Shire Valley Irrigation Project (SVIP)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uganda Wildlife Bill 2017.Pdf
PARLIAMENT LIBRARY PO. BOX 7178. KAMPAL A BILLS ,: SUPPLEMENT No.7 * l.t- * 8th June, 2017. iSUPPLEMENT A#KLI ' to the Uganda iazetle No. 3'3"' v;i;;; c *:' i ;; ; a' bi i' i u, 20t7. CALL NO f Printed by 1 I Bill No. 11 Uganda Wildlife Bill 2017 a THE UGANDA WILDLIFE BILL,\OI7 MEMORANDUM l. The object of this Bill is to provide for the conservation and sustainable management of wildlife; to strengthen wildlife conservation and management; to continue the Uganda Wildlife Authority; to streamline roles and responsibilities for institutions involved in wildlife conservation and management; and for other related matters. 2. Policy and principles The policy behind this Bill is to strengthen the legal framework for wildlife conservation and management in Uganda. The Bill seeks- (a) to re-align the Uganda Wildlife Act Cap. 200 with the Uganda Wildlife Policy, 2074, the Oil and Gas policy and laws, the Land use policy and law, the National Environment Act, the Uganda Wildlife Education Centre Act, the Uganda Wildlife Research and Training Institute Act and all other laws of Uganda and developments which came into force after the enactment of the Uganda I Wildlife Act in 1996: (b) to provide for compensation of loss occasioned by wild t animals escaping from wildlife protected areas; (c) to provide for effective management of problem animals and vermin by the Uganda Wildlife Authority, the Local Governments and Communities surrounding wildlife protected areas; (d) to clearly define and streamline roles and responsibilities of the Ministry responsible -
Bioseries12-Amphibians-Taita-English
0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria. -
Aspects of the Ecology and Conservation of Frogs in Urban Habitats of South Africa
Frogs about town: Aspects of the ecology and conservation of frogs in urban habitats of South Africa DJD Kruger 20428405 Thesis submitted for the degree Philosophiae Doctor in Zoology at the Potchefstroom Campus of the North-West University Supervisor: Prof LH du Preez Co-supervisor: Prof C Weldon September 2014 i In loving memory of my grandmother, Kitty Lombaard (1934/07/09 – 2012/05/18), who has made an invaluable difference in all aspects of my life. ii Acknowledgements A project with a time scale and magnitude this large leaves one indebted by numerous people that contributed to the end result of this study. I would like to thank the following people for their invaluable contributions over the past three years, in no particular order: To my supervisor, Prof. Louis du Preez I am indebted, not only for the help, guidance and support he has provided throughout this study, but also for his mentorship and example he set in all aspects of life. I also appreciate the help of my co-supervisor, Prof. Ché Weldon, for the numerous contributions, constructive comments and hours spent on proofreading. I owe thanks to all contributors for proofreading and language editing and thereby correcting my “boerseun” English grammar but also providing me with professional guidance. Prof. Louis du Preez, Prof. Ché Weldon, Dr. Andrew Hamer, Dr. Kirsten Parris, Prof. John Malone and Dr. Jeanne Tarrant are all dearly thanked for invaluable comments on earlier drafts of parts/the entirety of this thesis. For statistical contributions I am especially also grateful to Dr. Andrew Hamer for help with Bayesian analysis and to the North-West Statistical Services consultant, Dr. -
Uganda and Rwanda: Shoebill Experience, Nyungwe’S Albertine Rift and Great Apes
MEGAFARI: Uganda and Rwanda: Shoebill experience, Nyungwe’s Albertine Rift and Great Apes 16 – 27 April 2010 (12 days), Leader: Keith Barnes, Custom trip Photos by Keith Barnes. All photos taken on this trip. The spectacular Shoebill was the star of the show in Uganda, and a much-wanted species by all. Introduction This was the second leg of the Megafari – a true trip of a lifetime for most of the participants. Our Tanzania leg had already been the most successful trip we had ever had, netting an incredible 426 bird species in only 11 days. The main aims of the Uganda and Rwanda leg was to see a Shoebill stalking in deep Papyrus swamps, score a gamut of rainforest birds in both the lowlands of Budongo and then also the impressive montane forests of the incredible Nyungwe NP, and to see primates and of course, the irrepressible great apes, Chimpanzee and Mountain Gorilla. Fortunately, we achieved all these aims, netting 417 bird species on this 12-day leg of the trip, as well as accumulating an incredible 675 bird species and 62 mammals in just over three-weeks of the Megafari. The Megafari was a boon for spectacular birds and we saw 51 species of bird of prey, 11 species of turaco, 11 species of kingfisher, 10 species of bee-eater, 12 species of hornbill, and 25 species of sunbird. We also saw the famous Big-5 mammals and had incredible encounters with Mountain Gorillas and Chimpanzees amongst 11 species of primates. For the extremely successful Tanzania portion of the tour, click here. -
Life–History and Ecological Distribution of Chameleons (Reptilia, Chamaeleonidae) from the Rain Forests of Nigeria: Conservation Implications
Animal Biodiversity and Conservation 24.2 (2001) 1 Life–history and ecological distribution of chameleons (Reptilia, Chamaeleonidae) from the rain forests of Nigeria: conservation implications G. C. Akani1, O. K. Ogbalu1 & L. Luiselli2,3,* Akani, G. C., Ogbalu, O. K. & Luiselli, L., 2001. Life–history and ecological distribution of chameleons (Reptilia, Chamaeleonidae) from the rain forests of Nigeria: conservation implications. Animal Biodiversity and Conservation, 24.2: 1–15. Abstract Life–history and ecological distribution of chameleons (Reptilia, Chamaeleonidae) from the rain forests of Nigeria: conservation implications.— Five species of chameleons were observed in the continuous forest zone of southern Nigeria: Chamaeleo gracilis gracilis Hallowell, 1842, Chamaeleo owenii Gray, 1831, Chamaeleo cristatus Stutchbury, 1837, Chamaeleo wiedersheimi Nieden, 1910, and Rhampholeon spectrum (Bucholz 1874). Many original locality records are presented for each species. One species is apparently rare and confined to montane habitats (C. wiedersheimi), another species is relatively common and its habitat is generalist (C. gracilis), and the other three species are vulnerable and limited to specific micro–habitats. Female R. spectrum had clutch sizes of two eggs each and exhibited a prolonged reproductive season with oviposition likely occurring during the late phase of the dry season. Females of both C. cristatus (clutch sizes: 11–14 eggs) and C. owenii (clutch sizes: 15–19 eggs) have a shorter reproductive season with oviposition occurring most probably at the interphase between the end of the wet season and the onset of the dry season, and female C. gracilis (clutch sizes: 14–23 eggs) appeared to exhibit two distinct oviposition periods (one at the interphase between the end of the wet season and the onset of the dry season, and one at the peak phase of the dry season). -
A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al. -
Genus Lycodon)
Zoologica Scripta Multilocus phylogeny reveals unexpected diversification patterns in Asian wolf snakes (genus Lycodon) CAMERON D. SILER,CARL H. OLIVEROS,ANSSI SANTANEN &RAFE M. BROWN Submitted: 6 September 2012 Siler, C. D., Oliveros, C. H., Santanen, A., Brown, R. M. (2013). Multilocus phylogeny Accepted: 8 December 2012 reveals unexpected diversification patterns in Asian wolf snakes (genus Lycodon). —Zoologica doi:10.1111/zsc.12007 Scripta, 42, 262–277. The diverse group of Asian wolf snakes of the genus Lycodon represents one of many poorly understood radiations of advanced snakes in the superfamily Colubroidea. Outside of three species having previously been represented in higher-level phylogenetic analyses, nothing is known of the relationships among species in this unique, moderately diverse, group. The genus occurs widely from central to Southeast Asia, and contains both widespread species to forms that are endemic to small islands. One-third of the diversity is found in the Philippine archipelago. Both morphological similarity and highly variable diagnostic characters have contributed to confusion over species-level diversity. Additionally, the placement of the genus among genera in the subfamily Colubrinae remains uncertain, although previous studies have supported a close relationship with the genus Dinodon. In this study, we provide the first estimate of phylogenetic relationships within the genus Lycodon using a new multi- locus data set. We provide statistical tests of monophyly based on biogeographic, morpho- logical and taxonomic hypotheses. With few exceptions, we are able to reject many of these hypotheses, indicating a need for taxonomic revisions and a reconsideration of the group's biogeography. Mapping of color patterns on our preferred phylogenetic tree suggests that banded and blotched types have evolved on multiple occasions in the history of the genus, whereas the solid-color (and possibly speckled) morphotype color patterns evolved only once. -
Journal of the East Africa Natural History Society and National Museum
JOURNAL OF THE EAST AFRICA NATURAL HISTORY SOCIETY AND NATIONAL MUSEUM 15 October, 1978 Vol. 31 No. 167 A CHECKLIST OF mE SNAKES OF KENYA Stephen Spawls 35 WQodland Rise, Muswell Hill, London NIO, England ABSTRACT Loveridge (1957) lists 161 species and subspecies of snake from East Mrica. Eighty-nine of these belonging to some 41 genera were recorded from Kenya. The new list contains some 106 forms of 46 genera. - Three full species have been deleted from Loveridge's original checklist. Typhlops b. blanfordii has been synonymised with Typhlops I. lineolatus, Typhlops kaimosae has been synonymised with Typhlops angolensis (Roux-Esteve 1974) and Co/uber citeroii has been synonymised with Meizodon semiornatus (Lanza 1963). Of the 20 forms added to the list, 12 are forms collected for the first time in Kenya but occurring outside its political boundaries and one, Atheris desaixi is a new species, the holotype and paratypes being collected within Kenya. There has also been a large number of changes amongst the 89 original species as a result of revisionary systematic studies. This accounts for the other additions to the list. INTRODUCTION The most recent checklist dealing with the snakes of Kenya is Loveridge (1957). Since that date there has been a significant number of developments in the Kenyan herpetological field. This paper intends to update the nomenclature in the part of the checklist that concerns the snakes of Kenya and to extend the list to include all the species now known to occur within the political boundaries of Kenya. It also provides the range of each species within Kenya with specific locality records . -
Community Based Natural Resource Management: Stocktaking Assessment
COMMUNITY BASED NATURAL RESOURCE MANAGEMENT: STOCKTAKING ASSESSMENT MALAWI PROFILE OCTOBER 2010 This publication was produced for review by the United States Agency for International Development. It was prepared by DAI in collaboration with World Wildlife Fund, Inc. (WWF). COMMUNITY BASED NATURAL RESOURCE MANAGEMENT: STOCKTAKING ASSESSMENT MALAWI PROFILE Program Title: Capitalizing Knowledge, Connecting Communities Program (CK2C) Sponsoring USAID Office: USAID/Office of Acquisition and Assistance Contract Number: EPP-I-00-06-00021-00/01 Contractor: DAI Date of Publication: October 2010 Author: Daulos D.C. Mauambeta and Robert P.G. Kafakoma, Malawi CBNRM Forum, DAI Collaborating Partner: COPASSA project implemented by World Wildlife Fund, Inc. (WWF); Associate Cooperative Agreement Number: EPP-A-00-00004-00; Leader with Associate Award Number:LAG-A-00-99-00048-00 The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. CONTENTS ACKNOWLEDGMENTS .........................................................................................................V ABBREVIATIONS ................................................................................................................VII INTRODUCTION .................................................................................................................... 1 OBJECTIVES OF THE STUDY ..................................................................................................... -
Plant-Frugivore Interactions in a Heterogeneous Forest Landscape of South Africa
Plant-frugivore interactions in a heterogeneous forest landscape of South Africa Dissertation In partial fulfilment of the requirements for the award of a Doctorate Degree in Natural Sciences (Dr. rer. nat) The Faculty of Biology, Philipps-University of Marburg Lackson Chama, MSc Sinazongwe (Zambia) June 2012, Marburg From the Faculty of Biology, Philipps-University Marburg als Dissertation am angenommen. Dekan: Prof. Dr. Paul Galland Erstgutachterin: Prof. Dr. N. Farwig Zweitgutachter: Prof. Dr. R. Brandl Tag der Disputation: 25th June 2012 Dedicated to my son, Mishila, who’s first two years on earth I was hardly part of, due to my commitment towards this work. Contents CHAPTER 1: GENERAL INTRODUCTION ..................................................................................................................... 3 EFFECTS OF HUMAN ACTIVITIES ON FOREST BIODIVERSITY ........................................................................................................ 4 PLANT-FRUGIVORE INTERACTIONS IN CHANGING LANDSCAPES .................................................................................................. 5 THE ROLE OF FUNCTIONAL DIVERSITY IN FRUGIVORE COMMUNITIES ........................................................................................... 5 EFFECTS OF SEED INGESTION BY FRUGIVOROUS BIRDS ON GERMINATION SUCCESS ........................................................................ 6 AIMS OF THE THESIS ......................................................................................................................................................... -
Biogeography of the Reptiles of the Central African Republic
African Journal of Herpetology, 2006 55(1): 23-59. ©Herpetological Association of Africa Original article Biogeography of the Reptiles of the Central African Republic LAURENT CHIRIO AND IVAN INEICH Muséum National d’Histoire Naturelle Département de Systématique et Evolution (Reptiles) – USM 602, Case Postale 30, 25, rue Cuvier, F-75005 Paris, France This work is dedicated to the memory of our friend and colleague Jens B. Rasmussen, Curator of Reptiles at the Zoological Museum of Copenhagen, Denmark Abstract.—A large number of reptiles from the Central African Republic (CAR) were collected during recent surveys conducted over six years (October 1990 to June 1996) and deposited at the Paris Natural History Museum (MNHN). This large collection of 4873 specimens comprises 86 terrapins and tortois- es, five crocodiles, 1814 lizards, 38 amphisbaenids and 2930 snakes, totalling 183 species from 78 local- ities within the CAR. A total of 62 taxa were recorded for the first time in the CAR, the occurrence of numerous others was confirmed, and the known distribution of several taxa is greatly extended. Based on this material and an additional six species known to occur in, or immediately adjacent to, the coun- try from other sources, we present a biogeographical analysis of the 189 species of reptiles in the CAR. Key words.—Central African Republic, reptile fauna, biogeography, distribution. he majority of African countries have been improved; known distributions of many species Tthe subject of several reptile studies (see are greatly expanded and distributions of some for example LeBreton 1999 for Cameroon). species are questioned in light of our results. -
Climate Change Vulnerability of Migratory Species Species
UNEP/CMS/ScC17/Inf.9 Climate Change Vulnerability of Migratory Species Species Assessments PRELIMINARY REVIEW A PROJECT REPORT FOR CMS SCIENTIFIC COUNCIL The Zoological Society of London (ZSL) has conducted research for the UNEP Convention on Migratory Species (CMS) into the effects of climate change on species protected under the convention. Report production: Aylin McNamara Contributors: John Atkinson Sonia Khela James Peet Ananya Mukherjee Hannah Froy Rachel Smith Katherine Breach Jonathan Baillie Photo Credits for front page: Tim Wacher For further information please contact: Aylin McNamara, Climate Change Thematic Programme, Zoological Society of London Email: [email protected] 2 TABLE OF CONTENTS 1. EXECUTIVE SUMMARY ............................................................................................................................................................................................................ 6 2. OVERVIEW OF THREATS ......................................................................................................................................................................................................... 12 Increasing Temperatures .................................................................................................................................................................................................. 13 Changes In Precipitation ..................................................................................................................................................................................................