Smart Internet of Vehicles Architecture Based on Deep Learning for Occlusion Detection

Total Page:16

File Type:pdf, Size:1020Kb

Smart Internet of Vehicles Architecture Based on Deep Learning for Occlusion Detection (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 12, No. 3, 2021 Smart Internet of Vehicles Architecture based on Deep Learning for Occlusion Detection Shaya A. Alshaya Department of Computer Science College of Science and Humanities at alGhat, Majmaah University, Majmaah, 11952, Saudi Arabia Abstract—In our days, the cyber world is developing due to avoid forged data based on interpretation mechanisms. Besides, the revolution of smart cities and machine learning technologies. deep learning methods reduce redundancy and provide high The internet of Things constitutes the essential background of robustness of the system by following the inspection's high cyber technology. As a case study, the Internet of Vehicles is one quality. of the leading applications which is developed quickly. Studies are focused on resolving issues related to real-time problems and Therefore, moving from a centralized approach to edge privacy leakage. Uploading data from the cloud during the data computing reduces the unnecessary jumps to the network and collection step is the origin of delay issues. This process decreases improves latency [5]. Privacy is enhanced by adopting a the level of privacy. The objective of the present paper is to Collaborative Learning (CL) technology. It manages data ensure a high level of privacy and accelerated data collection. through multiple decentralized edge devices without During this study, we propose an advanced Internet of Vehicle exchanging them. It follows a training method different from architecture to conduct the data collection step. An occlusion the traditional cloud data center. The trained data were not detection application based on a deep learning technique is collected directly from terminals [6]. The CL technology performed to evaluate the IoV architecture. Training data at ensures privacy by gathering models and their updates from Distributed Intelligent layer ensures not only the privacy of data each RSU. but also reduces the delay. All RSU shares the model of the cloud data center. The CL Keywords—Internet of vehicle; deep learning; collaborative performs the following steps: (1) the user provides data, (2) the technologies; cloud; edge computing local model trains the provided data, and (3) the trained model is uploaded to the cloud data center. I. INTRODUCTION However, the CL mechanism provides more privacy and The recent development of network technology gives birth reduces delay by decreasing the training time of the sharing to cyber intelligence technologies. The Internet of Vehicles model in the cloud. (IoV) is a subfield of the Internet of Things (IoT) that has evolved a new generation of network technology [1]. In light of this introduction, we can summarize contributions into three points: The IoV case analyzes data based on artificial intelligence (AI) and Machine Learning (ML) methods. This field is still 1) Propose an advanced architecture at the edge computing challenged by analyzing big data, privacy, and computational layer for the IoV. The proposed ensures intelligent data power limitation. collection. The IoV cooperates with the cloud platform to ensure 2) Propose a deep learning method for the preprocessing permanent services. Two issues are faced with the IoV step. The proposed reduces the delay. applications: (1) delay problem and (2) privacy violation [2]. 3) Deploy the CL technology between the local model We define an intermediate layer called edge computing to from the edge node and the cloud edge. manage the vehicle network layer and cloud layer to overcome The next section presents the literature review. The these problems. The edge computing layer is determined by the proposed IoV architecture is introduced in Section III. The data location information and the low latency. This is obtained preprocessing schemes designed according to a deep learning because edge nodes are constituted by the Road Side Unit method and collaborative learning are described in Section IV. (RSU) [3]. Results and analyzes are discussed in Section V. A conclusion The edge computing layer indeed solves the above is highlighted at the end of this article. problems, but other difficulties are bred as (1) increase in the II. LITERATURE REVIEW amount of data, (2) an increase in the amount of data types, (3) difficult to adapt existing data collection related to This section attempts to summarize the latest research embedded data, (4) need for intelligent methods to collect data, related to the Internet of Vehicles based on the following and (5) need for smart methods for the transmission [4]. directives: (1) The assessment of the quality of services, (2) occlusion detection. Deep learning methods provide a solution for the above difficulty. They ensure the simulation of the data analysis to 231 | P a g e www.ijacsa.thesai.org (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 12, No. 3, 2021 A. Quality of Service Assessment III. PROPOSED IOV ARCHITECTURE SCHEME The safety of the road and the crowd's reduction is We introduce the proposed IoV architecture for the enhanced according to the evaluation of the QoS [7]. Van der collection and transmission of data on an edge computing layer Lee et al., [8] propose a scheduling method to evaluate the during this section. This architecture is composed of four sub- vehicle network QoS. This method was named a Time layers, as described in Fig. 1. Synchronized Channel Hopping (TSCH). It introduces the interference diagram, which is dependent on internal Data collection layer: This layer is built based on nodes. interference and conflict. This attempt provides accurate RSUs collect data related to vehicles and roads as vehicle analyzes of the network performance. The ratio of packet location and traffic information [22]. These data are sent reception and latency compose the performance metrics. continuously to the distributed intelligence layer through edge devices. Zhang et al., [9] introduce an open access geometry-based efficient propagation model. This model is composed of a Distributed intelligence layer: This layer aims to ensure connected vehicle in the traffic network that analyzes the QoS preprocessing and data analysis received from the data according to the principal component, multidimensional collection layer. This intermediate layer between RSU and scaling, and variance. The QoS is carrying out for vehicle- centralized cloud computing provides a powerful step to infrastructure and vehicle-vehicle. increase storage capabilities, share communication resources, and improve computing. The distributed intelligence layer is B. Occlusion Detection in IoV Systems responsible for data transfer methods and the network's Avoid occlusion in traffic is the subject of many related evaluation [23]. works. Determine the density of the crowded in urban is still Data processing layer: In this layer, the collecting sensing challenged [10]. The process aims to detect vehicles and data are trained. Three functions are verified in this step: exploit the crowded density. This is ensured through (1) Detect the data quality, (2) Detect data similarity, and preprocessing, motion detection, feature extraction, and (3) Detect relevant data. This step decreases the amount of data classification steps [11]. There are many traditional and new transmitted to the cloud. Only the training results are sent to the techniques used for classification [12]. Deep learning is the cloud instead of direct transmission to the centralized cloud. kernel of these new approaches like CNN approaches. The data processing layer reduces delays related to In the traditional approaches, features are determined communications and increases the privacy level [24]. manually, and the classification step computes the similarity according to these predetermined features. For example, the authors in [24] applied HOG algorithm to detect humans. Hadjkacem et al. [13] used Gait-Appearance-based Multi- Scale Video Covariance (GAMS-ViCov) to detect a pedestrian. The estimation of a high-dense crowd through images is the main subject discussed in [14]. The author used Balanced Communication-Avoiding Support Vector Machine classifier for the detection. In [15], the authors are focused on the case of the detection of vehicles by applying Harr-like and Adaboost features. The limitation of representation is the main issue of the traditional approaches. In the deep learning approach, features are determined automatically according to the provided dataset. This approach offers a broad representation ability [16]. We focus on related works based on CNN with two-stage because it enriches higher performance compared to the one-stage approach [17][18]. The CNN-two-stage includes a region-based convolutional neural network [19]. Martinez et al., [19] perform CNN as a selective search. The purpose is to detect two thousand candidate regions through a fixed-sized input image. The obtained result in terms of performance is higher than the traditional approach but this method is time-consuming. The authors in [20] and [21] attempt to reduce the time consuming. They used the selective once (SPP-Net method) to remove it (Fast R-CNN method) as described in [21]. This led to announce the region network method instead of selective search. The region network ensures convolutional operation and sharing computation. These advancements provide a higher accuracy at minimum time-consuming. Fig. 1. Proposed IoV Architecture. 232 | P a g e www.ijacsa.thesai.org (IJACSA)
Recommended publications
  • Internet of Things Meets Brain-Computer Interface: a Unified Deep Learning Framework for Enabling Human-Thing Cognitive Interactivity
    JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 Internet of Things Meets Brain-Computer Interface: A Unified Deep Learning Framework for Enabling Human-Thing Cognitive Interactivity Xiang Zhang, Student Member, IEEE, Lina Yao, Member, IEEE, Shuai Zhang, Student Member, IEEE, Salil Kanhere, Member, IEEE, Michael Sheng, Member, IEEE, and Yunhao Liu, Fellow, IEEE Abstract—A Brain-Computer Interface (BCI) acquires brain signals, analyzes and translates them into commands that are relayed to actuation devices for carrying out desired actions. With the widespread connectivity of everyday devices realized by the advent of the Internet of Things (IoT), BCI can empower individuals to directly control objects such as smart home appliances or assistive robots, directly via their thoughts. However, realization of this vision is faced with a number of challenges, most importantly being the issue of accurately interpreting the intent of the individual from the raw brain signals that are often of low fidelity and subject to noise. Moreover, pre-processing brain signals and the subsequent feature engineering are both time-consuming and highly reliant on human domain expertise. To address the aforementioned issues, in this paper, we propose a unified deep learning based framework that enables effective human-thing cognitive interactivity in order to bridge individuals and IoT objects. We design a reinforcement learning based Selective Attention Mechanism (SAM) to discover the distinctive features from the input brain signals. In addition, we propose a modified Long Short-Term Memory (LSTM) to distinguish the inter-dimensional information forwarded from the SAM. To evaluate the efficiency of the proposed framework, we conduct extensive real-world experiments and demonstrate that our model outperforms a number of competitive state-of-the-art baselines.
    [Show full text]
  • The Internet of Things (Iot): an Overview
    Updated February 12, 2020 The Internet of Things (IoT): An Overview The Internet of Things (IoT) is a system of interrelated incorporation of IIoT and analytics is viewed by experts as devices connected to a network and/or to one another, the Fourth Industrial Revolution, or 4IR. exchanging data without necessarily requiring human-to- machine interaction. In other words, IoT is a collection of Internet of Medical Things (IoMT): The healthcare field electronic devices that can share information among has begun incorporating IoT, creating the Internet of themselves. Examples include smart factories, smart home Medical Things (IoMT). These devices, such as heart devices, medical monitoring devices, wearable fitness monitors and pace makers, collect and send patient health trackers, smart city infrastructures, and vehicular statistics over various networks to healthcare providers for telematics. Potential issues for Congress include regulation, monitoring, analysis, and remote configuration. At a digital privacy, and data security as discussed below. personal health level, wearable IoT devices, such as fitness trackers and smart watches, can track a user’s physical IoT Characteristics activities, basic vital data, and sleeping patterns. According IoT devices are often called “smart” devices because they to a 2019 survey by Pew Research, about one-in-five have sensors and can conduct complex data analytics. IoT Americans uses a smart watch or fitness tracker. devices collect data using sensors and offer services to the user based on the analyses of that data and according to Smart Cities: IoT devices and systems in the utilities, user-defined parameters. For example, a smart refrigerator transportation, and infrastructure sectors may be grouped uses sensors (e.g., cameras) to inventory stored items and under the category of “smart city.” Utilities can use IoT to can alert the user when items run low based on image create “smart” grids and meters for electricity, water, and recognition analyses.
    [Show full text]
  • Handheld Computing Terminal Industrializing Mobile Gateway for the Internet of Things
    Handheld Computing Terminal Industrializing Mobile Gateway for the Internet of Things Retail Inventory Logistics Management Internet of Vehicles Electric Utility Inspection www.AMobile-solutions.com About AMobile Mobile Gateway for IIoT Dedicated IIoT, AMobile develops mobile devices and gateways for data collectivity, wireless communications, local computing and processing, and connectivity between the fields and cloud. In addition, AMobile's unified management platform-Node-Watch monitors and manages not only mobile devices but also IoT equipment in real-time to realize industrial IoT applications. Manufacturing • IPC mobile • Mobility computing technology Retail Inspection (IP-6X, Military • Premier member grade, Wide- - early access Blockchain temperature) Healthcare Logistics • Manufacturing resource pool Big Data & AI • Logistics • Global customer support Handheld Mobile Computing Data Collector Smart Meter Mobile Inspection Device with Keyboard Assistant Mobile Computing IoT Terminal Device Ultra-rugged Intelligent Barcode Reader Vehicle Mount Handheld Device Handheld Device Tablet Mobile Gateway AMobile Intelligent established in 2013, a joint venture by Arbor Technology, MediaTek, and Wistron, is Pressure Image an expert in industrial mobile computers and solutions for industrial applications including warehousing, Temperature Velocity Gyroscope logistics, manufacturing, and retail. Leveraging group resources of manufacturing and services from Wistron, IPC know-how and distribution channels from Arbor, mobility technology and
    [Show full text]
  • Fog Computing: a Platform for Internet of Things and Analytics
    Fog Computing: A Platform for Internet of Things and Analytics Flavio Bonomi, Rodolfo Milito, Preethi Natarajan and Jiang Zhu Abstract Internet of Things (IoT) brings more than an explosive proliferation of endpoints. It is disruptive in several ways. In this chapter we examine those disrup- tions, and propose a hierarchical distributed architecture that extends from the edge of the network to the core nicknamed Fog Computing. In particular, we pay attention to a new dimension that IoT adds to Big Data and Analytics: a massively distributed number of sources at the edge. 1 Introduction The “pay-as-you-go” Cloud Computing model is an efficient alternative to owning and managing private data centers (DCs) for customers facing Web applications and batch processing. Several factors contribute to the economy of scale of mega DCs: higher predictability of massive aggregation, which allows higher utilization with- out degrading performance; convenient location that takes advantage of inexpensive power; and lower OPEX achieved through the deployment of homogeneous compute, storage, and networking components. Cloud computing frees the enterprise and the end user from the specification of many details. This bliss becomes a problem for latency-sensitive applications, which require nodes in the vicinity to meet their delay requirements. An emerging wave of Internet deployments, most notably the Internet of Things (IoTs), requires mobility support and geo-distribution in addition to location awareness and low latency. We argue that a new platform is needed to meet these requirements; a platform we call Fog Computing [1]. We also claim that rather than cannibalizing Cloud Computing, F. Bonomi R.
    [Show full text]
  • The Internet of Things: Impact on Public Safety Communications
    Cybersecurity and Infrastructure Security Agency The Internet of Things March 2019 The Internet of Things: Impact on Public Safety Communications The Internet of Things (IoT) is the network of physical devices and connectivity that enables objects to connect to one another, to the Internet, and exchange data amongst themselves.1, 2 IoT allows connected devices to be sensed or controlled remotely across network infrastructures, creating opportunities for more direct, cross-platform integration and improved efficiencies for the transfer of data between devices. IoT presents undeniable implications for public safety IoT goes beyond simply connecting communications. In turn, comprehensively addressing the objects to the Internet; it allows ever-growing IoT environment presents a unique challenge to physical objects to intelligently self- service providers, equipment manufacturers, and consumers. identify and communicate with other Harnessing network architecture changes and equipping devices, creating a new model of everyday objects to be IoT-enabled will allow public safety information sharing with a variety of stakeholders to maximize existing infrastructure investments potential applications. and provide near-real time decision support experiences that can change how they operate. IoT Benefits IoT-enabled devices can provide numerous benefits to public safety, as shown in Table 1. For example, a traffic accident response team could use the data collected from a variety of Internet-connected devices ― such as the involved vehicles (e.g.,
    [Show full text]
  • Home Automation System Using Google Assistant
    © 2021 JETIR June 2021, Volume 8, Issue 6 www.jetir.org (ISSN-2349-5162) HOME AUTOMATION SYSTEM USING GOOGLE ASSISTANT MUDASIR M, NEHA V, NIHAAL THATHIR K, PAVAN YADAV M, POLLARPU SREERAMULU, SMITHA PATIL B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India B.Tech. Student, Department of Computer Science and Engineering, Presidency University, Bangalore, India Assistant Professor, Department of Computer Science and Engineering, Presidency University, Bangalore, India Abstract: Nowadays Technology keeps on upgrading. The idea behind Google assistant-controlled Home automation is to control home devices with voice. On the market there are many devices available to do that, but making our own is awesome. In this project, the Google assistant requires voice commands. Adafruit account which is a cloud based free IoT web server used to create virtual switches, is linking to IFTTT website abbreviated as “If This Than That” which is used to create if else conditional statements. The voice commands for Google assistant have been added through IFTTT website. In this home automation, as the user gives commands to the Google assistant, Home appliances like Bulb, Fan and Motor etc., can be controlled accordingly. The commands given through the Google assistant are decoded and then sent to the microcontroller, the microcontroller in turn control the relays connected to it. The device connected to the respective relay can be turned ON or OFF as per the users request to the Google Assistant.
    [Show full text]
  • A Survey of Autonomous Vehicles: Enabling Communication Technologies and Challenges
    sensors Review A Survey of Autonomous Vehicles: Enabling Communication Technologies and Challenges M. Nadeem Ahangar 1, Qasim Z. Ahmed 1,*, Fahd A. Khan 2 and Maryam Hafeez 1 1 School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK; [email protected] (M.N.A.); [email protected] (M.H.) 2 School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan; [email protected] * Correspondence: [email protected] Abstract: The Department of Transport in the United Kingdom recorded 25,080 motor vehicle fatali- ties in 2019. This situation stresses the need for an intelligent transport system (ITS) that improves road safety and security by avoiding human errors with the use of autonomous vehicles (AVs). There- fore, this survey discusses the current development of two main components of an ITS: (1) gathering of AVs surrounding data using sensors; and (2) enabling vehicular communication technologies. First, the paper discusses various sensors and their role in AVs. Then, various communication tech- nologies for AVs to facilitate vehicle to everything (V2X) communication are discussed. Based on the transmission range, these technologies are grouped into three main categories: long-range, medium- range and short-range. The short-range group presents the development of Bluetooth, ZigBee and ultra-wide band communication for AVs. The medium-range examines the properties of dedicated short-range communications (DSRC). Finally, the long-range group presents the cellular-vehicle to everything (C-V2X) and 5G-new radio (5G-NR). An important characteristic which differentiates each category and its suitable application is latency.
    [Show full text]
  • Predictive Analysis of 3D Reram-Based PUF for Securing the Internet of Things
    Predictive Analysis of 3D ReRAM-based PUF for Securing the Internet of Things Jeeson Kim Hussein Nili School of Engineering Electrical and Computer Engineering RMIT University University of California Santa Barbara Melbourne, Australia Santa Barbara, USA [email protected] [email protected] Gina C. Adam Nhan Duy Truong Electrical and Computer Engineering School of Engineering University of California Santa Barbara RMIT University Santa Barbara, USA Melbourne, Australia gina [email protected] [email protected] Dmitri B. Strukov Omid Kavehei Electrical and Computer Engineering Electrical and Information Engineering University of California Santa Barbara The University of Sydney Santa Barbara, USA Sydney, Australia [email protected] [email protected] Abstract—In recent years, an explosion of IoT devices challenge [2, 3]. Widely used traditional cryptographic and its use leads threats to the privacy and security solutions, for example, advanced encryption standard concerns of individual users and merchandises. As one (AES) and elliptic curve cryptography (ECC), can be of promising solutions, physical unclonable function (PUF) has been extensively studied. This paper investigates quality used for both the integrity and the authentication of of randomness in the first generation of 3D analog ReRAM exchanging data and messages. PUF primitives using measured and gathered data from IoT hardware anti-counterfeiting, integrated circuit fabricated ReRAM crossbars. This study is significant as (IC) trust and physical tampering are also critical the randomness quality of a PUF directly relates to its tasks [4]. In 2014, defense advanced research projects resilience against various model-building attacks, includ- ing machine learning attack.
    [Show full text]
  • Paving the Way for Self-Driving Vehicles”
    June 13, 2017 The Honorable John Thune, Chairman The Honorable Bill Nelson, Ranking Member U.S. Senate Committee on Commerce, Science & Transportation 512 Dirksen Senate Office Building Washington, DC 20510 RE: Hearing on “Paving the Way for Self-Driving Vehicles” Dear Chairman Thune and Ranking Member Nelson: We write to your regarding the upcoming hearing “Paving the Way for Self-Driving Vehicles,”1 on the privacy and safety risks of connected and autonomous vehicles. For more than a decade, the Electronic Privacy Information Center (“EPIC”) has warned federal agencies and Congress about the growing risks to privacy resulting from the increasing collection and use of personal data concerning the operation of motor vehicles.2 EPIC was established in 1994 to focus public attention on emerging privacy and civil liberties issues. EPIC engages in a wide range of public policy and litigation activities. EPIC testified before the House of Representatives in 2015 on “the Internet of Cars.”3 Recently, EPIC 1 Paving the Way for Self-Driving Vehicles, 115th Cong. (2017), S. Comm. on Commerce, Science, and Transportation, https://www.commerce.senate.gov/public/index.cfm/pressreleases?ID=B7164253-4A43- 4B70-8A73-68BFFE9EAD1A (June 14, 2017). 2 See generally EPIC, “Automobile Event Data Recorders (Black Boxes) and Privacy,” https://epic.org/privacy/edrs/. See also EPIC, Comments, Docket No. NHTSA-2002-13546 (Feb. 28, 2003), available at https://epic.org/privacy/drivers/edr_comments.pdf (“There need to be clear guidelines for how the data can be accessed and processed by third parties following the use limitation and openness or transparency principles.”); EPIC, Comments on Federal Motor Vehicle Safety Standards; V2V Communications, Docket No.
    [Show full text]
  • Fog Computing for Detecting Vehicular Congestion, an Internet of Vehicles Based Approach: a Review
    > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Fog Computing for Detecting Vehicular Congestion, An Internet of Vehicles based Approach: A review Arnav Thakur and Reza Malekian, Senior Member, IEEE double by the year 2020 [3]. To enhance the efficiency of the Abstract—Vehicular congestion is directly impacting the transportation sector and reduce the associated economic and efficiency of the transport sector. A wireless sensor network for environmental consequences, an accurate real-time vehicular vehicular clients is used in Internet of Vehicles based solutions traffic congestion identification system is required to be used for traffic management applications. It was found that vehicular in effective traffic management schemes that improve traffic congestion detection by using Internet of Vehicles based connected vehicles technology are practically feasible for flow and utilization of road infrastructure. congestion handling. It was found that by using Fog Computing Vehicular congestion is quantified by using the traffic based principles in the vehicular wireless sensor network, density estimate metric which is the number of vehicles per communication in the system can be improved to support larger unit area [4]. The traffic density estimation techniques use number of nodes without impacting performance. In this paper, parameters that include road occupancy rates, difference of connected vehicles technology based vehicular congestion incoming and outgoing traffic in an observation area, traffic identification techniques are studied. Computing paradigms that can be used for the vehicular network are studied to develop a flow estimation and motion detection and tracking to identify practically feasible vehicular congestion detection system that congestion [5].
    [Show full text]
  • Edge Computing in the Context of Open Manufacturing
    Edge Computing in the Context of Open Manufacturing 01.07.2021 LEGAL DISCLAIMERS © 2021 Joint Development Foundation Projects, LLC, OMP Series and its contributors. All rights reserved. THESE MATERIALS ARE PROVIDED ”AS IS.” The parties expressly disclaim any warranties (express, implied, or otherwise), including implied warranties of merchantability, non- infringement, fitness for a particular purpose, or title, related tothe materials. The entire risk as to implementing or otherwise using the materials is assumed by the implementer and user. IN NO EVENT WILL THE PARTIES BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS DELIVERABLE OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), OR OTHERWISE, AND WHETHER OR NOT THE OTHER MEMBER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 2 ACKNOWLEDGMENTS This document is a work product of the Open Manufacturing Platform – IoT Connectivity Working Group, chaired by Sebastian Buckel (BMW Group) and co-chaired by Dr. Veit Hammerstingl (BMW Group). AUTHORS Anhalt, Christopher, Dr. (Softing) Buckel, Sebastian (BMW Group) Hammerstingl, Veit, Dr. (BMW Group) Köpke, Alexander (Microsoft) Müller, Michael (Capgemini) Muth, Manfred (Red Hat) Ridl, Jethro (Reply) Rummel, Thomas (Softing) Weber Martins, Thiago, Dr. (SAP) FURTHER CONTRIBUTION BY Attrey, Kapil (Cognizant) Kramer, Michael (ZF) Krapp, Chiara (BMW Group) Krebs, Jeremy (Microsoft) McGrath, Daniel (Cognizant) Title Image by Possessed Photography from unsplash.com 3 Contents Contents 1 Introduction: The Importance of Edge Computing 5 2 Definition of Edge Computing 6 3 Reference Use Case 6 4 Views on Edge Computing 8 4.1 Infrastructural View .
    [Show full text]
  • An Intelligent Edge-Chain Enabled Access Control Mechanism For
    This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3061467, IEEE Internet of Things Journal JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1 An Intelligent Edge-Chain Enabled Access Control Mechanism for IoV Yuanni Liu, Man Xiao, Shanzhi Chen, Fellow, IEEE, Fan Bai, Jianli Pan, Member, IEEE, Di Zhang, Senior Member, IEEE Abstract—The current security method of Internet of Vehicles the amounts of vehicles exceed one billion and is expected (IoV) systems is rare, which makes it vulnerable to various to reach two billion by 2035 [6], [7]. As explosive on-road attacks. The malicious and unauthorized nodes can easily in- devices are connecting to Internet, communication security vade the IoV systems to destroy the integrity, availability, and confidentiality of information resources shared among vehicles. becomes a big issue. As we know, the communication security Indeed, access control mechanism can remedy this. However, as method of current IoV devices is rare, making it easy to be a static method, it cannot timely response to these attacks. To attacked. Such malicious attacks include replay, camouflage, solve this problem, we propose an intelligent edge-chain enabled and message tampering attacks et al. [8]. The attacked IoV access control framework with vehicle nodes and RoadSide Units devices may rise potential risks, such as critical electronic (RSUs) in this study. In our scenario, vehicle nodes act as lightweight nodes, whereas RUSs serve as full and edge nodes control unit hacking and control, untrustworthy messages from to provide access control services.
    [Show full text]