INTRODUCTION to COMPACT TRANSFORMATION GROUPS This Is Volume 46 in PURE and APPLIED MATHEMATICS a Series of Monographs and Textbooks Editors: PAULA

Total Page:16

File Type:pdf, Size:1020Kb

INTRODUCTION to COMPACT TRANSFORMATION GROUPS This Is Volume 46 in PURE and APPLIED MATHEMATICS a Series of Monographs and Textbooks Editors: PAULA INTRODUCTION TO COMPACT TRANSFORMATION GROUPS This is Volume 46 in PURE AND APPLIED MATHEMATICS A series of Monographs and Textbooks Editors: PAULA. SMITHAND SAMUELEILENBERG A complete list of titles in this series appears at the end of this volume INTRODUCTION TO COMPACT TRANSFORMATION GROUPS GLEN E. BREDON Department of Mathematics Rutgers University New Brunswick, New Jersey @ 1972 ACADEMIC PRESS New York and London COPYRIGHT 0 1972, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRIlTEN PERMISSION FROM THE PUBLISHERS. ACADEMIC PRESS INC. 111 Fifth Avenue, New qork, New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 LIBRARYOF CONGRESSCATALOG CARD NUMBER: 75-180794 AMS(M0S) 1970 Subject Classification: 57E10 PRINTED IN THE UNITED STATES OF AMERICA CONTENTS PREFACE ................................ ix ACKNOWLEDGMENTS........................... xiii Chapter 0 Background on Topological Groups and Lie Groups 1. Elementary Properties of Topological Groups ........... 1 2 . The Classical Groups ...................... 5 3 . Integration on Compact Groups ................. 11 4 . Characteristic Functions on Compact Groups ........... 15 5. Lie Groups ........................... 21 6 . The Structure of Compact Lie Groups .............. 26 Chapter I Transformation Groups 1 . Group Actions ......................... 32 2 . Equivariant Maps and Isotropy Groups .............. 35 3 . Orbits and Orbit Spaces ..................... 37 4 . Homogeneous Spaces and Orbit Types .............. 40 5 . Fixed Points .......................... 44 6. Elementary Constructions ..................... 46 7. Some Examples of O(n)-Spaces .................. 49 8 . Two Further Examples ..................... 55 9 . Covering Actions ........................ 62 Exercises for Chapter I ..................... 67 Chapter II General Theory of G-Spaces 1. Fiber Bundles .......................... 70 2 . Twisted Products and Associated Bundles ............. 72 3 . Twisted Products with a Compact Group ............. 79 4. Tubes and Slices ........................ 82 5 . Existence of Tubes ....................... 84 6 . Path Lifting .......................... 90 V vi CONTENTS 7. The Covering Homotopy Theorem ................ 92 8 . Conical Orbit Structures ..................... 98 9. Classification of G-Spaces .................... 104 10. Linear Embedding of G-Spaces .................. 110 Exercises for Chapter I1 ..................... 112 Chapter 111 Homological Theory of Finite Group Actions 1. Simplicia1 Actions ........................ 114 2. The Transfer .......................... 118 3. Transformations of Prime Period ................. 122 4. Euler Characteristics and Ranks ................. 126 5. Homology Spheres and Disks ................... 129 6. G-Coverings and cech Theory .................. 132 7. Finite Group Actions on General Spaces ............. 141 8. Groups Acting Freely on Spheres ................ 148 9. Newman's Theorem ....................... 154 10. Toral Actions .......................... 158 Exercises for Chapter I11 .................... 166 Chapter IV Locally Smooth Actions on Manifolds 1. Locally Smooth Actions ..................... 170 2. Fixed Point Sets of Maps of Prime Period ............ 175 3. Principal Orbits ......................... 179 4. The Manifold Part of M* .................... 186 5 . Reduction to Finite Principal Isotropy Groups .......... 190 6. Actions on S" with One Orbit Type ............... 196 7 . Components of B v E ...................... 200 8. Actions with Orbits of Codimension 1 or 2 ............ 205 9. Actions on Tori ........................ 214 10. Finiteness of Number of Orbit Types ............... 218 Exercises for Chapter IV .................... 222 Chapter V Actions with Few Orbit Types 1. The Equivariant Collaring Theorem ................ 224 2. The Complementary Dimension Theorem ............. 230 3. Reduction of Structure Groups .................. 233 4 . The Straightening Lemma and the Tube Theorem ......... 238 5 . Classification of Actions with Two Orbit Types .......... 246 6. The Second Classification Theorem ................ 253 7. Classification of Self-Equivalences ................. 261 8. Equivariant Plumbing ...................... 267 CONTENTS vii 9. Actions on Brieskorn Varieties .................. 272 10. Actions with Three Orbit Types ................. 280 11. Knot Manifolds ......................... 287 Exercises for Chapter V ..................... 293 Chapter VI Smooth Actions 1. Functional Structures and Smooth Actions ............. 296 2 . Tubular Neighborhoods ..................... 303 3. Integration of Isotopies ..................... 312 4 . Equivariant Smooth Embeddings and Approximations ....... 314 5 . Functional Structures on Certain Orbit Spaces ........... 319 6. Special G-Manifolds ....................... 326 7. Smooth Knot Manifolds ..................... 333 8. Groups of Involutions ...................... 337 9 . Semifree Circle Group Actions .................. 347 10. Representations at Fixed Points ................. 352 11. Refinements Using Real K-Theory ................ 359 Exercises for Chapter VI .................... 366 Chapter VII Cohomology Structure of Fixed Point Sets 1. Preliminaries .................... ...... 369 2 . Some Inequalities ........................ 375 3. Z,. Actions on Projective Spaces ........... ...... 378 4 . Some Examples ................... ...... 388 5 . Circle Actions on Projective Spaces .......... ...... 393 6. Actions on Poincar6 Duality Spaces .......... ...... 400 7. A Theorem on Involutions .................... 405 8. Involutions on Sn x Sm ..................... 410 9 . Z,. Actions on Sn x Sm ..................... 416 10. Circle Actions on a Product of Odd-Dimensional Spheres ...... 422 11. An Application to Equivariant Maps ......... ...... 425 Exercises for Chapter VII .............. ...... 428 References 432 AUTHORINDEX ............................. 454 SUBJECTINDEX ............................. 457 This Page Intentionally Left Blank P R E FAC E In topology, one studies such objects as topological spaces, topological manifolds, differentiable manifolds, polyhedra, and so on. In the theory of transformation groups, one studies the symmetries of such objects, or generally subgroups of the full group of symmetries. Usually, the group of symmetries comes equipped with a naturally defined topology (such as the compact-open topology) and it is important to consider this topology as part of the structure studied. In some cases of importance, such as the group of isometries of a compact riemannian manifold, the group of symmetries is a compact Lie group. This should be sufficient reason for studying compact groups of transformations of a space or of a manifold. An even more com- pelling reason for singling out the case of compact groups is the fact that one can obtain many strong results and tools in this case that are not available for the case of noncompact groups. Indeed, the theory of compact trans- formation groups has a completely different flavor from that of noncompact transformation groups. There has been a good deal of research done on this subject in recent years. as a glance at the bibliography will show. This has convinced us of the need for a reasonably extensive introduction to the subject which would be comprehensible to a wide range of readers at the graduate level. The main obstacle to the writing of a successful introduction to this subject is the fact that it draws on so many disparate parts of mathematics. This makes it difficult to write such an introducton which would be readable by most second-year graduate students, which would cover a large portion of the subject, and which would also touch on a good amount of interesting nontrivial mathematics of current interest. To overcome this obstacle, we have endeavored to keep the prerequisites to a minimum, especially in early parts of the book. (This does not apply to all of Chapter 0. For a reader with minimal background, we recommend the reading of the first three sections of that chapter, then skipping to Chapter I, with a return to parts of Chapter 0 when needed. Many readers would do well to skip Chap- ter 0 altogether.) An indispensable prerequisite for reading this book is a first course in ix X PREFACE algebraic topology. The requirements in this direction are fairly minimal until the last half of Chapter 111, where some Cech theory is needed. PoincarC duality is not used until Chapter IV, and spectral sequences appear only in Chapter VII. A considerable saving in the algebraic topological demands on the reader results from the fact that we do not consider the theory of gen- eralized manifolds in this book. There is, of course, a resulting loss in the generality of some of the theorems, but we believe this is minimal. (Most current interest is in the case of smooth or locally smooth actions, and there the loss is practically nonexistent.) Although we are almost entirely concerned with actions of compact Lie groups in this book, there is really very little about Lie groups which the reader needs to know, outside of a few simple facts about maximal tori which we develop in Chapter 0, Section 6. This results from the fact that we concentrate on those theorems for which the classification theory of compact Lie groups, detailed case by case calculations in representation theory, and similar considerations
Recommended publications
  • An Overview of Topological Groups: Yesterday, Today, Tomorrow
    axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups.
    [Show full text]
  • More on the Sylow Theorems
    MORE ON THE SYLOW THEOREMS 1. Introduction Several alternative proofs of the Sylow theorems are collected here. Section 2 has a proof of Sylow I by Sylow, Section 3 has a proof of Sylow I by Frobenius, and Section 4 has an extension of Sylow I and II to p-subgroups due to Sylow. Section 5 discusses some history related to the Sylow theorems and formulates (but does not prove) two extensions of Sylow III to p-subgroups, by Frobenius and Weisner. 2. Sylow I by Sylow In modern language, here is Sylow's proof that his subgroups exist. Pick a prime p dividing #G. Let P be a p-subgroup of G which is as large as possible. We call P a maximal p-subgroup. We do not yet know its size is the biggest p-power in #G. The goal is to show [G : P ] 6≡ 0 mod p, so #P is the largest p-power dividing #G. Let N = N(P ) be the normalizer of P in G. Then all the elements of p-power order in N lie in P . Indeed, any element of N with p-power order which is not in P would give a non-identity element of p-power order in N=P . Then we could take inverse images through the projection N ! N=P to find a p-subgroup inside N properly containing P , but this contradicts the maximality of P as a p-subgroup of G. Since there are no non-trivial elements of p-power order in N=P , the index [N : P ] is not divisible by p by Cauchy's theorem.
    [Show full text]
  • The Sylow Theorems and Classification of Small Finite Order Groups
    Union College Union | Digital Works Honors Theses Student Work 6-2015 The yS low Theorems and Classification of Small Finite Order Groups William Stearns Union College - Schenectady, NY Follow this and additional works at: https://digitalworks.union.edu/theses Part of the Physical Sciences and Mathematics Commons Recommended Citation Stearns, William, "The yS low Theorems and Classification of Small Finite Order Groups" (2015). Honors Theses. 395. https://digitalworks.union.edu/theses/395 This Open Access is brought to you for free and open access by the Student Work at Union | Digital Works. It has been accepted for inclusion in Honors Theses by an authorized administrator of Union | Digital Works. For more information, please contact [email protected]. THE SYLOW THEOREMS AND CLASSIFICATION OF SMALL FINITE ORDER GROUPS WILLIAM W. STEARNS Abstract. This thesis will provide an overview of various topics in group theory, all in order to accomplish the end goal of classifying all groups of order up to 15. An important precursor to classifying finite order groups, the Sylow Theorems illustrate what subgroups of a given group must exist, and constitute the first half of this thesis. Using these theorems in the latter sections we will classify all the possible groups of various orders up to isomorphism. In concluding this thesis, all possible distinct groups of orders up to 15 will be defined and the groundwork set for further study. 1. Introduction The results in this thesis require some background knowledge and motivation. To that end, material covered in an introductory course on abstract algebra should be sufficient. In particular, it is assumed that the reader is familiar with the concepts and definitions of: group, subgroup, coset, index, homomorphism, and kernel.
    [Show full text]
  • Covering Group Theory for Compact Groups 
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 161 (2001) 255–267 www.elsevier.com/locate/jpaa Covering group theory for compact groups Valera Berestovskiia, Conrad Plautb;∗ aDepartment of Mathematics, Omsk State University, Pr. Mira 55A, Omsk 77, 644077, Russia bDepartment of Mathematics, University of Tennessee, Knoxville, TN 37919, USA Received 27 May 1999; received in revised form 27 March 2000 Communicated by A. Carboni Abstract We present a covering group theory (with a generalized notion of cover) for the category of compact connected topological groups. Every such group G has a universal covering epimorphism 2 K : G → G in this category. The abelian topological group 1 (G):=ker is a new invariant for compact connected groups distinct from the traditional fundamental group. The paper also describes a more general categorial framework for covering group theory, and includes some examples and open problems. c 2001 Elsevier Science B.V. All rights reserved. MSC: Primary: 22C05; 22B05; secondary: 22KXX 1. Introduction and main results In [1] we developed a covering group theory and generalized notion of fundamental group that discards such traditional notions as local arcwise connectivity and local simple connectivity. The theory applies to a large category of “coverable” topological groups that includes, for example, all metrizable, connected, locally connected groups and even some totally disconnected groups. However, for locally compact groups, being coverable is equivalent to being arcwise connected [2]. Therefore, many connected compact groups (e.g. solenoids or the character group of ZN ) are not coverable.
    [Show full text]
  • Representation Theory
    M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23.
    [Show full text]
  • SPACES with a COMPACT LIE GROUP of TRANSFORMATIONS A
    SPACES WITH A COMPACT LIE GROUP OF TRANSFORMATIONS a. m. gleason Introduction. A topological group © is said to act on a topological space 1{ if the elements of © are homeomorphisms of 'R. onto itself and if the mapping (<r, p)^>a{p) of ©X^ onto %_ is continuous. Familiar examples include the rotation group acting on the Car- tesian plane and the Euclidean group acting on Euclidean space. The set ®(p) (that is, the set of all <r(p) where <r(E®) is called the orbit of p. If p and q are two points of fx, then ®(J>) and ©(g) are either identical or disjoint, hence 'R. is partitioned by the orbits. The topological structure of the partition becomes an interesting question. In the case of the rotations of the Cartesian plane we find that, excising the singularity at the origin, the remainder of space is fibered as a direct product. A similar result is easily established for a compact Lie group acting analytically on an analytic manifold. In this paper we make use of Haar measure to extend this result to the case of a compact Lie group acting on any completely regular space. The exact theorem is given in §3. §§1 and 2 are preliminaries, while in §4 we apply the main result to the study of the structure of topo- logical groups. These applications form the principal motivation of the entire study,1 and the author hopes to develop them in greater detail in a subsequent paper. 1. An extension theorem. In this section we shall prove an exten- sion theorem which is an elementary generalization of the well known theorem of Tietze.
    [Show full text]
  • Lecture 1.3: the Sylow Theorems
    Lecture 1.3: The Sylow theorems Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 8510, Abstract Algebra I M. Macauley (Clemson) Lecture 1.3: The Sylow theorems Math 8510, Abstract Algebra I 1 / 33 Some context Once the study of group theory began in the 19th century, a natural research question was to classify all groups. Of course, this is too difficult in general, but for certain cases, much is known. Later, we'll establish the following fact, which allows us to completely classify all finite abelian groups. Proposition ∼ Znm = Zn × Zm if and only if gcd(n; m) = 1. (0;0) (3;2) (1;1) (0;0) (1;0) (2;0) (3;0) (2;1) (2;2) (1;0) ∼ (3;0) (0;1) (1;1) (2;1) (3;1) Z4 × Z3 = Z12 · · · (0;2) (0;1) (0;2) (1;2) (2;2) (3;2) (3;1) (1;2) (2;0) Finite non-abelian groups are much harder. The Sylow Theorems, developed by Norwegian mathematician Peter Sylow (1832{1918), provide insight into their structure. M. Macauley (Clemson) Lecture 1.3: The Sylow theorems Math 8510, Abstract Algebra I 2 / 33 The Fundamental Theorem of Finite Abelian Groups Classification theorem (by \prime powers") Every finite abelian group A is isomorphic to a direct product of cyclic groups, i.e., for some integers n1; n2;:::; nm, ∼ A = Zn1 × Zn2 × · · · × Znm ; di where each ni is a prime power, i.e., ni = pi , where pi is prime and di 2 N. Example Up to isomorphism, there are 6 abelian groups of order 200 =2 3 · 52: Z8 × Z25 Z8 × Z5 × Z5 Z2 × Z4 × Z25 Z2 × Z4 × Z5 × Z5 Z2 × Z2 × Z2 × Z25 Z2 × Z2 × Z2 × Z5 × Z5 Instead of proving this statement for groups, we'll prove a much more general statement for R-modules over a PID, later in the class.
    [Show full text]
  • Graduate Algebra, Fall 2014 Lecture 5
    Graduate Algebra, Fall 2014 Lecture 5 Andrei Jorza 2014-09-05 1 Group Theory 1.9 Normal subgroups Example 1. Specific examples. 1. The alternating group An = ker " is a normal subgroup of Sn as " is a homomorphism. 2. For R = Q; R or C, SL(n; R) C GL(n; R). 3. Recall that for any group G, Z(G) C G and G=Z(G) is a group, which we'll identify later as the group × of inner automorphisms. If R = Z=pZ; Q; R or C then R In = Z(GL(n; R)) and denote the quotient PGL(n; R) = GL(n; R)=R× The case of SL(n; R) is more subtle as the center is the set of n-th roots of unity in R, which depends on 2 what R is. For example Z(SL(2; R)) = ±I2 but Z(SL(3; R)) = I3 while Z(GL(3; C)) = fI3; ζ3I3; ζ3 I3g. a b 0 1 a b c 0 4. But f g is not normal in GL(2;R). Indeed, if w = then w w = . 0 c 1 0 0 c b a 1 b a b 5. But f g is a normal subgroup of f g. 0 1 0 c Remark 1. If H; K ⊂ G are subgroups such that K is normal in G then HK is a subgroup of G. Indeed, KH = HK. Interlude on the big picture in the theory of finite groups We have seen that if G is a finite group and N is a normal subgroup then G=N is also a group.
    [Show full text]
  • Representation Theory of Compact Groups - Lecture Notes up to 08 Mar 2017
    Representation theory of compact groups - Lecture notes up to 08 Mar 2017 Alexander Yom Din March 9, 2017 These notes are not polished yet; They are not very organized, and might contain mistakes. 1 Introduction 1 ∼ ∼ × Consider the circle group S = R=Z = C1 - it is a compact group. One studies the space L2(S1) of square-integrable complex-valued fucntions on the circle. We have an action of S1 on L2(S1) given by (gf)(x) = f(g−1x): We can suggestively write ^ Z 2 1 L (S ) = C · δx; x2S1 where gδx = δgx: Thus, the "basis" of delta functions is "permutation", or "geometric". Fourier theory describes another, "spectral" basis. Namely, we consider the functions 2πinx χn : x (mod 1) 7! e where n 2 Z. The main claim is that these functions form a Hilbert basis for L2(S1), hence we can write ^ 2 1 M L (S ) = C · χn; n2Z where −1 gχn = χn (g)χn: In other words, we found a basis of eigenfunctions for the translation operators. 1 What we would like to do in the course is to generalize the above picture to more general compact groups. For a compact group G, one considers L2(G) with the action of G × G by translation on the left and on the right: −1 ((g1; g2)f)(x) = f(g1 xg2): When the group is no longer abelian, we will not be able to find enough eigen- functions for the translation operators to form a Hilbert basis. Eigenfunctions can be considered as spanning one-dimensional invariant subspaces, and what we will be able to find is "enough" finite-dimensional "irreducible" invariant sub- spaces (which can not be decomposed into smaller invariant subspaces).
    [Show full text]
  • Abstract Algebra, Lecture 9 Jan Snellman Abstract Algebra, Lecture 9 the Class Equation
    Abstract Algebra, Lecture 9 Jan Snellman Abstract Algebra, Lecture 9 The Class Equation Acting by conjugation Jan Snellman1 The class equation 1Matematiska Institutionen Applications of the Link¨opingsUniversitet class equation Sylow's theorems Link¨oping,fall 2019 Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA55/ Abstract Algebra, Lecture 9 Jan Snellman Summary Acting by conjugation The class equation 1 Acting by conjugation Caychy's theorem Applications of the 2 The class equation Finite p-groups have non-trivial class equation Example center Sylow's theorems 3 Applications of the class Groups of size p2 are abelian equation 4 Sylow's theorems Abstract Algebra, Lecture 9 Jan Snellman Summary Acting by conjugation The class equation 1 Acting by conjugation Caychy's theorem Applications of the 2 The class equation Finite p-groups have non-trivial class equation Example center Sylow's theorems 3 Applications of the class Groups of size p2 are abelian equation 4 Sylow's theorems Abstract Algebra, Lecture 9 Jan Snellman Summary Acting by conjugation The class equation 1 Acting by conjugation Caychy's theorem Applications of the 2 The class equation Finite p-groups have non-trivial class equation Example center Sylow's theorems 3 Applications of the class Groups of size p2 are abelian equation 4 Sylow's theorems Abstract Algebra, Lecture 9 Jan Snellman Summary Acting by conjugation The class equation 1 Acting by conjugation Caychy's theorem Applications of the 2 The class equation Finite p-groups have non-trivial class equation Example center Sylow's theorems 3 Applications of the class Groups of size p2 are abelian equation 4 Sylow's theorems Abstract Algebra, Lecture 9 Jan Snellman Lemma Let the group G act on itself by conjugation, g:x = gxg -1 Acting by conjugation Then The class equation - 1 Orb(x) = gxg 1 g 2 G .
    [Show full text]
  • COMPACT LIE GROUPS Contents 1. Smooth Manifolds and Maps 1 2
    COMPACT LIE GROUPS NICHOLAS ROUSE Abstract. The first half of the paper presents the basic definitions and results necessary for investigating Lie groups. The primary examples come from the matrix groups. The second half deals with representation theory of groups, particularly compact groups. The end result is the Peter-Weyl theorem. Contents 1. Smooth Manifolds and Maps 1 2. Tangents, Differentials, and Submersions 3 3. Lie Groups 5 4. Group Representations 8 5. Haar Measure and Applications 9 6. The Peter-Weyl Theorem and Consequences 10 Acknowledgments 14 References 14 1. Smooth Manifolds and Maps Manifolds are spaces that, in a certain technical sense defined below, look like Euclidean space. Definition 1.1. A topological manifold of dimension n is a topological space X satisfying: (1) X is second-countable. That is, for the space's topology T , there exists a countable base, which is a countable collection of open sets fBαg in X such that every set in T is the union of a subcollection of fBαg. (2) X is a Hausdorff space. That is, for every pair of points x; y 2 X, there exist open subsets U; V ⊆ X such that x 2 U, y 2 V , and U \ V = ?. (3) X is locally homeomorphic to open subsets of Rn. That is, for every point x 2 X, there exists a neighborhood U ⊆ X of x such that there exists a continuous bijection with a continuous inverse (i.e. a homeomorphism) from U to an open subset of Rn. The first two conditions preclude pathological spaces that happen to have a homeomorphism into Euclidean space, and force a topological manifold to share more properties with Euclidean space.
    [Show full text]
  • Chapter 1 Compact Groups
    Chapter 1 Compact Groups Most infinite groups, in practice, come dressed in a natural topology, with re- spect to which the group operations are continuous. All the familiar groups— in particular, all matrix groups—are locally compact; and this marks the natural boundary of representation theory. A topological group G is a topological space with a group structure defined on it, such that the group operations 1 (x; y) xy; x x− 7! 7! of multiplication and inversion are both continuous. Examples: 1. The real numbers R form a topological group under addition, with the usual topology defined by the metric d(x; y) = x y : j − j 2. The non-zero reals R× = R 0 form a topological group under multipli- cation, under the same metric.n f g 3. The strictly-positive reals R+ = x R : x > 0 form a closed subgroup f 2 g of R×, and so constitute a topological group in their own right. Remarks: (a) Note that in the theory of topological groups, we are only concerned with closed subgroups. When we speak of a subgroup of a topological group, it is understood that we mean a closed subgroup, unless the contrary is explicitly stated. 424–II 1–1 424–II 1–2 (b) Note too that if a subgroup H G is open then it is also closed. For the cosets gH are all open; and⊂ so H, as the complement of the union of all other cosets, is closed. + So for example, the subgroup R R× is both open and closed. ⊂ Recall that a space X is said to be compact if it is hausdorff and every open covering X = U [ i ı I 2 has a finite subcovering: X = Ui Ui : 1 [···[ r (The space X is hausdorff if given any 2 points x; y X there exist open sets U; V X such that 2 ⊂ x U; y VU V = : 2 2 \ ; All the spaces we meet will be hausdorff; and we will use the term ‘space’ or ‘topological space’ henceforth to mean hausdorff space.) In fact all the groups and other spaces we meet will be subspaces of euclidean space En.
    [Show full text]