A Cap for All Occasions Gabriele Varani

Total Page:16

File Type:pdf, Size:1020Kb

A Cap for All Occasions Gabriele Varani View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Minireview 855 A cap for all occasions Gabriele Varani The 5¢ end of each polymerase II transcript is capped by a are modified and recognized is therefore central to methylated guanosine triphosphate. The cap earmarks the understanding how gene expression is regulated post- mRNA for subsequent processing and nucleocytoplasmic transcriptionally. transport, protects the mRNA from degradation and promotes efficient initiation of protein synthesis. The Capping enzymes recently solved structures of capping enzymes and The modification of the mature 5′ end of an mRNA cap–protein complexes shed light on how the 5¢ ends of occurs very early during transcription; in Drosophila, the mRNAs are modified, and reveals the mechanisms by majority of mRNA strands that have reached 30 nucleo- which the cap is recognized and how it functions in a tides in length are already capped [1]. Capping occurs in diverse range of processes. three steps: removal of the first phosphate by RNA tri- phosphatase to generate diphosphate-terminated pre- Address: MRC Laboratory of Molecular Biology, Hills Road, mRNA; capping with a GMP nucleoside mediated by Cambridge CB2 2QH, UK. RNA guanylyltransferase — a reaction which occurs E-mail: [email protected] through an enzyme–GMP adduct intermediate; and N7- Structure 15 July 1997, 5:855–858 methylation by RNA (guanine-7)methyltransferase [2]. http://biomednet.com/elecref/096921260050855 Although all mono- or diphosphate terminated RNAs are good substrates for guanylyl transfer, only polymerase II © Current Biology Ltd ISSN 0969-2126 transcripts are capped in vivo. This specificity is probably due to interactions between the capping and the tran- Post-transcriptional regulation of gene expression in- scription machineries. volves the recognition by protein factors of specific sig- nals located throughout messenger RNAs. These signals The crystal structure of the Chlorella virus guanylyltrans- include distinctive terminal features, namely the N7- ferase enzyme, PBCV-1, has remarkable similarities with methylated guanosine triphosphate cap at the 5′ end and DNA and RNA ligases. Sequence motifs that are con- the polyadenosine tail at the 3′ end. The cap, which has served in cellular and viral capping enzymes and in DNA the same structure in all transcripts generated by poly- and RNA ligases cluster around the nucleotide-binding merase II, directs pre-mRNAs to the processing and site in the PBCV-1 and T7 DNA ligase structures [3,4]. transport pathways in the cell nucleus and regulates both The GTP–PBCV-1 and ATP–ligase interactions involve mRNA turnover and the initiation of translation (Fig- similar contacts between the nucleotide and residues ure 1). Understanding how the 5′ ends of mature mRNAs from these conserved motifs, whereas non-conserved Figure 1 (a) Co-transcriptional (b) Pre-mRNA (c) Nucleocytoplasmic (d) mRNA (e) Translational capping splicing transport turnover initiation ? Capping α CBC Importin Pab1p Pab1p enzymes CBC AAAAA AAAAA Pre-mRNA Pre-mRNA ? mRNA mRNA mRNP ? eIF-4G Pol II SnRNPs eIF-4E ne Nuclear membra Decapping enzymes Importin β 5′–3′ exonucleases DNA CBC Ribosome mRNA Multiple roles of the 5′ mRNA cap (red sphere) during gene expression in eukaryotes. CBC is the cap-binding complex made up of two subunits; Pab1p is the cytoplasmic poly(A)-binding protein; eIF-4E and eIF-4G are translation initiation factors. For details of each process (a–e) see text. 856 Structure 1997, Vol 5 No 7 amino acids in the nucleotide-binding site define the Cap-modifying enzymes specificity of each enzyme [4]. Residues of the conserved Specific classes of capped RNAs are subjected to further motifs line a groove between two structural domains modifications. For example, the first nucleotide of (Figure 2). This cleft, which is probably the site of sub- certain viral mRNAs is methylated at the ribose 2′-OH, strate binding, is much narrower in the capping enzyme and the base N2 of the cap guanine is hypermethylated than in the ligase; this probably reflects their different in spliceosomal U snRNAs. A cap-specific 2′-O-methyl- specificities for single-stranded RNA versus double- transferase, VP39, from vaccinia virus recognizes the stranded DNA substrates. canonical N7-methyl guanine cap structure and methy- lates the ribose hydroxyl group of the first transcribed The crystal structure of PBCV-1 guanylyltransferase re- nucleotide. The VP39 structure is homologous to other vealed that it has two distinct conformations [4]. In the methyltransferases [5], and is superficially similar to crystal structure of guanylyltransferase, the deep cleft sepa- RNA-binding proteins [6]. The fold of VP39 is distinct rating the two domains is ‘closed’ in one molecule in the from typical αβ RNA-binding proteins, however, reveal- unit cell by a rigid displacement of domain 2 (Figure 2). ing a novel architecture for RNA recognition. The β Upon soaking the crystals with divalent cations, a GMP– sheet of VP39 is not exposed to solvent as in RNA- lysine adduct is formed, in which GMP binds within the binding proteins but buried in the protein core, whereas signature KXDG sequence [2] of the ‘closed’ but not of the the exposed surface is formed by loops and α helices ‘open’ conformation. A strong electron density for GTP is (Figure 3) [5]. observed only for the ‘closed’ conformation, suggesting that the catalytically active ‘closed’ structure is induced by In the VP39–cap complex, the N7-methylated guanosine GTP binding [4]. As the ‘closed’ form is not wide enough occupies a deep aromatic cleft and is sandwiched be- to accommodate the RNA substrate, both conformations tween the sidechains of Phe180 and Tyr22 (Figure 3) [7]. are probably important for catalysis. These stacking interactions are likely to contribute to the specific recognition of the methylated base through en- hanced π–π interactions, as observed for small aromatic Figure 2 molecules. Thus, the unique electronic structure of the methylated base contributes to specific recognition of the mRNA cap and (probably) of alkylated bases by DNA excision repair enzymes. Figure 3 Superposition of ‘closed’ (yellow) and ‘open’ (green) conformations of Structure of the vaccinia virus VP39 methyltransferase–cap complex, the chlorella virus guanylyltransferase, with GTP (purple) bound to the highlighting the stacking interactions between the modified guanine ‘closed’ state of the enzyme [4]. (purple) and essential aromatic amino acids (yellow) [7]. Minireview A cap for all occasions Varani 857 Pre-mRNA splicing default pathway for mRNA degradation, decapping occurs The role of the cap in mRNA splicing is mediated by a only after de-adenylation. Yeast strains lacking Pab1p (the nuclear cap-binding complex (CBC; Figure 1b), which is cytoplasmic poly(A)-binding protein) are decapped prior composed of two tightly associated proteins, CBP20 and to de-adenylation [12], suggesting that Pab1p protects the CBP80 [8,9]. CBP20 is a member of the RNP superfamily cap from decapping enzymes (Figure 1d). of RNA-binding proteins [6], but CBP80 has no clear homology with other proteins. CBC (but not CBP80 or Translational initiation CBP20 in isolation) interacts specifically with the mono- The rate-limiting step in the initiation of protein synthesis methylated guanosine cap, both in vitro and in vivo [8,9], requires engagement between the 40S subunit of the ribo- and promotes an efficient interaction between U1 snRNP some and the mRNA [14]. The cap plays a critical role in and the 5′ splice site. This interaction between U1 snRNP this process, through the cytoplasmic cap-binding com- and the 5′ splice site is one of the earliest steps in spliceo- plex eIF-4F, again in synergy with the poly(A) tail (Figure some assembly [8] and is necessary to define the 5′ splice 1e) [15]. The cytoplasmic cap-binding protein, eIF-4E, site of the very first intron. This essential function of the specifically recognizes the cap and another component of CBC–cap complex and (probably) the mechanism by which eIF-4F, the ‘adapter’ protein eIF-4G [14]. In yeast, eIF- it promotes mRNA splicing are conserved between yeast 4G also interacts with Pab1p [15,16], suggesting that stim- and mammals, but the identity of the factor(s) that ulation of recruitment of the 40S subunit by the cap and mediate the interaction between CBC and the splicing the poly(A) tail are mediated by the same mechanism, as machinery and the structural basis for cap–CBC recogni- illustrated in Figure 1e. tion remain to be established. The requirement for the cap in translation is not Nucleocytoplasmic export and mRNA turnover absolute. For example, internal ribosome entry sites of The CBC associates with nascent transcripts and remains some cellular messenger and picornaviral RNAs bypass bound to the cap throughout the splicing cycle, even the cap requirement. Those mRNAs that have a low when the mature mRNA leaves the spliceosome [8]. At affinity for eIF-4E, such as heat-shock gene transcripts, this stage, mRNA has to be packaged into a ribonucleo- and mRNAs that are expressed during early develop- protein particle (mRNP) for export to the cytoplasm ment, are likely to rely on the poly(A) tail rather than the through the nucleopore complex [10]. The cap–CBC com- cap for translational initiation [16]. On the other hand, plex is critical for the export of spliceosomal components the translation of mRNAs in which very stable secondary (U snRNAs). The complex also plays a significant but structures are present between the cap and the initiation nonessential role in mRNA export. Presumably, mRNPs codon is strongly dependent on the eIF-4E–cap inter- contain multiple, redundant, export signals [9,10]. In yeast action. The activity of eIF-4E is down-regulated by cells and Xenopus oocytes, the CBC forms an abundant protein inhibitors (4E-BPs) that block the eIF-4E–eIF- cap-dependent complex with a component of the nuclear 4G interaction.
Recommended publications
  • Active Site of the Mrna-Capping Enzyme Guanylyltransferase from Saccharomyces Cerevisiae
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 6624-6628, July 1994 Biochemistry Active site of the mRNA-capping enzyme guanylyltransferase from Saccharomyces cerevisiae: Similarity to the nucleotidyl attachment motif of DNA and RNA ligases (nucleoidyl trnsfer/covalent catalysis) LUCILLE D. FRESCO* AND STEPHEN BURATOWSKI*t The Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142 Communicated by Phillip A. Sharp, March 8, 1994 ABSTRACT Nasent mRNAchains are capped atthe 5' end The covalent E-GMP intermediate (EnpG) can be conve- by the addiion ofa guanylyl residue to forma G(5')ppp(5')N... niently identified by radioactive labeling of the protein with structure. During the capping reaction, the guanylyltrnerase [a-32P]GTP. (GTP:mRNA guanylyltransferase, EC 2.7.7.50) is reversibly Interest in the mechanism ofcapping has focused attention and covalently guanylylated. In this enzyme-GMP (E-GMP) on the E-GMP complex. Cellular mRNA guanylyltrans- termediate, GMP Is linked to the E-amino group of a lysine ferases from human, rat liver, calf thymus, Artemia salina, residue via a phosphoamide bond. Lys-70 was Identid as the wheat germ, and Saccharomyces cerevisiae all form E-GMP GMP attachment ste of the Saccharomyces cerevisiae guanylyl- covalent complexes (reviewed in ref. 3). In addition, cyto- transferase (encoded by the CEGI gene) by guanyylpeptide plasmic viruses encode their own capping enzymes. The sequencing. CEGI genes with substitutions at Lys-70 were guanylyltransferases of vaccinia virus (12, 13), reovirus (11, unable to support viability in yeast and produced proteins that 14, 15), African swine fever virus (16), rotavirus (17), blue- were not guanylylated in vitro.
    [Show full text]
  • RNA Capping Gene Expression in General Eukaryote Gene Expression Is Regulated at Seven Levels
    Modification and processing of eukaryotic pre-mRNAs RNA Capping Gene Expression in General Eukaryote gene expression is regulated at seven levels: 1. Transcription 2. RNA processing 3. mRNA transport 4. mRNA translation 5. mRNA degradation 6. Protein targeting 7. Protein degradation Each of these levels contains multiple steps, which are also subject of control and regulation Control vs. regulation The Long and Winding Road….. Processing of eukaryotic RNA polymerase II transcripts Steps in pre-mRNA processing i). Capping ii). Splicing iii). Cleavage and polyadenylation I. Capping II. Splicing a). Chemistry of mRNA splicing b). Donor and acceptor splice sites c). Spliceosome assembly and splice site recognition d). Small nuclear RNAs and RNPs e). Role of SR proteins in splicing f). Splicing regulation g). Alternative splicing h).Mutations that disrupt splicing i). AT-AC introns j). Trans splicing III. 3’ End Processing: Cleavage and Polyadenylation of Primary Transcripts Steps in mRNA processing (hnRNA is the precursor of mRNA) • capping (occurs co-transcriptionally) • cleavage and polyadenylation (forms the 3’ end) • splicing (occurs in the nucleus prior to transport) exon 1 intron 1 exon 2 Transcription of pre-mRNA and capping at the 5’ end cap Cleavage of the 3’ end and polyadenylation cap cap poly(A) Splicing to remove intron sequences cap poly(A) Transport of mature mRNA to the cytoplasm RNA capping 5’ cap 6 Most eukaryotic mRNAs contain a 5' cap of 7-methylguanosine 1 5 7 2 9 8 linked to the 5'-end of the mRNA in a novel 5', 5'-triphosphate linkage 3 4 This base is not encoded in the DNA template The cap may also have some additional modifications including: 1.Methyl groups at 2'-O position of the 1st and 2nd template encoded nucleotides No methyl at either 1st or 2nd template encoded nucleotides = Cap 0 Methyl at only 1st template encoded nucleotide = Cap 1 Methyl at both 1st and 2nd template encoded nucleotides = Cap 2 2.In some cases, if the 1st nucleotide is an adenine it may be methylated at N6 RNA capping Addition of the cap involves several step: 1.
    [Show full text]
  • 5'-Terminal Capping of RNA by Guanylyltransferase
    Proc. Nati. Acad. Sci. USA Vol. 74, No. 9, pp. 3758-3761, September 1977 Biochemistry 5'-Terminal capping of RNA by guanylyltransferase from HeLa cell nuclei (mRNA/7-methylguanosine/RNA processing) CHA-MER WEI AND BERNARD MOSS Laboratory of Biology of Viruses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20014 Communicated by Robert P. Perry, June 24, 1977 ABSTRACT A soluble extract prepared from HeLa cell MATERIALS AND METHODS nuclei has been shown to catalyze the 5'-terminal modification Preparation of Guanylyltransferase from of RNA and synthetic polyribonucleotides to form m7G(5')pppA- HeLa Cells. and m7G(5')pppG- structures referred to as caps. The reaction HeLa S3 cells were harvested from suspension culture at 3 X involves the transfer of a GMP moiety from GTP to the 5' end 105 cells per ml and washed three times with 20mM Tris-HCl of an RNA molecule containing at Teast two terminal phos- (pH 7.6)/146 mM NaCl/11 mM glucose at 4°. The cells were phates. Significantly, neither the P nor the 'y phosphates of GTP then swollen in three volumes of 20mM Tris-HC1 (pH 7.9)/10 are transferred and polynucleotides with no 5'-terminal phos- mM MgCI2/10 mM KCI/0.25 mM spermidine at 00 and dis- phate or only one are not acceptors. In the absence of methyl rupted by Dounce homogenization. An equal volume of cold donor, G(5')pppA- and G(5')pppG- structures were synthesized, indicating that methylation is not required for guanylylation. 20mM Tris.HCI (pH 7.6)/50% glycerol was immediately added Cap formation was considered to occur by the following to the lysate.
    [Show full text]
  • Phosphorylation and Functions of the RNA Polymerase II CTD
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Phosphorylation and functions of the RNA polymerase II CTD Hemali P. Phatnani1 and Arno L. Greenleaf2 Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA The C-terminal repeat domain (CTD), an unusual exten- important that the heptads be in tandem: Insertion of an sion appended to the C terminus of the largest subunit of Ala residue between heptads is lethal in yeast, whereas RNA polymerase II, serves as a flexible binding scaffold insertion of an Ala between heptad pairs can be tolerated for numerous nuclear factors; which factors bind is de- (Stiller and Cook 2004). While the CTD is indispensable termined by the phosphorylation patterns on the CTD in vivo, it is frequently not required for general transcrip- repeats. Changes in phosphorylation patterns, as poly- tion factor (GTF)-mediated initiation and RNA synthesis merase transcribes a gene, are thought to orchestrate the in vitro (Zehring et al. 1988; Kim and Dahmus 1989; association of different sets of factors with the transcrip- Buratowski and Sharp 1990; Kang and Dahmus 1993; tase and strongly influence functional organization of Akoulitchev et al. 1995). Thus, the CTD does not form the nucleus. In this review we appraise what is known, part of the catalytic essence of RNAPII; rather, it must and what is not known, about patterns of phosphoryla- perform other functions. The nature and variety of these tion on the CTD of RNA polymerases II at the begin- functions are currently being elucidated and are a main ning, the middle, and the end of genes; the proposal that topic of this review.
    [Show full text]
  • Conventional and Unconventional Mechanisms for Capping Viral Mrna
    REVIEWS Conventional and unconventional mechanisms for capping viral mRNA Etienne Decroly1, François Ferron1, Julien Lescar1,2 and Bruno Canard1 Abstract | In the eukaryotic cell, capping of mRNA 5′ ends is an essential structural modification that allows efficient mRNA translation, directs pre-mRNA splicing and mRNA export from the nucleus, limits mRNA degradation by cellular 5′–3′ exonucleases and allows recognition of foreign RNAs (including viral transcripts) as ‘non-self’. However, viruses have evolved mechanisms to protect their RNA 5′ ends with either a covalently attached peptide or a cap moiety (7‑methyl-Gppp, in which p is a phosphate group) that is indistinguishable from cellular mRNA cap structures. Viral RNA caps can be stolen from cellular mRNAs or synthesized using either a host- or virus-encoded capping apparatus, and these capping assemblies exhibit a wide diversity in organization, structure and mechanism. Here, we review the strategies used by viruses of eukaryotic cells to produce functional mRNA 5′-caps and escape innate immunity. Pre-mRNA splicing The cap structure found at the 5′ end of eukaryotic reactions involved in the viral RNA-capping process, A post-transcriptional mRNAs consists of a 7‑methylguanosine (m7G) moi‑ and the specific cellular factors that trigger a response modification of pre-mRNA, in ety linked to the first nucleotide of the transcript via a from the innate immune system. which introns are excised and 5′–5′ triphosphate bridge1 (FIG. 1a). The cap has several exons are joined in order to form a translationally important biological roles, such as protecting mRNA Capping, decapping and turnover of host RNA functional, mature mRNA.
    [Show full text]
  • Reaction Mechanism of Mrna Guanylyltransferase from Rat Liver
    Proc. Nati Acad. Sci. USA Vol. 79, pp. 1693-1697, March 1982 Biochemistry Reaction mechanism of mRNA guanylyltransferase from rat liver: Isolation and characterization of a guanylyl-enzyme intermediate (capping mechanism/GTP-PP; exchange/covalent catalysis/phosphoamide linkage) KIYOHISA MIZUMOTOt, YOSHITo KAZIROt, AND FRITZ LIPMANNt tInstitute of Medical Science, University ofTokyo, Minatoku, Tokyo 108, Japan; and lThe Rockefeller University, New York, New York 10021 Contributed by Fritz Lipmann, October 27, 1981 ABSTRACT Rat liver RNA guanylyltransferase catalyzes a By studying the mechanism ofthe first reaction catalyzed by GTP-PP, exchange reaction in the absence of acceptor RNA [Mi- guanylyltransferase in detail, we found that a GTP-PPj exchange zumoto, K. & Lipmann, F. (1979) Proc. NatL Acai Sci USA 76, reaction occurred in the absence ofacceptor RNA and suggested 4961-4965] suggesting that the reaction proceeds through the for- that the guanylylation reaction may involve an enzyme-GMP mation of a covalent guanylylated intermediate. We now present complex as an intermediate (13). A similarfinding was also made more direct evidence for the existence of the enzyme-GMP in- by Shuman et al. (10) with the capping enzyme from vaccinia termediate: (i) the enzyme-[32P]GMP intermediate was formed virus. Furthermore, Shuman and Hurwitz (14) have recently on incubation of rat liver guanylyltransferase with [a-32P]GTP siicceed'ed' in isorating a covalent enzyme-GMP intermediate and migrated as a single radioactive band with Mr 69,000 on in which GMP is NaDodSO4polyacrylamide gel electrophoresis, and (ii) the in- linked to the Mr 95,000 subunit ofthe enzyme termediate isolated on gel filtration can transfer its GMP moiety complex.
    [Show full text]
  • Different Phosphorylated Forms of RNA Polymerase II and Associated Mrna Processing Factors During Transcription
    Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription Philip Komarnitsky,1 Eun-Jung Cho,1 and Stephen Buratowski2 Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts 02115, USA The activities of several mRNA processing factors are coupled to transcription through binding to RNA polymerase II (Pol II). The largest subunit of Pol II contains a repetitive carboxy-terminal domain (CTD) that becomes highly phosphorylated during transcription. mRNA-capping enzyme binds only to phosphorylated CTD, whereas other processing factors may bind to both phosphorylated and unphosphorylated forms. Capping occurs soon after transcription initiation and before other processing events, raising the question of whether capping components remain associated with the transcription complex after they have modified the 5؅ end of the mRNA. Chromatin immunoprecipitation in Saccharomyces cerevisiae shows that capping enzyme cross-links to promoters but not coding regions. In contrast, the mRNA cap methyltransferase and the Hrp1/CFIB polyadenylation factor cross-link to both promoter and coding regions. Remarkably, the phosphorylation pattern of the CTD changes during transcription. Ser 5 phosphorylation is detected primarily at promoter regions dependent on TFIIH. In contrast, Ser 2 phosphorylation is seen only in coding regions. These results suggest a dynamic association of mRNA processing factors with differently modified forms of the polymerase throughout the transcription cycle. [Key Words: RNA polymerase II; TFIIH; capping enzyme; Kin 28] Received June 6, 2000; revised version accepted July 31, 2000. Eukaryotic mRNAs undergo 5Ј end capping, splicing of ase. In contrast, the mRNA cap methyltransferase Abd1 introns, and polyadenylation.
    [Show full text]
  • 5 -Capping Enzymes Are Targeted to Pre-Mrna by Binding to The
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press 5*-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II Susan McCracken, Nova Fong, Emanuel Rosonina,1 Krassimir Yankulov, Greg Brothers, David Siderovski, Andrew Hessel, Stephen Foster,2 Amgen EST Program,2 Stewart Shuman,3 and David L. Bentley1,4 Amgen Institute and Ontario Cancer Institute, Toronto, Ontario M5G 2C1, Canada; 1Department of Medical Biophysics, University of Toronto, Toronto, Canada; 2 Amgen, Inc., Thousand Oaks, California 91320 USA; 3Memorial Sloan-Kettering Cancer Center, New York, New York 10021 USA We have investigated the role of the RNA Polymerase II (Pol II) carboxy-terminal domain (CTD) in mRNA 5* capping. Transcripts made in vivo by Pol II with a truncated CTD had a lower proportion of capped 5* ends than those made by Pol II with a full-length CTD. In addition, the enzymes responsible for cap synthesis, RNA guanylyltransferase, and RNA (guanine-7)-methyltransferase bound directly to the phosphorylated, but not to the nonphosphorylated, form of the CTD in vitro. These results suggest that: (1) Pol II-specific capping of nascent transcripts in vivo is enhanced by recruitment of the capping enzymes to the CTD and (2) capping is co-ordinated with CTD phosphorylation. [Key Words: RNA Pol II; CTD; mRNA cap; RNA guanylyltransferase; RNA 7-methyltransferase] Received September 22, 1997; accepted in revised form October 14, 1997. Transcripts made by RNA Polymerase II (Pol II) are dis- subunits copurify as a stable complex distinct from the tinguished from Pol I and Pol III transcripts by a m7G(58)- monomeric methyltransferase (Itoh et al.
    [Show full text]
  • Origins of Mrna Identity: Capping Enzymes Bind to The
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12758–12760, November 1997 Commentary Origins of mRNA identity: Capping enzymes bind to the phosphorylated C-terminal domain of RNA polymerase II Stewart Shuman Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021 Cellular enzymes that cap, splice, and polyadenylate eukary- Cap formation entails a series of three reactions catalyzed by otic pre-mRNAs are targeted in vivo to the nascent chains RNA triphosphatase, RNA guanylyltransferase, and RNA synthesized by RNA polymerase II (pol II). Placing a mam- (guanine-7-) methyltransferase. The triphosphatase hydro- malian pol II transcription unit under the control of a pol III lyzes the 59 triphosphate end of the primary transcript to a promoter results in a failure to cap, splice, or polyadenylate the diphosphate. Guanylyltransferase adds GMP from GTP to the transcript (1, 2). How is pre-mRNA ‘‘identity’’ established? Do diphosphate RNA end to form a blocked G(59)ppp(59)N the various mRNA processing enzymes recognize protein structure. The methyltransferase adds a methyl group from components of the pol II transcription elongation complex or S-adenosylmethionine to the cap guanosine to form is identity conferred through an initial pol II-specific modifi- m7GpppN. This pathway was elucidated more than 20 years cation that directs subsequent mRNA fate? We know that ago by the Moss and Shatkin laboratories through studies of acquisition of the m7GpppN cap is the first modification event the capping enzymes encoded by vaccinia virus and reovirus in mRNA biogenesis and that capping facilitates downstream (reviewed in ref. 14). Only in the past few years have cellular transactions such as splicing, polyadenylation, transport, and genes encoding the capping enzymes been cloned (15–19).
    [Show full text]
  • High Resolution Crystal Structure of a Key Editosome Enzyme from Trypanosoma Brucei: RNA Editing Ligase 1
    doi:10.1016/j.jmb.2004.08.041 J. Mol. Biol. (2004) 343, 601–613 High Resolution Crystal Structure of a Key Editosome Enzyme from Trypanosoma brucei: RNA Editing Ligase 1 Junpeng Deng1,2, Achim Schnaufer3,4, Reza Salavati3,4 Kenneth D. Stuart3,4 and Wim G. J. Hol1,2* 1Howard Hughes Medical Trypanosomatids are causative agents of several devastating tropical diseases Institute, University of such as African sleeping sickness, Chagas’ disease and leishmaniasis. There Washington, Seattle WA 98195 are no effective vaccines available to date for treatment of these protozoan USA diseases, while current drugs have limited efficacy, significant toxicity and suffer from increasing resistance. Trypanosomatids have several remarkable 2Department of Biochemistry and unique metabolic and structural features that are of great interest for and Biological Structure developing new anti-protozoan therapeutics. One such feature is “RNA Biomolecular Structure Center editing”, an essential process in these pathogenic protozoa. Transcripts for key University of Washington trypanosomatid mitochondrial proteins undergo extensive post-transcrip- P.O. Box 357742, Seattle WA tional RNA editing by specifically inserting or deleting uridylates from pre- 98195, USA mature mRNA in order to create mature mRNAs that encode functional 3Seattle Biomedical Research proteins. The RNA editing process is carried out in a w1.6 MDa multi-protein Institute, 307 Westlake Avenue complex, the editosome. In Trypanosoma brucei, one of the editosome’s core N, Suite 500, Seattle, WA 98109 enzymes, the RNA editing ligase 1 (TbREL1), has been shown to be essential USA for survival of both insect and bloodstream forms of the parasite. We report ˚ 4 here the crystal structure of the catalytic domain of TbREL1 at 1.2 A Department of Pathobiology resolution, in complex with ATP and magnesium.
    [Show full text]
  • Curriculum Vitae Stewart Shuman, MD, Ph.D. Address
    Curriculum Vitae Stewart Shuman, M.D., Ph.D. Address: Molecular Biology Program Sloan-Kettering Institute 1275 York Ave. New York, NY 10065 [email protected] Education: B.A. Biology (1976) summa cum laude Wesleyan University Middletown, Connecticut Ph.D. Molecular Biology (1983) Albert Einstein College of Medicine, New York M.D. (1983) Albert Einstein College of Medicine Postgraduate Positions Held: 1983-86 Medical House Officer, Medical Services Massachusetts General Hospital 1986-88 Medical Staff Fellow, Laboratory of Viral Diseases National Institute of Allergy and Infectious Diseases National Institutes of Health 1988-92 Assistant Member, Molecular Biology Program, Sloan-Kettering Institute, and Assistant Member, Dept. of Medicine, Memorial Sloan-Kettering Cancer Center 1992-95 Associate Member, Molecular Biology Program, Sloan-Kettering Institute, and Associate Member, Dept. of Medicine, Memorial Sloan-Kettering Cancer Center 1995- Member, Molecular Biology Program, Sloan-Kettering Institute, and Member, Dept. of Medicine, Memorial Sloan-Kettering Cancer Center Certification: American Board of Internal Medicine (1986) Honors: Member of the American Academy of Arts and Sciences (2015) Fellow of the American Academy of Microbiology (2013) NIH MERIT Award (2007-2017) American Cancer Society Research Professor (2005 - ) American Society for Virology, Wolfgang Joklik Lectureship (2004) Burroughs Wellcome Fund Award - New Initiatives in Malaria Research (2001-03) Simon H. Rifkind Chair (1999 - ) American Cancer Society Faculty Research
    [Show full text]
  • Highly Efficient 5' Capping of Mitochondrial RNA with NAD+ and NADH by Yeast and Human Mitochondrial RNA Polymerase
    Thomas Jefferson University Jefferson Digital Commons Department of Biochemistry and Molecular Department of Biochemistry and Molecular Biology Faculty Papers Biology 12-12-2018 Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase Jeremy G Bird Rutgers University Urmimala Basu Rutgers University David Kuster Rutgers University; Heidelberg University Aparna Ramachandran FRutgersollow this Univ andersity additional works at: https://jdc.jefferson.edu/bmpfp Ewa P arGrudzien-Nogalskat of the Medical Biochemistr y Commons LetRutgers us Univ knowersity how access to this document benefits ouy SeeRecommended next page for Citation additional authors Bird, Jeremy G; Basu, Urmimala; Kuster, David; Ramachandran, Aparna; Grudzien-Nogalska, Ewa; Towheed, Atif; Wallace, Douglas C.; Kiledjian, Megerditch; Temiakov, Dmitry; Patel, Smita S.; Ebright, Richard H.; and Nickels, Bryce E., "Highly efficient 5' capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase" (2018). Department of Biochemistry and Molecular Biology Faculty Papers. Paper 144. https://jdc.jefferson.edu/bmpfp/144 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons.
    [Show full text]