Dynamic Simulation of an Electrorheological Fluid FL T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Animafluid: a Dynamic Liquid Interface
Animafluid: A Dynamic Liquid Interface Muhammad Ali Hashmi Heamin Kim Abstract 75 Amherst St. 75 Amherst St. In this paper the authors describe a new tangible liquid interface based on ferromagnetic fluid. Our interface Cambridge, Cambridge, combines properties of both liquid and magnetism in a MA 02139 USA MA 02139 USA single interface which allows the user to directly [email protected] [email protected] interact with the liquid interface. Our dynamic liquid interface, which we call Animafluid, uses the physical Artem Dementyev Amir Lazarovich qualities of ferromagnetic fluids in combination with 75 Amherst St. 75 Amherst St. pressure sensors, microcontrollers for real-time Cambridge, Cambridge, interaction that combines both physical input and output. Our implementation is different from existing MA 02139 USA MA 02139 USA ferrofluid interventions and projects that harness [email protected] [email protected] magnetic liquid properties of ferromagnetic fluids in the sense that it adds tangibility of radical atoms design methodology to ferromagnetic fluids, thereby changing Hye Soo Yang the scope of interaction with the ferromagnetic fluid in 75 Amherst St. a drastic manner. Cambridge, MA 02139 USA Author Keywords [email protected] Tangible Interface; Ferrofluid; Dynamic Liquid Interface; Radical Atoms; Programmable Materiality ACM Classification Keywords H.5.2. Information interfaces and Presentation; User Interfaces Introduction Copyright is held by the author/owner(s). Ferromagnetic liquid is a material that has magnetic CHI’13, April 27 – May 2, 2013, Paris, France. and liquid properties. Ferromagnetic fluids have been used in a variety of different ways in the field of fluid dynamics. Our implementation imparts tangibility to the Prior Work liquid interface thus providing the design features of Our work is informed by prior work done on “Radical Atoms”, which envisions human interactions electromagnets-based interfaces and ferromagnetic with dynamic materials in a computationally fluids. -
Determining the Flow Curves for an Inverse Ferrofluid
Korea-Australia Rheology Journal Vol. 20, No. 1, March 2008 pp. 35-42 Determining the flow curves for an inverse ferrofluid C. C. Ekwebelam and H. See* The School of Chemical and Biomolecular Engineering, The University of Sydney, Australia. NSW 2006 (Received Oct. 9, 2007; final revision received Jan. 30, 2008) Abstract An inverse ferrofluid composed of micron sized polymethylmethacrylate particles dispersed in ferrofluid was used to investigate the effects of test duration times on determining the flow curves of these materials under constant magnetic field. The results showed that flow curves determined using low duration times were most likely not measuring the steady state rheological response. However, at longer duration times, which are expected to correspond more to steady state behaviour, we noticed the occurrence of plateau and decreasing flow curves in the shear rate range of 0.004 s−1 to ~ 20 s−1, which suggest the presence of non- homogeneities and shear localization in the material. This behaviour was also reflected in the steady state results from shear start up tests performed over the same range of shear rates. The results indicate that care is required when interpreting flow curves obtained for inverse ferrofluids. Keywords : inverse ferrofluid, flow curve, shear localization 1. Introduction An IFF comprises a magnetisable carrier liquid, otherwise known as a ferrofluid, which is a colloidal dispersion of Field-responsive fluids are suspensions of micron-sized nano-sized magnetite particles. Into this we disperse particles which show a dramatic increase in flow resistance micron-sized non-magnetic solid particles, thereby pro- upon application of external magnetic or electrical fields. -
Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites
micromachines Review Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites Soheila Shabaniverki 1 and Jaime J. Juárez 1,2,* 1 Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; [email protected] 2 Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011, USA * Correspondence: [email protected]; Tel.: +1-515-294-3298 Abstract: Particle-polymer dispersions are ubiquitous in additive manufacturing (AM), where they are used as inks to create composite materials with applications to wearable sensors, energy storage materials, and actuation elements. It has been observed that directional alignment of the particle phase in the polymer dispersion can imbue the resulting composite material with enhanced mechani- cal, electrical, thermal or optical properties. Thus, external field-driven particle alignment during the AM process is one approach to tailoring the properties of composites for end-use applications. This review article provides an overview of externally directed field mechanisms (e.g., electric, magnetic, and acoustic) that are used for particle alignment. Illustrative examples from the AM literature show how these mechanisms are used to create structured composites with unique properties that can only be achieved through alignment. This article closes with a discussion of how particle distribution (i.e., microstructure) affects mechanical properties. A fundamental description of particle phase transport in polymers could lead to the development of AM process control for particle-polymer composite fabrication. This would ultimately create opportunities to explore the fundamental impact that alignment has on particle-polymer composite properties, which opens up the possibility of tailoring these materials for specific applications. -
Numerical Simulations of Heat and Mass Transfer Flows Utilizing
CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY, ISLAMABAD Numerical Simulations of Heat and Mass Transfer Flows utilizing Nanofluid by Faisal Shahzad A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in the Faculty of Computing Department of Mathematics 2020 i Numerical Simulations of Heat and Mass Transfer Flows utilizing Nanofluid By Faisal Shahzad (DMT-143019) Dr. Noor Fadiya Mohd Noor, Assistant Professor University of Malaya, Kuala Lumpur, Malaysia (Foreign Evaluator 1) Dr. Fatma Ibrahim, Scientific Engineer Technische Universit¨atDortmund, Germany (Foreign Evaluator 2) Dr. Muhammad Sagheer (Thesis Supervisor) Dr. Muhammad Sagheer (Head, Department of Mathematics) Dr. Muhammad Abdul Qadir (Dean, Faculty of Computing) DEPARTMENT OF MATHEMATICS CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY ISLAMABAD 2020 ii Copyright c 2020 by Faisal Shahzad All rights reserved. No part of this thesis may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, by any information storage and retrieval system without the prior written permission of the author. iii Dedicated to my beloved father and adoring mother who remain alive within my heart vii List of Publications It is certified that following publication(s) have been made out of the research work that has been carried out for this thesis:- 1. F. Shahzad, M. Sagheer, and S. Hussain, \Numerical simulation of magnetohydrodynamic Jeffrey nanofluid flow and heat transfer over a stretching sheet considering Joule heating and viscous dissipation," AIP Advances, vol. 8, pp. 065316 (2018), DOI: 10.1063/1.5031447. 2. F. Shahzad, M. Sagheer, and S. Hussain, \MHD tangent hyperbolic nanofluid with chemical reaction, viscous dissipation and Joule heating effects,” AIP Advances, vol. -
Electrorheological Dampers for Structural Vibration Suppression
P895-263893 11111111111111111111 11111111111 December 1994 Report No. UMCEE 94-:35 ELECTRORHEOLOGICAL DAMPERS FOR STRUCTURAL VIBRATION SUPPRESSION by Henri P. Gavin Robert D. Hanson A report on research sponsored by National Science Foundation Grant No. NSF-BCS-9201787 PROTECTED UNDER INTERNATIONAL COPYRIGHT ALL RIGHTS RESERVED. NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE The Department of Civil and Environmental Engineering The University of Michigan Ann Arbor, Michigan 49109-2125 ACKNOWLEDGEMENTS The author thanks the National Science Foundation for providing the financial re sources to conduct the research described in this report. This report is, in essence, the doctoral dissertation of Henri P. Gavin. This dissertation was supported financially by a grant from the National Science Foundation under Award No. BCS-9201787 as part of the Coordinated USA Research Program on Structural Control for Safety, Performance, and Hazard Mitigation. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation. The contributions of Professors Hanson, McClamroch, Filisko, and Peek to this work are gratefully acknowledged. It is a privilege and an inspiration to be associated with internationally renowned leaders in their fields. Professor Hanson's skills go beyond his technical knowledge of earthquake engi neering and his ability to extract the most important mechanisms from very compli cated systems. He is a consummate organizer, leader, and mediator. I am indebted to him for providing me an opportunity to work in structural control, for his men torship, and for his expert guidance. Extensive discussions "With Professor Filisko contributed largely to my concept of ER materials. -
Distributions, Measures, Functions of Bounded Variations
Appendix A Distributions, Measures, Functions of Bounded Variations Sections A.1 and A.2 are given for the sake of completeness because some notions are used in Chaps. 1 and 2, but may be safely skipped since their implication on understanding Nonsmooth Mechanics is weak. By contrast, Sects. A.3 and B survey useful mathematical tools that cannot be ignored. A.1 Schwartz’ Distributions A.1.1 The Functional Approach In this section we first briefly introduce the functional notion of a distribution as defined in [1082]. Definition A.1 D is the subspace of smooth1 functions ϕ : Rn → C, with bounded support. Thus a function ϕ(·) on Rn belongs to D, if and only if ϕ(·) is smooth, and there n exists a bounded set Kϕ of R outside of which ϕ ≡ 0. As an example, L. Schwartz gives the following function [1082, Chap. 1,§2], with n = 1, Kϕ =[−1, 1]: 0if|t|≥1 ϕ(t) = −1 (A.1) e 1−t2 if |t| < 1 Definition A.2 A distribution D is a continuous linear form defined on the vector space D. This means that to any ϕ ∈ D, D associates a complex number D(ϕ), noted D, ϕ. The space of distributions on D is the dual space of D and is noted D . The functions in D are sometimes called test-functions. 1i.e., indefinitely differentiable. © Springer International Publishing Switzerland 2016 535 B. Brogliato, Nonsmooth Mechanics, Communications and Control Engineering, DOI 10.1007/978-3-319-28664-8 536 Appendix A: Distributions, Measures, Functions of Bounded Variations Two distributions D1, D2 are equal on an open interval Δ if D1 − D2 = 0 on Δ, i.e., if for any ϕ ∈ D whose support Kϕ is contained in Δ, then D1 − D2, ϕ=0. -
Magnetic Fluid Rheology and Flows
Current Opinion in Colloid & Interface Science 10 (2005) 141 – 157 www.elsevier.com/locate/cocis Magnetic fluid rheology and flows Carlos Rinaldi a,1, Arlex Chaves a,1, Shihab Elborai b,2, Xiaowei (Tony) He b,2, Markus Zahn b,* a University of Puerto Rico, Department of Chemical Engineering, P.O. Box 9046, Mayaguez, PR 00681-9046, Puerto Rico b Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Laboratory for Electromagnetic and Electronic Systems, Cambridge, MA 02139, United States Available online 12 October 2005 Abstract Major recent advances: Magnetic fluid rheology and flow advances in the past year include: (1) generalization of the magnetization relaxation equation by Shliomis and Felderhof and generalization of the governing ferrohydrodynamic equations by Rosensweig and Felderhof; (2) advances in such biomedical applications as drug delivery, hyperthermia, and magnetic resonance imaging; (3) use of the antisymmetric part of the viscous stress tensor due to spin velocity to lower the effective magnetoviscosity to zero and negative values; (4) and ultrasound velocity profile measurements of spin-up flow showing counter-rotating surface and co-rotating volume flows in a uniform rotating magnetic field. Recent advances in magnetic fluid rheology and flows are reviewed including extensions of the governing magnetization relaxation and ferrohydrodynamic equations with a viscous stress tensor that has an antisymmetric part due to spin velocity; derivation of the magnetic susceptibility -
Make a Ferrofluid
Name: FFUNUN WWITHITH MAGNETS A Magnet that Drips: MAKING FERROFLUID A ferrofl uid is a special liquid with tiny magnetic particles fl oating around inside. Since these particles are attracted to each other, they must be coated with a special substance that prevents them from sticking together (so that the ferrofl uid remains fl uid). What makes ferrofl uid so special is that in the presence of an outside magnetic fi eld, each of the tiny particles becomes magnetized and the ferrofl uid condenses into a solid. In this activity you will be able to make and play with your own ferrofl uid and see how it behaves in the presence of a magnetic fi eld. WHAT YOU NEED: A bar magnet A napkin Vegetable Iron fi lings A shallow or sponge oil (from the hardware store) dish WHAT YOU’LL DO: Pour a bit of vegetable oil Pour iron fi lings into the 1. into a shallow dish, just 2. oil and mix the two until enough to make a thin they have become a thick, fi lm across the bottom. sludge-like material. This is your ferrofl uid! Use a napkin or sponge to absorb 3. any excess oil and allow the ferro- fl uid to become thicker. A good way to do this is to attach a magnet to the outside of the dish. This will solidify the fl uid and let you dab away extra oil. Turn over FFUNUN WWITHITH MAGNETS MAKINGDRAWING FERROFLUIDFIELD LINES Attach a magnet to the dish 4. containing the ferrofl uid; the fl uid will solidify and take the shape of the magnetic fi eld it is in! Removing the magnetic fi eld will allow the ferrofl uid to fl ow like a liquid again. -
Complex Fluids in Energy Dissipating Systems
applied sciences Review Complex Fluids in Energy Dissipating Systems Francisco J. Galindo-Rosales Centro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia da Universidade do Porto, CP 4200-465 Porto, Portugal; [email protected] or [email protected]; Tel.: +351-925-107-116 Academic Editor: Fan-Gang Tseng Received: 19 May 2016; Accepted: 15 July 2016; Published: 25 July 2016 Abstract: The development of engineered systems for energy dissipation (or absorption) during impacts or vibrations is an increasing need in our society, mainly for human protection applications, but also for ensuring the right performance of different sort of devices, facilities or installations. In the last decade, new energy dissipating composites based on the use of certain complex fluids have flourished, due to their non-linear relationship between stress and strain rate depending on the flow/field configuration. This manuscript intends to review the different approaches reported in the literature, analyses the fundamental physics behind them and assess their pros and cons from the perspective of their practical applications. Keywords: complex fluids; electrorheological fluids; ferrofluids; magnetorheological fluids; electro-magneto-rheological fluids; shear thickening fluids; viscoelastic fluids; energy dissipating systems PACS: 82.70.-y; 83.10.-y; 83.60.-a; 83.80.-k 1. Introduction Preventing damage or discomfort resulting from any sort of external kinetic energy (impact or vibration) is an omnipresent problem in our society. On one hand, impacts and vibrations are responsible for several health problems. According to the European Injury Data Base (IDB), injuries due to accidents are killing one EU citizen every two minutes and disabling many more [1]. -
Arxiv:1808.04793V2 [Cond-Mat.Quant-Gas]
Self-bound Bose-Fermi liquids in lower dimensions Debraj Rakshit, 1,2 Tomasz Karpiuk, 3 Paweł Zin, 4 Mirosław Brewczyk, 3 Maciej Lewenstein 2,5 and Mariusz Gajda 1 1 Institute of Physics, Polish Academy of Sciences, Aleja Lotnik´ow 32/46, PL-02668 Warsaw, Poland 2 ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain 3 Wydział Fizyki, Uniwersytet w Białymstoku, ul. K. Ciołkowskiego 1L, 15-245 Białystok, Poland 4 National Centre for Nuclear Research, ul. Ho˙za 69, PL-00-681 Warsaw, Poland 5 ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain Abstract. We study weakly interacting mixtures of ultracold atoms composed of bosonic and fermionic species in 2D and 1D. When interactions between particles are appropriately tuned, self-bound quantum liquids can be formed. We show that while formation of these droplets in 2D is due to the higher order correction terms contributing to the total energy and originating in quantum fluctuations, in 1D geometry the quantum fluctuations have a negligible role on formation of the self-bound systems. The leading mean-field interactions are then sufficient for droplet formation in 1D. We analyse stability conditions for 2D and 1D systems and predict values of equilibrium densities of droplets. PACS numbers: Submitted to: New J. Phys. 1. Introduction Although the physical space is three-dimensional, lower dimensional spaces are quite often considered on a theoretical ground. This is because they are simpler for analysis, nonetheless able to capture the basic physics of the three-dimensional space. -
A Study of Active Engine Mounts
A Study of Active Engine Mounts Examensarbete utfört i Reglerteknik vid Tekniska Högskolan i Linköping av Fredrik Jansson & Oskar Johansson Reg nr: LiTH-ISY-EX-3453-2003 Linköping 2003 F. JANSSON O. JOHANSSON A Study of Active Engine Mounts Examensarbete utfört i Reglerteknik vid Linköpings tekniska högskola av Fredrik Jansson och Oskar Johansson Reg nr: LiTH-ISY-EX-3453-2003 Supervisor: Andreas Eidehall Linköpings Universitet Claes Olsson Volvo Car Corporation Examiner: Professor Fredrik Gustafsson Linköpings Universitet Linköping 17th December 2003 F. JANSSON O. JOHANSSON A STUDY OF ACTIVE ENGINE MOUNTS Avdelning, Institution Datum Division, Department Date 2003-12-17 Institutionen för systemteknik 581 83 LINKÖPING Språk Rapporttyp ISBN Language Report category Svenska/Swedish Licentiatavhandling X Engelska/English X Examensarbete ISRN LITH-ISY-EX-3453-2003 C-uppsats D-uppsats Serietitel och serienummer ISSN Title of series, numbering Övrig rapport ____ URL för elektronisk version http://www.ep.liu.se/exjobb/isy/2003/3453/ Titel Studie av aktiva motorkuddar Title A Study of Active Engine Mounts Författare Fredrik Jansson and Oskar Johansson Author Sammanfattning Abstract Achieving better NVH (noise, vibration, and harshness) comfort necessitates the use of active technologies when product targets are beyond the scope of traditional passive insulators, absorbers, and dampers. Therefore, a lot of effort is now being put in order to develop various active solutions for vibration control, where the development of actuators is one part. Active hydraulic engine mounts have shown to be a promising actuator for vibration isolation with the benefits of the commonly used passive hydraulic engine mounts in addition to the active ones. -
The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(Ionic
polymers Article The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles Chen Zheng, Qi Lei, Jia Zhao, Xiaopeng Zhao and Jianbo Yin * Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710129, China; [email protected] (C.Z.); [email protected] (Q.L.); [email protected] (J.Z.); [email protected] (X.Z.) * Correspondence: [email protected]; Tel.: +86-029-88431662 Received: 1 March 2020; Accepted: 20 March 2020; Published: 22 March 2020 Abstract: By using different conductivity of polyaniline as filler, a kind of poly(ionic liquid)/polyaniline composite particles was synthesized to investigate the influence of dielectric polarization rate difference between filler and matrix on the electrorheological response and flow stability of composite-based electrorheological fluids under simultaneous effect of shear and electric fields. The composite particles were prepared by a post ion-exchange procedure and then treated by ammonia or hydrazine to obtain different conductivity of polyaniline. Their electrorheological response was measured by dispersing these composite particles in insulating carrier liquid under electric fields. It showed that the composite particles treated by ammonia had the strongest electrorheological response and 1 1 most stable flow behavior in a broad shear rate region from 0.5 s− to 1000 s− . By using dielectric spectroscopy, it found that the enhanced electrorheological response with stable flow depended on the matching degree of the dielectric polarization rates between poly(ionic liquid) matrix and polyaniline filler. The closer their polarization rates are, the more stable the flow curves are.