Chapter 1 Compact Groups

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 Compact Groups Chapter 1 Compact Groups Most infinite groups, in practice, come dressed in a natural topology, with re- spect to which the group operations are continuous. All the familiar groups— in particular, all matrix groups—are locally compact; and this marks the natural boundary of representation theory. A topological group G is a topological space with a group structure defined on it, such that the group operations 1 (x; y) xy; x x− 7! 7! of multiplication and inversion are both continuous. Examples: 1. The real numbers R form a topological group under addition, with the usual topology defined by the metric d(x; y) = x y : j − j 2. The non-zero reals R× = R 0 form a topological group under multipli- cation, under the same metric.n f g 3. The strictly-positive reals R+ = x R : x > 0 form a closed subgroup f 2 g of R×, and so constitute a topological group in their own right. Remarks: (a) Note that in the theory of topological groups, we are only concerned with closed subgroups. When we speak of a subgroup of a topological group, it is understood that we mean a closed subgroup, unless the contrary is explicitly stated. 424–II 1–1 424–II 1–2 (b) Note too that if a subgroup H G is open then it is also closed. For the cosets gH are all open; and⊂ so H, as the complement of the union of all other cosets, is closed. + So for example, the subgroup R R× is both open and closed. ⊂ Recall that a space X is said to be compact if it is hausdorff and every open covering X = U [ i ı I 2 has a finite subcovering: X = Ui Ui : 1 [···[ r (The space X is hausdorff if given any 2 points x; y X there exist open sets U; V X such that 2 ⊂ x U; y VU V = : 2 2 \ ; All the spaces we meet will be hausdorff; and we will use the term ‘space’ or ‘topological space’ henceforth to mean hausdorff space.) In fact all the groups and other spaces we meet will be subspaces of euclidean space En. In such a case it is usually easy to determine compactness, since a subspace X En is compact if and only if ⊂ 1. X is closed; and 2. X is bounded Examples: 1. The orthogonal group O(n) = T Mat(n; R): T 0T = I : f 2 g Here Mat(n; R) denotes the space of all n n real matrices; and T 0 denotes the transpose of T : × Tij0 = Tji: We can identify Mat(n; R) with the Euclidean space En2 , by regarding the 2 n entries tij as the coordinates of T . With this understanding, O(n) is a closed subspace of En2 , since it is the set of ‘points’ satisfying the simultaneous polynomial equations making up the matrix identity T 0T = I. It is bounded because each entry tij 1: j j ≤ 424–II 1–3 In fact, for each i, 2 2 2 t + t + + t = (T 0T )ii = 1: 1i 2i ··· ni Thus the orthogonal group O(n) is compact. 2. The special orthogonal group SO(n) = T O(n) : det T = 1 f 2 g is a closed subgroup of the compact group O(n), and so is itself compact. Note that T O(n) = det T = 1; 2 ) ± since 2 T 0T = I = det T 0 det T = 1 = (det T ) = 1; ) ) since det T 0 = det T . Thus O(n) splits into 2 parts: SO(n) where det T = 1; and a second part where det T = 1. If det T = 1 then it is easy to see that this second part is just the coset−T SO(n) of SO−(n) in O(n). We shall find that the groups SO(n) play a more important part in represen- tation theory than the full orthogonal groups O(n). 3. The unitary group U(n) = T Mat(n; C): T ∗T = I : f 2 g Here Mat(n; C) denotes the space of n n complex matrices; and T ∗ denotes the conjugate transpose of T : × Tij∗ = Tji: We can identify Mat(n; C) with the Euclidean space E2n2 , by regarding 2 the real and imaginary parts of the n entries tij as the coordinates of T . With this understanding, U(n) is a closed subspace of E2n2 . It is bounded because each entry has absolute value tij 1: j j ≤ In fact, for each i, 2 2 2 t1i + t2i + + tni = (T ∗T )ii = 1: j j j j ··· j j Thus the unitary group U(n) is compact. 424–II 1–4 When n = 1, U(1) = x C : x = 1 : f 2 j j g Thus 1 T1 R Z U(1) = S ∼= = = : Note that this group (which we can denote equally well by U(1) or T1) is abelian (or commutative). 4. The special unitary group SU(n) = T U(n) : det T = 1 f 2 g is a closed subgroup of the compact group U(n), and so is itself compact. Note that T U(n) = det T = 1: 2 ) j j since 2 T ∗T = I = det T ∗ det T = 1 = det T = 1; ) ) j j since det T ∗ = det T . The map U(1) SU(n) U(n):(λ, T ) λT × ! 7! is a surjective homomorphism. It is not bijective, since λI SU(n) λn = 1: 2 () Thus the homomorphism has kernel Cn = ! ; h i where ! = e2π=n. It follows that U(n) = (U(1) SU(n)) =Cn: × We shall find that the groups SU(n) play a more important part in repre- sentation theory than the full unitary groups U(n). 5. The symplectic group Sp(n) = T Mat(n; H): T ∗T = I : f 2 g Here Mat(n; H) denotes the space of n n matrices with quaternion en- × tries; and T ∗ denotes the conjugate transpose of T : ¯ Tij∗ = Tji: 424–II 1–5 (Recall that the conjugate of the quaternion q = t + xi + yj + zk is the quaternion q¯ = t xi yj zk: − − − Note that conjugacy is an anti-automorphism, ie q1q2 = q2q1: It follows from this that (AB)∗ = B∗A∗ for any 2 matrices A; B whose product is defined. This in turn justifies our implicit assertion that Sp(n) is a group: S; T Sp(n) = (ST )∗(ST ) = T ∗S∗ST = T ∗T = I = ST Sp(n): 2 ) ) 2 Note too that while multiplication of quaternions is not in general commu- tative, q and q¯ do commute: qq¯ = qq¯ = t2 + x2 + y2 + z2 = q 2; j j defining the norm, or absolute value, q of a quaternion q.) j j We can identify Mat(n; H) with the Euclidean space E4n2 , by regarding 2 the coefficients of 1; i; j; k in the n entries tij as the coordinates of T . With this understanding, Sp(n) is a closed subspace of E4n2 . It is bounded because each entry has absolute value tij 1: j j ≤ In fact, for each i, 2 2 2 t1i + t2i + + tni = (T ∗T )ii = 1: j j j j ··· j j Thus the symplectic group Sp(n) is compact. When n = 1, Sp(1) = q H : q = 1 = t + xi + yj + zk : t2 + x2 + y2 + z2 = 1 : f 2 j j g f g Thus 3 Sp(1) ∼= S : We leave it to the reader to show that there is in fact an isomorphism Sp(1) = SU(2): 424–II 1–6 Although compactness is by far the most important topological property that a group can possess, a second topological property plays a subsidiary but still important role—ˆ connectivity. Recall that the space X is said to be disconnected if it can be partitioned into 2 non-empty open sets: X = U V; U V = : [ \ ; We say that X is connected if it is not disconnected. There is a closely related concept which is more intuitively appealing, but is usually more difficult to work with. We say that X is pathwise-connected if given any 2 points x; y X we can find a path π joining x to y, ie a continuous map 2 π : [0; 1] X ! with π(0) = x; π(1) = y: It is easy to see that pathwise-connected = connected: ) For if X = U V is a disconnection of X, and we choose points u U; v V , then there cannot[ be a path π joining u to v. If there were, then 2 2 1 1 I = π− U π− V [ would be a disconnection of the interval [0; 1]. But it follows from the basic prop- erties of real numbers that the interval is connected. (Suppose I = U V . We may suppose that 0 U. Let [ 2 l = inf x V: 2 Then we get a contradiction whether we assume that x V or x = V .) Actually, for all the groups we deal with the 2 concepts2 of2connected and pathwise-connected will coincide. The reason for this is that all our groups will turn out to be locally euclidean, ie each point has a neighbourhood homeomorphic to the open ball in some euclidean space En. This will become apparent much later when we consider the Lie algebra of a matrix group. We certainly will not assume this result. We mention it merely to point out that you will not go far wrong if you think of a connected space as one in which you can travel from any point to any other, without ‘taking off’.
Recommended publications
  • An Overview of Topological Groups: Yesterday, Today, Tomorrow
    axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups.
    [Show full text]
  • Covering Group Theory for Compact Groups 
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 161 (2001) 255–267 www.elsevier.com/locate/jpaa Covering group theory for compact groups Valera Berestovskiia, Conrad Plautb;∗ aDepartment of Mathematics, Omsk State University, Pr. Mira 55A, Omsk 77, 644077, Russia bDepartment of Mathematics, University of Tennessee, Knoxville, TN 37919, USA Received 27 May 1999; received in revised form 27 March 2000 Communicated by A. Carboni Abstract We present a covering group theory (with a generalized notion of cover) for the category of compact connected topological groups. Every such group G has a universal covering epimorphism 2 K : G → G in this category. The abelian topological group 1 (G):=ker is a new invariant for compact connected groups distinct from the traditional fundamental group. The paper also describes a more general categorial framework for covering group theory, and includes some examples and open problems. c 2001 Elsevier Science B.V. All rights reserved. MSC: Primary: 22C05; 22B05; secondary: 22KXX 1. Introduction and main results In [1] we developed a covering group theory and generalized notion of fundamental group that discards such traditional notions as local arcwise connectivity and local simple connectivity. The theory applies to a large category of “coverable” topological groups that includes, for example, all metrizable, connected, locally connected groups and even some totally disconnected groups. However, for locally compact groups, being coverable is equivalent to being arcwise connected [2]. Therefore, many connected compact groups (e.g. solenoids or the character group of ZN ) are not coverable.
    [Show full text]
  • Representation Theory
    M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23.
    [Show full text]
  • SPACES with a COMPACT LIE GROUP of TRANSFORMATIONS A
    SPACES WITH A COMPACT LIE GROUP OF TRANSFORMATIONS a. m. gleason Introduction. A topological group © is said to act on a topological space 1{ if the elements of © are homeomorphisms of 'R. onto itself and if the mapping (<r, p)^>a{p) of ©X^ onto %_ is continuous. Familiar examples include the rotation group acting on the Car- tesian plane and the Euclidean group acting on Euclidean space. The set ®(p) (that is, the set of all <r(p) where <r(E®) is called the orbit of p. If p and q are two points of fx, then ®(J>) and ©(g) are either identical or disjoint, hence 'R. is partitioned by the orbits. The topological structure of the partition becomes an interesting question. In the case of the rotations of the Cartesian plane we find that, excising the singularity at the origin, the remainder of space is fibered as a direct product. A similar result is easily established for a compact Lie group acting analytically on an analytic manifold. In this paper we make use of Haar measure to extend this result to the case of a compact Lie group acting on any completely regular space. The exact theorem is given in §3. §§1 and 2 are preliminaries, while in §4 we apply the main result to the study of the structure of topo- logical groups. These applications form the principal motivation of the entire study,1 and the author hopes to develop them in greater detail in a subsequent paper. 1. An extension theorem. In this section we shall prove an exten- sion theorem which is an elementary generalization of the well known theorem of Tietze.
    [Show full text]
  • Representation Theory of Compact Groups - Lecture Notes up to 08 Mar 2017
    Representation theory of compact groups - Lecture notes up to 08 Mar 2017 Alexander Yom Din March 9, 2017 These notes are not polished yet; They are not very organized, and might contain mistakes. 1 Introduction 1 ∼ ∼ × Consider the circle group S = R=Z = C1 - it is a compact group. One studies the space L2(S1) of square-integrable complex-valued fucntions on the circle. We have an action of S1 on L2(S1) given by (gf)(x) = f(g−1x): We can suggestively write ^ Z 2 1 L (S ) = C · δx; x2S1 where gδx = δgx: Thus, the "basis" of delta functions is "permutation", or "geometric". Fourier theory describes another, "spectral" basis. Namely, we consider the functions 2πinx χn : x (mod 1) 7! e where n 2 Z. The main claim is that these functions form a Hilbert basis for L2(S1), hence we can write ^ 2 1 M L (S ) = C · χn; n2Z where −1 gχn = χn (g)χn: In other words, we found a basis of eigenfunctions for the translation operators. 1 What we would like to do in the course is to generalize the above picture to more general compact groups. For a compact group G, one considers L2(G) with the action of G × G by translation on the left and on the right: −1 ((g1; g2)f)(x) = f(g1 xg2): When the group is no longer abelian, we will not be able to find enough eigen- functions for the translation operators to form a Hilbert basis. Eigenfunctions can be considered as spanning one-dimensional invariant subspaces, and what we will be able to find is "enough" finite-dimensional "irreducible" invariant sub- spaces (which can not be decomposed into smaller invariant subspaces).
    [Show full text]
  • COMPACT LIE GROUPS Contents 1. Smooth Manifolds and Maps 1 2
    COMPACT LIE GROUPS NICHOLAS ROUSE Abstract. The first half of the paper presents the basic definitions and results necessary for investigating Lie groups. The primary examples come from the matrix groups. The second half deals with representation theory of groups, particularly compact groups. The end result is the Peter-Weyl theorem. Contents 1. Smooth Manifolds and Maps 1 2. Tangents, Differentials, and Submersions 3 3. Lie Groups 5 4. Group Representations 8 5. Haar Measure and Applications 9 6. The Peter-Weyl Theorem and Consequences 10 Acknowledgments 14 References 14 1. Smooth Manifolds and Maps Manifolds are spaces that, in a certain technical sense defined below, look like Euclidean space. Definition 1.1. A topological manifold of dimension n is a topological space X satisfying: (1) X is second-countable. That is, for the space's topology T , there exists a countable base, which is a countable collection of open sets fBαg in X such that every set in T is the union of a subcollection of fBαg. (2) X is a Hausdorff space. That is, for every pair of points x; y 2 X, there exist open subsets U; V ⊆ X such that x 2 U, y 2 V , and U \ V = ?. (3) X is locally homeomorphic to open subsets of Rn. That is, for every point x 2 X, there exists a neighborhood U ⊆ X of x such that there exists a continuous bijection with a continuous inverse (i.e. a homeomorphism) from U to an open subset of Rn. The first two conditions preclude pathological spaces that happen to have a homeomorphism into Euclidean space, and force a topological manifold to share more properties with Euclidean space.
    [Show full text]
  • NOTES on REPRESENTATIONS of COMPACT GROUPS 1. Haar
    NOTES ON REPRESENTATIONS OF COMPACT GROUPS DRAGAN MILICIˇ C´ 1. Haar measure on compact groups 1.1. Compact groups. Let G be a group. We say that G is a topological group if G is equipped with hausdorff topology such that the multiplication (g; h) 7−! gh from the product space G × G into G and the inversion g 7−! g−1 from G into G are continuous functions. Let G and H be two topological groups. A morphism of topological groups ' : G −! H is a group homomorphism which is also continuous. Topological groups and morphisms of topological groups for the category of topo- logical groups. Let G be a topological group. Let Gopp be the topological space G with the multiplication (g; h) 7−! g ? h = h · g. Then Gopp is also a topological group which we call the opposite group of G. Clearly, the inverse of an element g 2 G is the same as the inverse in Gopp. Moreover, the map g 7−! g−1 is an isomorphism of G with Gopp. Clearly, we have (Gopp)opp = G. A topological group G is compact, if G is a compact space. The opposite group of a compact group is compact. We shall need the following fact. Let G be a topological group. We say that a function φ : G −! C is right (resp. left) uniformly continuous on G if for any > 0 there exists an open neighborhood U of 1 such that jφ(g) − φ(h)j < for any g; h 2 G such that gh−1 2 U (resp.
    [Show full text]
  • Random Lie Group Actions on Compact Manifolds
    The Annals of Probability 2010, Vol. 38, No. 6, 2224–2257 DOI: 10.1214/10-AOP544 c Institute of Mathematical Statistics, 2010 RANDOM LIE GROUP ACTIONS ON COMPACT MANIFOLDS: A PERTURBATIVE ANALYSIS1 By Christian Sadel and Hermann Schulz-Baldes Universit¨at Erlangen–N¨urnberg A random Lie group action on a compact manifold generates a discrete time Markov process. The main object of this paper is the evaluation of associated Birkhoff sums in a regime of weak, but suf- ficiently effective coupling of the randomness. This effectiveness is expressed in terms of random Lie algebra elements and replaces the transience or Furstenberg’s irreducibility hypothesis in related prob- lems. The Birkhoff sum of any given smooth function then turns out to be equal to its integral w.r.t. a unique smooth measure on the manifold up to errors of the order of the coupling constant. Applica- tions to the theory of products of random matrices and a model of a disordered quantum wire are presented. 1. Main results, discussion and applications. This work provides a per- turbative calculation of invariant measures for a class of Markov chains on continuous state spaces and shows that these perturbative measures are unique and smooth. Let us state the main result right away in detail, and then place it into context with other work towards the end of this section and explain our motivation to study this problem. Suppose given a Lie group GL(L, C), a compact, connected, smooth Riemannian manifold withoutG⊂ boundary and a smooth, transitive group action : .M Thus, is a homogeneous space.
    [Show full text]
  • Computing the Scale of an Endomorphism of a Totally Disconnected Locally Compact Group
    axioms Article Computing the Scale of an Endomorphism of a totally Disconnected Locally Compact Group George A. Willis School of Mathematical and Physical Sciences, University of Newcastle, University Drive, Callaghan NSW 2308, Australia; [email protected]; Tel.: +61-2-4921-5666; Fax: +61-2-4921-6898 Received: 28 August 2017; Accepted: 9 October 2017; Published: 20 October 2017 Abstract: The scale of an endomorphism of a totally disconnected, locally compact group G is defined and an example is presented which shows that the scale function is not always continuous with respect to the Braconnier topology on the automorphism group of G. Methods for computing the scale, which is a positive integer, are surveyed and illustrated by applying them in diverse cases, including when G is compact; an automorphism group of a tree; Neretin’s group of almost automorphisms of a tree; and a p-adic Lie group. The information required to compute the scale is reviewed from the perspective of the, as yet incomplete, general theory of totally disconnected, locally compact groups. Keywords: locally compact group; endomorphism; scale; tree; Neretin’s group; Thompson’s group; p-adic Lie group 1. Introduction Let G be a totally disconnected, locally compact (t.d.l.c.) group. A fundamental theorem about t.d.l.c. groups, proved by van Dantzig in the 1930s, see [1] and ([2] Theorem II.7.7), asserts that G has a base of neighbourhoods of the identity consisting of compact open subgroups. These subgroups are important for the definition of the scale of endomorphisms a : G ! G, which is a positive integer gauging the action of a.
    [Show full text]
  • Compact Groups and Fixed Point Sets
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 349, Number 11, November 1997, Pages 4537{4554 S 0002-9947(97)02059-X COMPACT GROUPS AND FIXED POINT SETS ALEX CHIGOGIDZE, KARL H. HOFMANN, AND JOHN R. MARTIN Abstract. Some structure theorems for compact abelian groups are derived and used to show that every closed subset of an infinite compact metrizable group is the fixed point set of an autohomeomorphism. It is also shown that any metrizable product containing a positive-dimensional compact group as a factor has the property that every closed subset is the fixed point set of an autohomeomorphism. 1. Introduction AspaceXis defined to have the complete invariance property (CIP) if every nonempty closed subset of X is the fixed point set of a (continuous) self-mapping of X [23]. If this condition holds for autohomeomorphisms of X,thenwesaythat X has the complete invariance property with respect to homeomorphisms (CIPH) [13]. A survey of results concerning CIP for metric spaces may be found in [20], and a number of nonmetric results may be found in [16]. Some spaces known to have CIPH are even-dimensional Euclidean balls [18], compact surfaces and positive- dimensional spheres [19], Menger manifolds [12], the Hilbert cube and metrizable product spaces which have the real line or an odd-dimensional sphere as a factor [13]. Metrizable topological groups are known to have CIP if they are locally compact or contain an arc [15]. In [16] it is shown that an uncountable self-product of circles, real lines or two-point spaces has CIP and that connected subgroups of the plane and compact groups need not have CIP.
    [Show full text]
  • Rationality of Representations of Linear Lie Groups
    PROCEEDINGSof the AMERICAN MATHEMATICALSOCIETY Volume 114, Number 3, MARCH 1992 RATIONALITY OF REPRESENTATIONS OF LINEAR LIE GROUPS DONG HOON LEE AND TA-SUN WU (Communicated by Jonathan M. Rosenberg) Abstract. We are concerned with real linear Lie groups G having the property that every finite-dimensional continuous representation of G is rational. By a rational representation of a real linear Lie group G c GL(«, R) we mean a continuous representation of G, which is the restriction to G of a rational representation p of an algebraic subgroup of GL(«, R) containing G. If every finite-dimensional continuous representation of G is rational, we say that G has the property (R). The importance of Lie groups with this property derives, for example, from the result of Sugiura [6, Theorem 2], which states that the duality theorem holds for a Lie group G if and only if G is the underlying Lie group of an algebraic group and every continuous representation of G is rational. Sugiura also proved that the underlying Lie group of a real semisimple algebraic group has the property (R) [7, Theorem 3]. However, this result seems to have flaws in its proof, and there is indeed a counterexample, which we present at the end of the paper. In this paper, we give several properties for real linear Lie groups, each of which is equivalent to the property (R) (Theorem 1), and then we study conditions under which the underlying Lie group of a real algebraic groups (or more generally a prealgebraic group) has the property (R) (Theorems 2-4).
    [Show full text]
  • The Banach–Tarski Paradox and Amenability Lecture 12: Compact Groups
    The Banach{Tarski Paradox and Amenability Lecture 12: Compact Groups 6 September 2011 Invariant means and amenability Definition Let G be a locally compact group. An invariant mean is a linear 1 functional m : L (G) ! R such that: 1. m(f ) ≥ 0 if f ≥ 0 2. m(χG ) = 1 3. m(g · f ) = m(f ) for all g 2 G and f 2 L1(G) Definition A locally compact group G is amenable if it admits an invariant mean. Finite groups are amenable Let G be a finite group. Then L1(G) is the space of all functions f : G ! R. 1 We construct an invariant mean m : L (G) ! R by averaging. Given f : G ! R define 1 X m(f ) := f (g) jGj g2G Then it is not hard to verify that m is linear and that 1. m(f ) ≥ 0 if f ≥ 0 2. m(χG ) = 1 3. m(g · f ) = m(f ) for all g 2 G and f 2 L1(G) Theorem Let G be a finite group. Then G is amenable. Compact groups We usually just write compact group for compact topological group. Every compact topological group G is locally compact, because every point g 2 G has an open neighbourhood (all of G) which is contained in a compact set (all of G). So compact groups have a Haar measure. A group G with the discrete topology is compact if and only if G is finite. That is, discrete groups are compact if and only if they are finite. An infinite group G will always be non-compact in the discrete topology, but G infinite might (or might not) be compact in some other topology.
    [Show full text]