Interspecific Introgressive Origin of Genomic Diversity in the House Mouse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Association of VKORC1 and CYP2C9 Polymorphisms with Warfarin Dose Requirements in Japanese Patients
J Hum Genet (2006) 51:249–253 DOI 10.1007/s10038-005-0354-5 ORIGINAL ARTICLE Taisei Mushiroda Æ Yozo Ohnishi Æ Susumu Saito Atsushi Takahashi Æ Yuka Kikuchi Æ Shigeru Saito Hideki Shimomura Æ Yasuhiko Wanibuchi Takao Suzuki Æ Naoyuki Kamatani Æ Yusuke Nakamura Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in Japanese patients Received: 11 October 2005 / Accepted: 28 November 2005 / Published online: 24 January 2006 Ó The Japan Society of Human Genetics and Springer-Verlag 2006 Abstract Warfarin is the most commonly used oral homozygous for the major allele (2.5 mg/day; anticoagulant for treatment of thromboembolism, but P=5.1·10À11 in the case of intron 1À136T>C SNP). adjustment of the dose appropriate to each patient is not We then genotyped the CYP2C9 gene for the Japanese so easy because of the large inter-individual variation in common genetic variant, CYP2C9*3 and, based on the dose requirement. We analyzed single nucleotide poly- genotype of these two genes, classified patients into three morphism (SNP) genotypes of the VKORC1 and categories, which we call ‘‘warfarin-responsive index.’’ CYP2C9 genes using DNA from 828 Japanese patients The median warfarin daily dose varied significantly in treated with warfarin, and investigated association be- this classification according to the warfarin-responsive tween SNP genotype and warfarin-maintenance dose. index (2.0 mg/day for index 0 group, 2.5 mg/day for Five SNPs in VKORC1,5¢ flankingÀ1413A>G, intron index 1 group, and 3.5 mg/day for index 2 group; 1À136T>C, intron 2+124C>G, intron 2+837T>C P=4.4·10À13). -
Adaptative Evolution of the Vkorc1 Gene in Mus Musculus Domesticus
Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides Joffrey Goulois, Véronique Lambert, Lionel Legros, Etienne Benoit, Virginie Lattard To cite this version: Joffrey Goulois, Véronique Lambert, Lionel Legros, Etienne Benoit, Virginie Lattard. Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecology and Evolution, Wiley Open Access, 2017, 7 (8), pp.2767-2776. 10.1002/ece3.2829. hal-01603961 HAL Id: hal-01603961 https://hal.archives-ouvertes.fr/hal-01603961 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Received: 27 July 2016 | Revised: 15 January 2017 | Accepted: 28 January 2017 DOI: 10.1002/ece3.2829 ORIGINAL RESEARCH Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides Joffrey Goulois1,2 | Véronique Lambert1 | Lionel Legros2 | Etienne Benoit1 | Virginie Lattard1 1USC 1233 RS2GP, VetAgro Sup, INRA, Univ Lyon, F-69280, MARCY L’ETOILE, France Abstract 2Liphatech, Bonnel, Pont du Casse, France Anticoagulant rodenticides are commonly used to control rodent pests worldwide. -
Positive Selection in the Chromosome 16 VKORC1 Genomic Region Has Contributed to the Variability of Anticoagulant Response in Humans
Positive Selection in the Chromosome 16 VKORC1 Genomic Region Has Contributed to the Variability of Anticoagulant Response in Humans Blandine Patillon1,2*., Pierre Luisi3.,He´le`ne Blanche´ 4, Etienne Patin5, Howard M. Cann4, Emmanuelle Ge´nin1", Audrey Sabbagh6" 1 Inserm UMRS-946, Genetic Variability and Human Diseases, Institut Universitaire d’He´matologie, Universite´ Paris Diderot, Paris, France, 2 Universite´ Paris Sud, Kremlin- Biceˆtre, France, 3 Institute of Evolutionary Biology, CEXS-UPF-PRBB, Catalonia, Barcelona, Spain, 4 Fondation Jean-Dausset-CEPH, Paris, France, 5 Human Evolutionary Genetics, CNRS URA3012, Institut Pasteur, Paris, France, 6 UMR IRD 216, Universite´ Paris Descartes, Paris, France Abstract VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2) is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK). This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. -
Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation. -
United States Patent (19) 11 Patent Number: 5,348,854 Webster, Jr
US00534.8854A United States Patent (19) 11 Patent Number: 5,348,854 Webster, Jr. 45) Date of Patent: Sep. 20, 1994 54 METHOD FORDETECTINGPROKARYOTIC vol. 10, No. 2, "Overview of Automation and Identifi ORGANISMS cation,” pp. 18-20, William J. Martin (1979). 76 Inventor: John A. Webster, Jr., 5 Kenmar Dr., American Society for Microbiology News, vol. 49, No. 2, Bldg. 5, Apt. 21, Billerica, Mass. "Impact of Modern Taxonomy on Microbiology,” Don 01821 J. Brenner. International Code of Nomenclature of Bacteria and 21) Appl. No.: 21,551 Selected Statutes... Bacteriological Code, 1976 Revi 22 Filed: Mar. 2, 1987 sions; ASM, Washington, D.C. (1975). Arnot et al., Mol. Biochem. Parasitol. 3:47-56 (1981). Related U.S. Application Data Dunn et al., Cell 12:23-36 (1977). Mattei et al., Chem. Absts, vol. 86, No. 19, p. 267, Ab 63) Continuation of Ser. No. 695,223, Jan. 25, 1985, aban doned, Continuation-in-part of Ser. No. 305,498, Sep. stract No. 1362(e) (1977). 25, 1981, Pat. No. 4,717,653. Moseley, S. L. et al., J. Infect. Dis. 142:892-898 (1980). Acore, R. U., Current Topics in Microbiology and Im 51 Int. Cl. ............................................... C12Q 1/68 munobiology 64:105-128 (1974), edited by Springer, 52 U.S. C. .......................................... 435/6; 435/34; New York. 435/172.1; 435/810; 436/504; 436/545; 436/501; 436/804 Boros et al., Nucl. Acids Res, 6:1817-1830 (1979). 58) Field of Search .................. 435/6, 34, 172.1, 810; Saillard, Colette, J. N. Bove, "Methods in Mycro 436/504, 543, 545, 801, 501; 535/695, 223, 78, plasma,’ vol. -
Mice Are Here to Stay
Mice A re Here to Stay Wherever people live, there are mice. It would be difficult to find another animal that has adapted to the habitats created by humans as well as the house mouse has. It thus seemed obvious to Diethard Tautz at the Max Planck Institute for Evolutionary Biology in Plön that the species would make an ideal model system for investigating how evolution works. BIOLOGY & MEDICINE_Evolution Mice A re Here to Stay TEXT CORNELIA STOLZE he mice at the Max Planck mice themselves only within a range of can be a key factor in the emergence of Institute in Plön live in their 30 to 50 centimeters, they convey high- new species. For Tautz, the house very own house: they have ly complex messages. mouse is a model for the processes of 16 rooms where they can Diethard Tautz and his colleagues evolution: it would be difficult to find form their family clans and have discovered that house mice be- another animal species that lends itself T territories as they see fit. The experi- have naturally only when they live in so well to the study of the genetic ments Tautz and his colleagues carry a familiar environment and interact mechanisms of evolution. out to study such facets as the rodents’ with other members of their species. “Not only is this species extremely communication, behavior and partner- When animals living in the wild are adaptable, as demonstrated by its dis- ships sometimes take months. During captured, they lose their familiar envi- persal all over the globe, but we also this time, the mice are largely left to ronment: everything smells and tastes know its genome better than that of al- their own devices. -
PrevalenceOfVKORC1SingleNucleotidePolymorphism(SNP)
113 OriginalArticle PrevalenceofVKORC1SingleNucleotidePolymorphism(SNP)–1639 inThaiAdultPatientsWhoHaveINRMoreThan4fromWarfarin RawisutDeoisaresandPonlapatRojnuckarin Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital Abstract : Background : Previous studies showed that VKORC1 -1639 SNP genotype AA was more common in Asian compared with Caucasian population and associated with lower warfarin dose requirement. We hypothesized that this genetically-determined warfarin sensitivity may predispose the patients with this genotype to warfarin overdosage. Method : A descriptive study was conducted in adult patients taking warfarin with INR more than 4 at King Chulalongkorn Memorial Hospital. The VKORC1 -1639 genotyping in these cases was performed. Results : There were a total of 44 cases of warfarin overdose. The median age was 66 yr, range 21-90 yr, and 15 patients (34%) were male. The numbers (%) of VKORC1 -1639 genotype AA, AG and GG were 26 (59.1%), 16 (36.4%) and 2 (4.5%), respectively. This prevalence was similar to general Thai population and thromboembolic patients receiving warfarin. Conclusion : Our result implies that VKORC1 -1639 polymorphism is not a strong risk factor for warfarin overdose. Key Words : l Warfarin l Overdosage l VKORC1 l Single nucleotide polymorphism J Hematol Transfus Med 2010;20:113-8. Introduction Vitamin K is the cofactor of hepatic gamma carboxylation. Since 1954, warfain has been used worldwide as an After the reaction, vitamin K is transformed into an anticoagulant for treatment or prophylaxis of venous oxidized from that is inactive. VKORC1 can reduce the thromboembolism.1 Warfarin has good oral bioavailability. -
Vitamin K Epoxide Recycling Polypeptide Vkorc1, a Therapeutic
(19) TZZ __T (11) EP 2 272 951 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 9/04 (2006.01) C12N 15/52 (2006.01) 23.07.2014 Bulletin 2014/30 C07K 16/40 (2006.01) G01N 33/50 (2006.01) A01K 67/027 (2006.01) C12N 5/10 (2006.01) (21) Application number: 10011278.8 (22) Date of filing: 12.10.2004 (54) Vitamin k epoxide recycling polypeptide vkorc1, a therapeutic target of coumarin and their derivatives VKCORC1 (vitamin k epoxide recycling polypeptide), ein therapeutisches Ziel für Coumarin und deren Derivate Polypeptide VKCORC1 de recyclage de la vitamine k- epoxide, cible thérapeutique de la coumarine et de ses dérivés (84) Designated Contracting States: (74) Representative: HOFFMANN EITLE AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Patent- und Rechtsanwälte HU IE IT LI LU MC NL PL PT RO SE SI SK TR Arabellastrasse 4 81925 München (DE) (30) Priority: 14.10.2003 US 511041 P (56) References cited: (43) Date of publication of application: EP-A1- 2 189 523 WO-A-00/03015 12.01.2011 Bulletin 2011/02 WO-A2-2005/030039 (62) Document number(s) of the earlier application(s) in • ROST SIMONE ET AL: "Mutations in VKORC1 accordance with Art. 76 EPC: cause warfarin resistance and multiple 10002316.7 / 2 189 523 coagulation factor deficiency type 2.", NATURE. 04790318.2 / 1 673 450 5 FEB 2004, vol. 427, no. 6974, 5 February 2004 (2004-02-05), pages537-541, XP002318816, ISSN: (73) Proprietors: 1476-4687 • Baxter International Inc. -
Genotypes of Patients with Vitamin K Dependent Factors Deficiency
Genotypes of patients with Vitamin K dependent factors deficiency Gene Mutation Location Type Genotype Origin VKDF** VKDF** Comments Reference Activity Antigen % % GGCX IVS1 del 14 bp Intron 1 Undefined Hom 9-30 1 GGCX IVS2+1 G>T Intron 2 Splicing Comp Hispanic 2-4 2 IVS11+3 A>G Intron Splicing het 11 GGCX IVS2-1 G>T Intron 2 Splicing Comp Germany 21-42 3 Arg485Pro* Exon 11 Missense het GGCX Trp157Arg Exon 4 Missense Comp Tunis 5-9 60-73 Expression 4 Thr591Lys and Exon 13 Missense het Expression Asp31Asn Expression indicated polymorphism GGCX Leu394Arg Exon 9 Missense Hom Arab 2-8 10-57 Expression 5,6,7 GGCX His 404Pro Exon 9 Missense Comp Germany 13-54 8 Arg485Pro* Exon 11 Missense het GGCX Trp501Ser* Exon 11 Missense Hom Lebanon 1-6 Expression 9,10 GGCX Trp501Ser* Exon 11 Missense Hom Lebanon 9-35 11 VKORC1 Arg98Trp* Exon 3 Missense Hom Lebanon 20-60 12,13 VKORC1 Arg98Trp* Exon 3 Missense Hom Germany 20-60 12,13 VKORC1 Arg98Trp* Exon 3 Missense Hom Italy 8-26 35-100 14 Nucleotide numbers of GGCX are based on the Genebank file NM_000821 using the A (nt 29) of the ATG initiation methionine as +1. Nucleotide numbers of VKORC1 are based on the Genebank file AY423044 using the A (nt 1) of the ATG initiation methionine as +1. *A mutation that was identified in more than 1 family. **VKDF are prothrombin and factors VII, IX and X REFERENCES 1. Thomas A, Stirling D: Four factor deficiency. Blood Coagul Fibrinolysis Suppl1:S55, 2003. -
2Jrb Lichtarge Lab 2006
Pages 1–5 2jrb Evolutionary trace report by report maker December 2, 2009 4.3.3 DSSP 4 4.3.4 HSSP 4 4.3.5 LaTex 4 4.3.6 Muscle 4 4.3.7 Pymol 4 4.4 Note about ET Viewer 4 4.5 Citing this work 4 4.6 About report maker 4 4.7 Attachments 5 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 2jrb): Title: C-terminal domain of orf1p from mouse line-1 Compound: Mol id: 1; molecule: orf 1 protein; chain: a; fragment: residues 261-347; engineered: yes Organism, scientific name: Mus Musculus; CONTENTS 2jrb contains a single unique chain 2jrbA (65 residues long). This is an NMR-determined structure – in this report the first model in the 1 Introduction 1 file was used. 2 Chain 2jrbA 1 2.1 Q91V68 overview 1 2.2 Multiple sequence alignment for 2jrbA 1 2.3 Residue ranking in 2jrbA 1 2.4 Top ranking residues in 2jrbA and their position on 2 CHAIN 2JRBA the structure 1 2.1 Q91V68 overview 2.4.1 Clustering of residues at 25% coverage. 1 From SwissProt, id Q91V68, 100% identical to 2jrbA: 2.4.2 Possible novel functional surfaces at 25% Description: PORF1. coverage. 2 Organism, scientific name: Mus musculus domesticus (western 3 Notes on using trace results 3 European house mouse). 3.1 Coverage 3 Taxonomy: Eukaryota; Metazoa; Chordata; Craniata; Verte- 3.2 Known substitutions 3 brata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; 3.3 Surface 3 Rodentia; Sciurognathi; Muridae; Murinae; Mus. 3.4 Number of contacts 3 3.5 Annotation 3 3.6 Mutation suggestions 3 2.2 Multiple sequence alignment for 2jrbA 4 Appendix 3 For the chain 2jrbA, the alignment 2jrbA.msf (attached) with 45 4.1 File formats 3 sequences was used. -
The Highly Prolific Phenotype of Lacaune Sheep Is Associated with an Ectopic Expression of the B4GALNT2 Gene Within the Ovary
The Highly Prolific Phenotype of Lacaune Sheep Is Associated with an Ectopic Expression of the B4GALNT2 Gene within the Ovary Laurence Drouilhet1., Camille Mansanet2., Julien Sarry1, Kamila Tabet1, Philippe Bardou3, Florent Woloszyn1,Je´rome Lluch4, Gre´goire Harichaux2,5, Catherine Viguie´ 6, Danielle Monniaux2, Loys Bodin7, Philippe Mulsant1, Ste´phane Fabre1,2* 1 INRA-ENVT, UMR 444, Laboratoire de Ge´ne´tique Cellulaire, Castanet-Tolosan, France, 2 INRA UMR 85, CNRS UMR 7247, Universite´ de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France, 3 INRA, SIGENAE, Laboratoire de Ge´ne´tique Cellulaire, Castanet-Tolosan, France, 4 INRA, GeT-PlaGe Genotoul, Castanet-Tolosan, France, 5 INRA, Plate-forme d’Analyse Inte´grative des Biomole´cules, Laboratoire de Spectrome´trie de Masse, Nouzilly, France, 6 UMR 1331 INRA-ENVT- EIP-INPT-UPS, Toxicologie Alimentaire, Toulouse, France, 7 INRA, UR 631, Station d’Ame´lioration Ge´ne´tique des Animaux, Castanet-Tolosan, France Abstract Prolific sheep have proven to be a valuable model to identify genes and mutations implicated in female fertility. In the Lacaune sheep breed, large variation in litter size is genetically determined by the segregation of a fecundity major gene influencing ovulation rate, named FecL and its prolific allele FecLL. Our previous work localized FecL on sheep chromosome 11 within a locus of 1.1 Mb encompassing 20 genes. With the aim to identify the FecL gene, we developed a high throughput sequencing strategy of long-range PCR fragments spanning the locus of FecLL carrier and non-carrier ewes. Resulting informative markers defined a new 194.6 kb minimal interval. -
Gene Regulation and the Genomic Basis of Speciation and Adaptation in House Mice (Mus Musculus)
Gene regulation and the genomic basis of speciation and adaptation in house mice (Mus musculus) By Katya L. Mack A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Michael W. Nachman, Chair Professor Rasmus Nielsen Professor Craig T. Miller Fall 2018 Abstract Gene regulation and the genomic basis of speciation and adaptation in house mice (Mus musculus) by Katya Mack Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Michael W. Nachman, Chair Gene expression is a molecular phenotype that is essential to organismal form and fitness. However, how gene regulation evolves over evolutionary time and contributes to phenotypic differences within and between species is still not well understood. In my dissertation, I examined the role of gene regulation in adaptation and speciation in house mice (Mus musculus). In chapter 1, I reviewed theoretical models and empirical data on the role of gene regulation in the origin of new species. I discuss how regulatory divergence between species can result in hybrid dysfunction and point to areas that could benefit from future research. In chapter 2, I characterized regulatory divergence between M. m. domesticus and M. m. musculus associated with male hybrid sterility. The major model for the evolution of post-zygotic isolation proposes that hybrid sterility or inviability will evolve as a product of deleterious interactions (i.e., negative epistasis) between alleles at different loci when joined together in hybrids. As the regulation of gene expression is inherently based on interactions between loci, disruption of gene regulation in hybrids may be a common mechanism for post-zygotic isolation.