generally not effective so systemic anti- itraconazole [1, 7]. The daily dosage for adults fungals are required [1]. is 500-1000 mg [9]. In children, griseofulvin is the only licensed antimycotic drug and dosage Antifungal therapy aims mycological clearence is 10 mg/kg daily [6]. Gastrointestinal and clinical cure. Clinical improvement may complaints and headache are the most take several months particularly in toenails so common side effects. Hypersensitivity follow up period must be at least six months reactions and serious side effects such as after therapy. In patients with white superficial cytopenias and hepatotoxicity are rare. form, distal subungual form affecting < 50 % Hemogram and liver function tests must be of nail plate without matrix involvement and controlled during treatment. It may cause drug patients with intolerance to systemic therapy, interactions by it’s effects on cyp-450 enzyme topical therapy may be used. Systemic therapy [5, 7]. is indicated in proximal subungual form, distal subungual form affecting > 50 % of the nail Terbinafine with matrix involvement or affecting more than Terbinafine is the most effective oral two nails. Also we can switch to systemic ther- treatment for toenail onycomycosis [10]. It apy for the patients not responding to topical has fungicidal activity against dermatophytes therapy for six months [5, 6]. Criteria for treat- by inhibiting the enzyme squalen epoxidase ment success or failure are summarized in leading to accumulation of squalene in the table modified from study of Scher RK et al cytoplasm and lysis of the cell. It has also [Table 1] [4]. fungostatic activity against C. Albicans via Oral Therapy inhibition of ergosterol synthesis [6, 7]. Most frequently used drugs are oral terbi- Bioavailability is high as 70 % after oral nafine for dermatophyte onychomycosis and intake and it’s detectable in nail from 7 days Table 1. Criteria for Treatment Success and Failure Cure Noncure Clinically normal nails Positive mycology Remaining onycholysis or subungual Residual changes compatible with fungal in- hyperkeratosis < 10 % of nail plate, myco- fection affecting more than 10 % of nail plate logy negative Lateral hyperkeratosis or onycholysis Remaining nail thickening caused by other conditions, mycology negative Page 2 of 6 (page number not for citation purposes) J Turk Acad Dermatol 2014; 8 (2): 1482r1. http://www.jtad.org/2014/2/jtad1482r1.pdf of therapy up to 90 days after treatment. but hepatic function tests must be monitored Daily dosage is 250 mg during 6 weeks for during treatment. It is contraindicated in fingernails and 12 weeks for toenails [6]. patients with congestive cardiac failure and Terbinafine was compared with other one must pay attention when using antifungal agents in a meta analysis of 36 itraconazole in patients with arrhythmia [15, studies by Gupta et al. Terbinafine is found 16]. more effective than others for treatment of dermatophyte onychomycosis [11]. In L.I.ON. Fluconazole study with 496 patients, continuous Fluconazole is a hydrophilic antifungal drug terbinafine was significantly more effective that interferes with the synthesis of ergos- than intermittent itraconazole in the terol, like itraconazole does. It is effective treatment of toenail dermatophyte onycho- against dermatophytes and Candida spp. but mycosis [12]. Gupta et al and Sikder et al not approved for onychomycosis treatment in found intermittent terbinafine treatment as USA. Placebo controlled studies with flucona- effective as continuous terbinafine and more zole revealed cure rates of 36 to 100 %. It is efficacious than pulse itraconazole [13, 14]. Side effects are nausea, diarrhea, abdominal administered at the dose of 150 mg daily or pain, pruritus, skin rash and taste 300 mg weekly for up to 6 months [6, 7]. alterations. Serious side effects are rare and Scher et al reported that there was no signif- include hepatitis, agranulocytosis, acute icant difference in the efficacy of doses 150, generalized exanthematous pustulosis and 300 and 450 mg weekly for toenail onycomy- lupus erythematosus. Terbinafine is cosis [18]. Side effects are headache, nausea, metabolized by cytochrome P 450 enzymes so skin rashes, insomnia and palpitations. Drug interacted with rifampicin, cimetidine, interactions with oral hypoglicemic agents, cyclosporin, TCA antidepressants and beta cyclosporine and phenytoin are important is- blockers [5, 6, 7]. sues. Itraconazole Other Azoles Itraconazole is a triazole antifungal which has Other azoles including voriconazole, a broad spectrum of activity against posaconazole and ravuconazole also inhibit dermatopyhtes, nondermatophytes and 14-alfa demethylase enzyme and interfere yeasts. The mechanism of action is interfering with the ergosterol synthesis. Voriconazole is with the cell wall synthesis via inhibiting the effective against Scopulariopis brevicaulis, enzyme called 14-alpha demethylase which Fusarium spp and Scytalidium dimidiatum. transforms lanosterol to ergosterol. It is It may be the drug of choice for resistant rapidly absorbed
Recommended publications
  • Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
    United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod
    [Show full text]
  • WO 2018/102407 Al 07 June 2018 (07.06.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/102407 Al 07 June 2018 (07.06.2018) W !P O PCT (51) International Patent Classification: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, C07K 7/60 (2006.01) G01N 33/53 (2006.01) EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, CI2Q 1/18 (2006.01) MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (21) International Application Number: KM, ML, MR, NE, SN, TD, TG). PCT/US2017/063696 (22) International Filing Date: Published: 29 November 201 7 (29. 11.201 7) — with international search report (Art. 21(3)) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/427,507 29 November 2016 (29. 11.2016) US 62/484,696 12 April 2017 (12.04.2017) US 62/53 1,767 12 July 2017 (12.07.2017) US 62/541,474 04 August 2017 (04.08.2017) US 62/566,947 02 October 2017 (02.10.2017) US 62/578,877 30 October 2017 (30.10.2017) US (71) Applicant: CIDARA THERAPEUTICS, INC [US/US]; 63 10 Nancy Ridge Drive, Suite 101, San Diego, CA 92121 (US). (72) Inventors: BARTIZAL, Kenneth; 7520 Draper Avenue, Unit 5, La Jolla, CA 92037 (US). DARUWALA, Paul; 1141 Luneta Drive, Del Mar, CA 92014 (US). FORREST, Kevin; 13864 Boquita Drive, Del Mar, CA 92014 (US).
    [Show full text]
  • Seborrheic Dermatitis More Than Meets the Eye
    SEBORRHEIC DERMATITIS More than meets the eye Martijn Gerard Hendrik Sanders Financial support for the printing of this thesis was kindly provided by: La Roche-Posay UCB Chipsoft LEO Pharma Louis Widmer L’Oréal Lilly Merz Pharma Van der Bend B.V. Olmed ISBN: 978-94-6361-558-7 Cover illustration by Sara van der Linde Cover design, lay-out and printing by Optima Grafische Communicatie Copyright © M.G.H. Sanders, Rotterdam 2021 All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system or transmitted in any form by any means without permission from the author, or when appropriate, of the publisher of the publication. Seborrheic Dermatitis More than meets the eye Seborroïsch eczeem Niet alles is wat het lijkt Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. F.A. van der Duijn Schouten en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatvinden op donderdag 24 juni 2012 om 10:30 uur Door Martijn Gerard Hendrik Sanders geboren te Almelo PROMOTIECOMMISSIE Promotor: prof. dr. T.E.C. Nijsten Overige leden: prof. dr. E.P. Prens prof. dr. A.G. Uitterlinden prof. dr. J.L.W. Lambert Copromotor: dr. L.M. Pardo Cortes CONTENTS Chapter 1 General introduction 7 Chapter 2 Dermatological screening of a middle-aged and elderly population: 19 the Rotterdam Study Chapter 3 3.1 Prevalence and determinants of seborrheic dermatitis in a middle 29 aged and elderly population: the Rotterdam Study 3.2 Association between
    [Show full text]
  • Current Options in Antifungal Pharmacotherapy
    Current Options in Antifungal Pharmacotherapy John Mohr, Pharm.D., Melissa Johnson, Pharm.D., Travis Cooper, Pharm.D., James S. Lewis, II, Pharm.D., and Luis Ostrosky-Zeichner, M.D. Infections caused by yeasts and molds continue to be associated with high rates of morbidity and mortality in both immunocompromised and immuno- competent patients. Many antifungal drugs have been developed over the past 15 years to aid in the management of these infections. However, treatment is still not optimal, as the epidemiology of the fungal infections continues to change and the available antifungal agents have varying toxicities and drug- interaction potential. Several investigational antifungal drugs, as well as nonantifungal drugs, show promise for the management of these infections. Key Words: antifungal drugs, invasive fungal infection, amphotericin B, polyenes, invasive aspergillosis, liposomal amphotericin B, L-AmB. (Pharmacotherapy 2008;28(5):614–645) OUTLINE Icofungipen Polyenes Conclusion Mechanism of Action Invasive fungal infections continue to be asso- Clinical Efficacy ciated with high rates of morbidity and mortality Safety in both immunocompromised and immuno- Azoles competent hosts. Amphotericin B deoxycholate Mechanism of Action (AmBd) has been the cornerstone for treatment Clinical Efficacy of invasive fungal infections since the early Safety 1950s. However, new agents have emerged to Echinocandins manage these infections over the past 15 years Mechanism of Action (Figure 1). Although Candida species remain the Clinical Efficacy most common pathogens associated with fungal Safety disease, infections caused by Aspergillus and Investigational Antifungal Drugs and Other Cryptococcus sp, Zygomycetes, and the endemic Nonantifungal Agents fungi (Histoplasma, Blastomyces, and Coccidioides Monoclonal Antibody Against Heat Shock Protein 90 sp) also account for many fungal infections.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8.404,751 B2 Birnbaum Et Al
    USOO8404751B2 (12) United States Patent (10) Patent No.: US 8.404,751 B2 Birnbaum et al. (45) Date of Patent: Mar. 26, 2013 (54) SUBUNGUICIDE, AND METHOD FOR 5,696,105 A * 12/1997 Hackler ........................ 514f172 TREATING ONYCHOMYCOSIS 5,894,020 A 4, 1999 Concha 6,008,173 A * 12/1999 Chopra et al. ................ 51Of 152 6,043,063 A 3/2000 Kurdikar et al. (75) Inventors: Jay E. Birnbaum, Montville, NJ (US); 6,143,794. A 11/2000 Chaudhuri et al. Keith A. Johnson, Durham, NC (US) 6,162,420 A 12/2000 Bohn et al. 6,207,142 B1 3/2001 Oddset al. (73) Assignee: Hallux, Inc., Santa Ana, CA (US) 6,221,903 B1 4/2001 Courchesne 6,224,887 B1 5, 2001 Samour et al. (*)c Notice:- r Subject to any disclaimer, the term of this 6,264,9276,231,840 B1 7/20015, 2001 MonahanBuck patent is extended or adjusted under 35 6.361,785 B1 3/2002 Nair et al. U.S.C. 154(b) by 233 days. 6,733,751 B2 5, 2004 Farmer 6,846,837 B2 1/2005 Maibach et al. (21) Appl. No.: 12/606,324 6,878,365 B2 * 4/2005 Brehove .......................... 424,61 7,074,392 B1 7/2006 Friedman et al. 2002/017343.6 A1 11/2002 Sonnenberg et al. (22) Filed: Oct. 27, 2009 2002/0183387 A1 12/2002 Bogart 2003/OOOT939 A1 1/2003 Murad (65) Prior Publication Data 2003/0207971 A1* 11/2003 Stuartet al. ................... 524, 274 2004.0062733 A1 4/2004 Birnbaum US 201O/OO48724 A1 Feb.
    [Show full text]
  • Effect of Pramiconazole on Signs and Symptoms of Tinea Cruris/Corporis
    Open Label Phase IIa Trials to Evaluate the Effects of Short Term Oral Pramiconazole in Tinea Pedis and Tinea Cruris/Corporis 1Jacques Decroix, 2Jannie Ausma, 2Luc Wouters, 2Marcel Borgers, 2Lieve Vandeplassche 1Avenue du Parc 39, Mouscron, Belgium and 2Barrier Therapeutics, Geel, Belgium Introduction Efficacy Results Tinea Pedis Efficacy Results Tinea Cruris/Corporis Table 3: Effect of pramiconazole on signs and symptoms of tinea Pramiconazole, previously referred to as R126638, is a broad spectrum antifungal Table 1: Effect of pramiconazole on signs and symptoms of tinea pedis belonging to the class of triazoles. It has excellent potential for oral and topical cruris/corporis treatment of fungal infections of skin, hair, nails, oral and genital mucosa. In vitro data Day All Patients Cohort I Cohort II Day All Patients Cohort I Cohort II demonstrated its activity against dermatophytes (Trichophyton spp., Microsporum (3 & 5 days) (3 days) (5 days) (3 & 5 days) (3 days) (5 days) canis, Epidermophyton floccosum), yeasts and many other fungi. Furthermore, Total Signs & 1 9.9 (3-14) 10.2 (8-12) 9.5 (3-14) Total Signs & 1 5.8 (4-9) 6.1 (8-12) 5.6 (3-14) efficacy studies in animals provided evidence for a potent therapeutic effect of Symptoms 4/6 7.2 (2-11) <.001 7.8 (6-11) 0.004 6.6 (2-11) 0.002 Symptoms 4/6 4.8 (3-7) <.001 5.0 (6-11) 0.063 4.6 (2-11) 0.031 R126638 that proved to be 3- to 8-fold superior over that of itraconazole, especially Score** 14 3.4 (1-6) <.001 3.3 (2-5) 0.002 3.5 (1-6) 0.002 Score** 14 2.8 (2-4) <.001 2.9 (2-5) 0.004 2.7 (1-6) 0.004 for superficial fungal infections.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • Primary Target Prediction of Bioactive Molecules from Chemical Structure
    bioRxiv preprint doi: https://doi.org/10.1101/413237; this version posted September 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Primary Target Prediction of Bioactive Molecules from Chemical Structure Abed Forouzesh1, Sadegh Samadi Foroushani1,*, Fatemeh Forouzesh2, and Eskandar Zand1 1Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran 2Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran *To whom correspondence should be addressed. Tel: (+9821) 22400080; Fax: (+9821) 22400568; Email: [email protected] ABSTRACT There are various tools for computational target prediction of bioactive molecules from a chemical structure in a machine-readable material but these tools can’t distinguish a primary target from other targets. Also, due to the complex nature of bioactive molecules, there has not been a method to predict a target and or a primary target from a chemical structure in a non-digital material (for example printed or hand-written documents) yet. In this study, an attempt to simplify primary target prediction from a chemical structure was resulted in developing an innovative method based on the minimum structure which can be used in both formats of non-digital and machine-readable materials. A minimum structure does not represent a real molecule or a real association of functional groups, but is a part of a molecular structure which is necessary to ensure the primary target prediction of bioactive molecules.
    [Show full text]
  • Correlation of Malassezia Species with Clinical Characteristics of Pityriasis Versicolor
    Dissertation zum Erwerb des Doctor of Philosophy (Ph.D.) an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München Doctoral Thesis for the awarding of a Doctor of Philosophy (Ph.D.) at the Medical Faculty of Ludwig-Maximilians-Universität, Munich vorgelegt von submitted by Perpetua Ibekwe ____________________________________ aus (Geburtsort) born in (place of birth) Enugu, Nigeria ____________________________________ am (Tag an dem die Dissertation abgeschlossen wurde) submitted on (day of finalization of the thesis) 24 April 2014 __________________ Supervisors LMU: Title, first name, last name: Prof. dr. med. dr. Thomas Ruzicka Habilitated Supervisor ______________________________ Dr. dr. med. Miklós Sárdy Direct Supervisor ______________________________ Reviewing Experts: st 1 Reviewer Prof. Dr. Thomas Ruzicka nd 2 Reviewer Dr. Miklós Sárdy Dean: Prof. Dr. med. Dr. h. c. M. Reiser, FACR, FRCR Date of Oral Defence: 15 September 2014 Correlation of Malassezia species with clinical characteristics of pityriasis versicolor Affidavit Ibekwe, Perpetua Surname, first name University of Abuja Teaching Hospital Gwagwalada Street PMB 228, Abuja Zip code, town Nigeria Country I hereby declare, that the submitted thesis entitled Correlation of Malassezia species with clinical characteristics of pityriasis versicolor Thesis Title Thesis Title (cont.) Thesis Title (cont.) is my own work. I have only used the sources indicated and have not made unauthorised use of services of a third party. Where the work of others has been quoted or reproduced, the source is always given. The submitted thesis or parts thereof have not been presented as part of an examination degree to any other university. I further declare that the electronic version of the submitted thesis is congruent with the printed version both in content and format.
    [Show full text]
  • Paradigm Shift in the Management of Topical Tinea Infections Dr Hardik Pathak
    Review Article Luliconazole: Paradigm Shift in the Management of Topical Tinea Infections Dr Hardik Pathak Abstract Luliconazole is an imidazole topical antifungal agent with a unique structure. Pre-clinical studies have dem- onstrated excellent activity against dermatophytes. Although luliconazole belongs to the azole group, it has strong antifungal activities against Trichophyton spp. This may be attributed to a combination of strong in vi- tro antifungal activity and favourable pharmaco kinetic properties in the skin. Clinical trials have demonstrat- ed its superiority over placebo in dermatophytosis, and performed better than terbinafine. The frequency of application (once daily) and duration of treatment (one week for tinea corporis/cruris and 2 weeks for inter- digital tinea pedis) was favourable when compared to other topical regimens in treating tinea pedis. Such regimens include 2–4 weeks of twice-daily treatment with econazole, up to 4 weeks of twice-daily treatment with sertaconazole, 1–2 weeks of twice-daily treatment with terbinafine, 4 weeks of once-daily application of naftifine and 4–6 weeks of once-daily treatment with amorolfine. Luliconazole 1% cream was approved in Japan in 2005 for the treatment of tinea infections. Recently, the US Food and Drug Administration (USFDA) approved luliconazole for interdigital tinea pedis, tinea cruris, and tinea corporis treatment. Topical lulicon- azole has a favourable safety profile, with mild application-site reactions reported occasionally. Keywords: Luliconazole, Tinea pedis, Tinea corporis, Tinea cruris, once a daily Conflict Of Interest: Dr Hardik Pathak is a salaried employee of Dr. Reddy’s Laboratories Ltd, Hyderabad, Telangana, India. Dermatophytosis: A Global Burden (1) he prevalence of superficial mycotic infection is hair, and nails), Epidermophyton (skin and nails), and 20–25% worldwide; most common agents be- Microsporum (skin and hair).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,841,351 B2 Sawant (45) Date of Patent: *Sep
    USOO8841351B2 (12) United States Patent (10) Patent No.: US 8,841,351 B2 SaWant (45) Date of Patent: *Sep. 23, 2014 (54) POLYMERICTOPICAL COMPOSITIONS 4,938,964 A 7, 1990 Sakai et al. 4,940,579 A 7, 1990 Randen 4.954,332 A 9, 1990 Bissett et al. (71) Applicant: Stiefel Research Australia Pty Ltd., 5,081,157 A 1/1992 Pomerantz Rowville (AU) 5,082,656 A 1/1992 Hui et al. 5,304,368 A 4, 1994 Sherinov et al. (72) Inventor: Prashant Sawant, Rowville (AU) 5,436,241 A 7, 1995 Shin et al. 5,573,759 A 11/1996 Blank (73) Assignee: Stiefel Research Australia Pty Ltd., 5,658,559 A 8, 1997 Smith 5,674,912 A 10, 1997 Martin Rowville, Victoria (AU) 6,010,716 A 1/2000 Saunal et al. 6,017,520 A 1/2000 Synodis et al. (*) Notice: Subject to any disclaimer, the term of this 6,123,924 A 9/2000 Mistry et al. patent is extended or adjusted under 35 6,211,250 B1 4/2001 Tomlinson et al. U.S.C. 154(b) by 0 days. 6,582,683 B2 6/2003 Jezior 7,678,366 B2 3/2010 Friedman et al. This patent is Subject to a terminal dis 2005/0175641 A1 8, 2005 Deo et al. claimer. 2007/0196323 A1 8/2007 Zhang et al. 2007/0196325 A1 8/2007 Zhang et al. (21) Appl. No.: 13/910,158 2007/0219.171 A1 9, 2007 Lulla et al. 2008. O152603 A1 6/2008 Rudolph et al.
    [Show full text]