Radiotherapy in Cancer Care: Facing the Global Challenge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulatory Actions in Radiotherapy
August 10, 2017 CONSIDERATIONS ON POTENTIAL REGULATORY ACTIONS FOR RADIATION PROTECTION IN RADIOTHERAPY: MONITORING UNWANTED RADIATION EXPOSURE IN RADIOTHERAPY A proposal for further discussion drafted by Autoridad Regulatoria Nuclear of Argentina and the Secretariat of the International Atomic Energy Agency (Product from the Practical Arrangements between the International Atomic Energy Agency and the Autoridad Regulatoria Nuclear of Argentina on cooperation in the area of radiation safety and monitoring) Interim Document I. INTRODUCTION BACKGROUND (1) On September 18, 2015, the Autoridad Regulatoria Nuclear (ARN) 1 of Argentina and the Secretariat of the International Atomic Energy Agency (IAEA)2, hereinafter termed ‘the Parties’, agreed on ‘Practical Arrangements’ setting forth the framework for non-exclusive cooperation between the Parties in the area of radiation safety and monitoring. The agreement was reconfirmed and partially enhanced during ceremony presided by the Chairman of ARN, Néstor Masriera, and the Deputy Director General of the IAEA, Juan Carlos Lentijo, with the presence of the Argentine Ambassador, Rafael Mariano Grossi, in the framework of the 60th Annual Regular Session of the IAEA General Conference, in Vienna, on September 30, 2016. (2) The Practical Arrangements identify activities in which cooperation between the Parties may be pursued subject to their respective mandates, governing regulations, rules, policies and procedures. A relevant activity agreed to be pursued is the ‘development of regulatory guidance -
(TPZ) Prodrugs for the Management of Hypoxic Solid Tumors by Sindhuja
Evaluation of bioreductively-activated Tirapazamine (TPZ) prodrugs for the management of hypoxic solid tumors by Sindhuja Pattabhi Raman A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Cancer Sciences Department of Oncology University of Alberta © Sindhuja Pattabhi Raman, 2019 Abstract Solid tumors often have large areas with low levels of oxygen (termed hypoxic regions), which are associated with poor prognosis and treatment response. Tirapazamine (TPZ), a hypoxia targeting anticancer drug, started as a promising candidate to deal with this issue. However, it was withdrawn from the clinic due to severe neurotoxic side effects and poor target delivery. Hypoxic cells overexpress glucose transporters (GLUT) - a key feature during hypoxic tumor progression. Our project aims at conjugating TPZ with glucose to exploit the upregulated GLUTs for its delivery, and thereby facilitate the therapeutic management of hypoxic tumors. We hypothesized that glucose-conjugated TPZ (G6-TPZ) would be selectively recruited to these receptors, facilitating its entrapment in poorly oxygenated cells only, with minimal damage to their oxygenated counterparts. However, our results reveal that the addition of the glucose moiety to TPZ was counterproductive since G6-TPZ displayed selective hypoxic cytotoxicity only at very high concentrations of the compound. We speculate that the reduced cytotoxicity of G6-TPZ might be due to the fact that the compound was not taken up by the cells. In order to monitor the cellular uptake of TPZ, we developed a click chemistry-based approach by incorporating an azido (N3) group to our parent compound (N3-TPZ). We observed that the azido-conjugated TPZ was highly hypoxia selective and the compound successfully tracks cellular hypoxia. -
Cancer Survival in Qidong Between 1972 and 2011: a Population‑Based Analysis
944 MOLECULAR AND CLINICAL ONCOLOGY 6: 944-954, 2017 Cancer survival in Qidong between 1972 and 2011: A population‑based analysis JIAN-GUO CHEN1,2, JIAN ZHU1, YONG-HUI ZHANG1, YI-XIN ZHANG2, DENG-FU YAO3, YONG-SHENG CHEN1, JIAN-HUA LU1, LU-LU DING1, HAI-ZHEN CHEN2, CHAO-YONG ZHU2, LI-PING YANG2, YUAN-RONG ZHU1 and FU-LIN QIANG2 1Qidong Cancer Registry, Qidong Liver Cancer Institute, Qidong, Jiangsu 226200; 2Nantong University Tumour Hospital/Institute, Nantong, Jiangsu 226361; 3Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China Received May 17, 2016; Accepted March 7, 2017 DOI: 10.3892/mco.2017.1234 Abstract. Population-based cancer survival is an improved lung, colon and rectum, oesophagus, female breast and bladder index for evaluating the overall efficiency of cancer health cancer, as well as leukaemia and NHL. The observations of services in a given region. The current study analysed the the current study provide the opportunity for evaluation of observed survival and relative survival of leading cancer sites the survival outcomes of frequent cancer sites that reflects the from a population‑based cancer registry between 1972 and 2011 changes and improvement in a rural area in China. in Qidong, China. A total of 92,780 incident cases with cancer were registered and followed‑up for survival status. The main Introduction sites of the cancer types, based on the rank order of incidence, were the liver, stomach, lung, colon and rectum, oesophagus, Cancer survival is an index for evaluating the effect of treatment breast, pancreas, leukaemia, brain and central nervous system of patients in specific settings, whether used to define outcomes (B and CNS), bladder, blood [non‑Hodgkin's lymphoma in clinical trials or as an indicator of the overall efficiency of (NHL)] and cervix. -
The Use of Rodent Tumors in Experimental Cancer Therapy Conclusions and Recommendations from an International Workshop1'2
[CANCER RESEARCH 45, 6541-6545, December 1985] Meeting Report The Use of Rodent Tumors in Experimental Cancer Therapy Conclusions and Recommendations from an International Workshop1'2 This workshop was convened to address the question of how of a specific tumor cannot be predicted with any certainty. Virus- best to use animal models of solid tumors in cancer therapy induced rodent tumors almost always express common virus- research. The discussion among the 58 participants focused on coded antigens and are usually strongly immunogenic, but hosts the following topics: appropriate solid tumor models; xenografts neonatally infected with virus may be immunologically tolerant to of human tumors; assay systems such as local tumor control, virus-coded antigens. Chemically induced rodent tumors tend to clonogenic assays following tumor excision, and tumor regrowth express individually distinct antigens. Depending partially upon delay; and applications of such models in chemotherapy, radio the carcinogen and the target organ, the degree of immunoge therapy, and combined modalities studies. nicity is variable, but a large proportion of chemically induced A major goal of the meeting was to produce a set of guiding tumors are immunogenic. Spontaneous rodent tumors are usu principles for experiments on animal tumors. This report is largely ally nonimmunogenic, although a minority may be weakly to a statement of those guiding principles, with suggestions and moderately immunogenic (1, 2). comments concerning investigations using animal models in Because no tumor can be expected to be nonimmunogenic if cancer therapy research.3 The authors believe that this discus it is placed in an allogeneic environment, tumors should as a sion of "tricks of the trade" will be useful to research workers general rule only be transplanted syngeneically. -
Cancers Unequal Burden
The reality behind improving cancer survival rates April 2014 Cancer’s unequal burden – The reality behind improving cancer survival rates • Foreword • Executive summary • The reality behind improving cancer survival rates • Improving survival outcomes • Conclusion • References 3 Cancer’s unequal burden – The reality behind improving cancer survival rates in these areas has the potential to significantly reduce the overall cost of cancer care as well as greatly improving the lives of those with cancer. Routes from Diagnosis, developed in Survival rates for some cancers have soared over the past 40 years in England. partnership with strategy consultancy In the early 1970s, overall median survival time for all cancer types – the time Monitor Deloitte and Public Health by which half of people with cancer have died and half have survived – was just England’s National Cancer Intelligence i ii Network (NCIN), also shows us one year . Now it is predicted to be nearly six years , testament to the good work the value of linking and analysing of the NHS and advances in diagnosis, treatment and care. But there is a grim routinely collected NHS data. Only by reality hidden behind these numbers. combining data from cancer registries with hospital records have we been able to produce such a powerful picture of what happens to people New research led by Macmillan These new figures are taken from our after they are diagnosed with cancer Cancer Support reveals what happens groundbreaking Routes from Diagnosis and which groups of people in to people in England after they are research programme, which links particular need more support. -
Radiotherapy: Seizing the Opportunity in Cancer Care
RADIOTHERAPY: seizing the opportunity in cancer care November 2018 Foreword The incidence of cancer is increasing, resulting in a rising demand for high‑quality cancer care. In 2018, there were close to 4.23 million new cases of cancer in Europe, and this number is predicted to rise by almost a quarter to 5.2 million by 2040.1 This growing demand poses a major challenge to healthcare systems and highlights the need to ensure all cancer patients have access to high-quality, efficient cancer care. One critical component of cancer care is too often forgotten in these discussions: radiotherapy. Radiotherapy is recommended as part of treatment for more than 50% of cancer patients.2 3 However, at least one in four people needing radiotherapy does not receive it.3 This report aims to demonstrate the significant role of radiotherapy in achieving high‑quality cancer care and highlights what needs to be done to close the current gap in utilisation of radiotherapy across Europe. We call on all stakeholders, with policymakers at the helm, to help position radiotherapy appropriately within cancer policies and models of care – for the benefit of cancer patients today and tomorrow. 2 1 Governments and policymakers: Make radiotherapy a central component of cancer care in policies, planning and budgets Our 5 2 Patient groups, media five-point Professional societies working and other stakeholders: Help with national and EU‑level improve general awareness and plan decision‑makers: Achieve understanding of radiotherapy recognition of all radiotherapy to -
The Future of Cancer Research: ACCELERATING SCIENTIFIC INNOVATION
The Future Of Cancer Research: ACCELERATING SCIENTIFIC INNOVATION President’s Cancer Panel Annual Report 2010-2011 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute The President’s Cancer Panel LaSalle D. Leffall, Jr., M.D., F.A.C.S., Chair (through 12/31/11) Charles R. Drew Professor of Surgery Howard University College of Medicine Washington, DC 20059 Margaret L. Kripke, Ph.D. (through 12/31/11) Vivian L. Smith Chair and This report is submitted to the President of the United States Professor Emerita in fulfillment of the obligations of the President’s Cancer Panel The University of Texas to appraise the National Cancer Program as established in MD Anderson Cancer Center accordance with the National Cancer Act of 1971 (P.L. 92-218), Houston, TX 77030 the Health Research Extension Act of 1987 (P.L. 99-158), the National Institutes of Health Revitalization Act of 1993 (P.L. 103-43), and Title V, Part A, Public Health Service Act (42 U.S.C. 281 et seq.). Printed November 2012 For further information on the President’s Cancer Panel or additional copies of this report, please contact: Abby B. Sandler, Ph.D. Executive Secretary President’s Cancer Panel 9000 Rockville Pike Bld. 31/Rm B2B37 MSC 2590 Bethesda, MD 20892 301-451-9399 [email protected] http://pcp.cancer.gov The Future Of Cancer Research:: ACCELERATING SCIENTIFIC INNOVATION President’s Cancer Panel Annual Report 2010-2011 Suzanne H. Reuben Erin L. Milliken Lisa J. Paradis for The President’s Cancer Panel November 2012 U.S. -
Targeted Radiotherapeutics from 'Bench-To-Bedside'
RadiochemistRy in switzeRland CHIMIA 2020, 74, No. 12 939 doi:10.2533/chimia.2020.939 Chimia 74 (2020) 939–945 © C. Müller, M. Béhé, S. Geistlich, N. P. van der Meulen, R. Schibli Targeted Radiotherapeutics from ‘Bench-to-Bedside’ Cristina Müllera, Martin Béhéa, Susanne Geistlicha, Nicholas P. van der Meulenab, and Roger Schibli*ac Abstract: The concept of targeted radionuclide therapy (TRT) is the accurate and efficient delivery of radiation to disseminated cancer lesions while minimizing damage to healthy tissue and organs. Critical aspects for success- ful development of novel radiopharmaceuticals for TRT are: i) the identification and characterization of suitable targets expressed on cancer cells; ii) the selection of chemical or biological molecules which exhibit high affin- ity and selectivity for the cancer cell-associated target; iii) the selection of a radionuclide with decay properties that suit the properties of the targeting molecule and the clinical purpose. The Center for Radiopharmaceutical Sciences (CRS) at the Paul Scherrer Institute in Switzerland is privileged to be situated close to unique infrastruc- ture for radionuclide production (high energy accelerators and a neutron source) and access to C/B-type labora- tories including preclinical, nuclear imaging equipment and Swissmedic-certified laboratories for the preparation of drug samples for human use. These favorable circumstances allow production of non-standard radionuclides, exploring their biochemical and pharmacological features and effects for tumor therapy and diagnosis, while investigating and characterizing new targeting structures and optimizing these aspects for translational research on radiopharmaceuticals. In close collaboration with various clinical partners in Switzerland, the most promising candidates are translated to clinics for ‘first-in-human’ studies. -
Particle Accelerators and Detectors for Medical Diagnostics and Therapy Arxiv:1601.06820V1 [Physics.Med-Ph] 25 Jan 2016
Particle Accelerators and Detectors for medical Diagnostics and Therapy Habilitationsschrift zur Erlangung der Venia docendi an der Philosophisch-naturwissenschaftlichen Fakult¨at der Universit¨atBern arXiv:1601.06820v1 [physics.med-ph] 25 Jan 2016 vorgelegt von Dr. Saverio Braccini Laboratorium f¨urHochenenergiephysik L'aspetto pi`uentusiasmante della scienza `eche essa incoraggia l'uomo a insistere nei suoi sogni. Guglielmo Marconi Preface This Habilitation is based on selected publications, which represent my major sci- entific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. They are reprinted in Part II of this work to be considered for the Habilitation and they cover original achievements and relevant aspects for the present and future of medical applications of particle physics. The text reported in Part I is aimed at putting my scientific work into its con- text and perspective, to comment on recent developments and, in particular, on my contributions to the advances in accelerators and detectors for cancer hadrontherapy and for the production of radioisotopes. Dr. Saverio Braccini Bern, 25.4.2013 i ii Contents Introduction 1 I 5 1 Particle Accelerators and Detectors applied to Medicine 7 2 Particle Accelerators for medical Diagnostics and Therapy 23 2.1 Linacs and Cyclinacs for Hadrontherapy . 23 2.2 The new Bern Cyclotron Laboratory and its Research Beam Line . 39 3 Particle Detectors for medical Applications of Ion Beams 49 3.1 Segmented Ionization Chambers for Beam Monitoring in Hadrontherapy 49 3.2 Proton Radiography with nuclear Emulsion Films . 62 3.3 A Beam Monitor Detector based on doped Silica Fibres . -
Radiation and Risk: Expert Perspectives Radiation and Risk: Expert Perspectives SP001-1
Radiation and Risk: Expert Perspectives Radiation and Risk: Expert Perspectives SP001-1 Published by Health Physics Society 1313 Dolley Madison Blvd. Suite 402 McLean, VA 22101 Disclaimer Statements and opinions expressed in publications of the Health Physics Society or in presentations given during its regular meetings are those of the author(s) and do not necessarily reflect the official position of the Health Physics Society, the editors, or the organizations with which the authors are affiliated. The editor(s), publisher, and Society disclaim any responsibility or liability for such material and do not guarantee, warrant, or endorse any product or service mentioned. Official positions of the Society are established only by its Board of Directors. Copyright © 2017 by the Health Physics Society All rights reserved. No part of this publication may be reproduced or distributed in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher. Printed in the United States of America SP001-1, revised 2017 Radiation and Risk: Expert Perspectives Table of Contents Foreword……………………………………………………………………………………………………………... 2 A Primer on Ionizing Radiation……………………………………………………………………………... 6 Growing Importance of Nuclear Technology in Medicine……………………………………….. 16 Distinguishing Risk: Use and Overuse of Radiation in Medicine………………………………. 22 Nuclear Energy: The Environmental Context…………………………………………………………. 27 Nuclear Power in the United States: Safety, Emergency Response Planning, and Continuous Learning…………………………………………………………………………………………….. 33 Radiation Risk: Used Nuclear Fuel and Radioactive Waste Disposal………………………... 42 Radiation Risk: Communicating to the Public………………………………………………………… 45 After Fukushima: Implications for Public Policy and Communications……………………. 51 Appendix 1: Radiation Units and Measurements……………………………………………………. 57 Appendix 2: Half-Life of Some Radionuclides…………………………………………………………. 58 Bernard L. -
Up FDG-PET in Patients with Localized Nasal Natural Killer/T-Cell Lymphoma Receiving Concurrent Chemoradiotherapy
Original Article Page 1 of 9 Preliminary study of integrating pretreatment and early follow- up FDG-PET in patients with localized nasal natural killer/T-cell lymphoma receiving concurrent chemoradiotherapy Chen-Xiong Hsu1,2, Shan-Ying Wang2,3, Chiu-Han Chang1,2, Tung-Hsin Wu2, Shih-Chiang Lin4, Pei-Ying Hsieh4, Pei-Wei Shueng1,5,6 1Department of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; 2Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; 3Department of Nuclear Medicine, 4Division of Medical Oncology and Hematology, Far Eastern Memorial Hospital, New Taipei City, Taiwan; 5Department of Medicine, National Yang-Ming University, Taipei, Taiwan; 6Department of Radiation Oncology, National Defense Medical Center, Taipei, Taiwan Contributions: (I) Conception and design: CX Hsu, TH Wu, PW Shueng; (II) Administrative support: TH Wu, SY Wang, SC Lin, PW Shueng; (III) Provision of study materials or patients: CX Hsu, SY Wang, SC Lin, PY Hsieh; (IV) Collection and assembly of data: CX Hsu, SY Wang, CH Chang; (V) Data analysis and interpretation: CX Hsu, SY Wang, PW Shueng; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Pei-Wei Shueng, MD. Department of Radiation Oncology, Far Eastern Memorial Hospital, No. 21 Section 2, Nanya South Road, Banciao District, New Taipei City. Email: [email protected]; Tung-Hsin Wu, PhD. Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei. Email: [email protected]. Background: The optimal treatment modality for stage I/II extranodal nasal natural killer/T-cell lymphoma (NKTL) including radiotherapy (RT) alone, concurrent, or sequential chemoradiotherapy and radiation doses were not well-defined. -
Proposed Method for Measuring the LET of Radiotherapeutic Particle Beams Stephen D
University of New Mexico UNM Digital Repository Physics & Astronomy ETDs Electronic Theses and Dissertations Fall 11-10-2017 Proposed Method for Measuring the LET of Radiotherapeutic Particle Beams Stephen D. Bello University of New Mexico - Main Campus Follow this and additional works at: https://digitalrepository.unm.edu/phyc_etds Part of the Astrophysics and Astronomy Commons, Health and Medical Physics Commons, Other Medical Sciences Commons, and the Other Physics Commons Recommended Citation Bello, Stephen D.. "Proposed Method for Measuring the LET of Radiotherapeutic Particle Beams." (2017). https://digitalrepository.unm.edu/phyc_etds/167 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Physics & Astronomy ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Dedication To my father, who started my interest in physics, and my mother, who encouraged me to expand my mind. iii Acknowledgments I’d like to thank my advisor, Dr. Michael Holzscheiter, for his endless support, as well as putting up with my relentless grammatical errors concerning the focus of our research. And Dr. Shuang Luan for his feedback and criticism. iv Proposed Method for Measuring the LET of Radiotherapeutic Particle Beams by Stephen Donald Bello B.S., Physics & Astronomy, Ohio State University, 2012 M.S., Physics, University of New Mexico, 2017 Ph.D, Physics, University of New Mexico, 2017 Abstract The Bragg peak geometry of the depth dose distributions for hadrons allows for precise and e↵ective dose delivery to tumors while sparing neighboring healthy tis- sue.