The Influence of Glufosinate in Auxinic-Based Herbicide Systems By

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Glufosinate in Auxinic-Based Herbicide Systems By The influence of glufosinate in auxinic-based herbicide systems by Grace Flusche Ogden, B.S. A Thesis In Plant and Soil Science Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Peter A. Dotray, Ph.D. Chair of Committee Katie L. Lewis, Ph.D. J. Wayne Keeling, Ph.D. Mark Sheridan Dean of the Graduate School December, 2020 Copyright 2020, Grace Ogden DEDICATION To Jack. Texas Tech University, Grace Flusche Ogden, December 2020 ACKNOWLEDGMENTS I would like to give my sincere appreciation and gratitude to Dr. Peter Dotray for serving as a mentor and providing the opportunity to study weed science. I would like to thank Drs. Katie Lewis and Wayne Keeling for their guidance, feedback, and support of this project. I admire and respect all who served on my committee and am honored to have had the opportunity to work with them. My fellow graduate students Ubaldo Torres, Delaney Foster, and Kyle Russell have been an invaluable help throughout this process. Bobby Rodrigues was always there for technical support and to lend a helping hand. Andrew Dotray provided a boost of morale on hot summer days. Thank you to each of them for their time and effort to help this project reach completion. This project would not have come to fruition without the financial support of Legacy Monsanto Company and the field presence of John Everitt. Thank you to John for his field support and inquisitive nature. Texas Tech University and Texas A&M Agricultural Experiment Station provided the facilities for this project and countless opportunities to share this research with the community. Dr. Jaroy Moore and Beau Henderson kindly let the Weed Science team grow our rouge weeds and understood the need for our unsightly research blocks. Kathy, Robyn, Gail, Joann, and Diann encouraged me and always met my questions or requests with kindness. Thank you to both institutions and their wonderful staff. My family served as my biggest source of encouragement throughout this journey and I am immensely thankful for their support. My husband, Jace, spent many evenings and weekends helping with these projects and encouraging me to keep the faith. My parents gave the best pep talks and were always eager to hear about what I was learning. Thank you to all my family for fostering my weed science interests and playing the “What Weed is This?” game on Saturday afternoons. ii Texas Tech University, Grace Flusche Ogden, December 2020 TABLE OF CONTENTS DEDICATION.................................................................................................................... i ACKNOWLEDGMENTS ................................................................................................ ii ABSTRACT ...................................................................................................................... iv LIST OF TABLES ........................................................................................................... vi CHAPTER I: LITERATURE REVIEW .........................................................................1 Literature Cited ....................................................................................................... 11 CHAPTER II: THE INFLUENCE OF GLUFOSINATE IN DICAMBA BASED HERBICIDE SYSTEMS .................................................................................................17 Abstract ................................................................................................................... 17 Introduction ............................................................................................................. 19 Materials and Methods ............................................................................................ 21 Sequential Applications of Glufosinate and Dicamba with and without Acetochlor ........................................................................................................ 21 Sequential Applications of Glufosinate or Dicamba at 3, 7, and 10 Day Intervals ............................................................................................................ 23 Results and discussion ............................................................................................. 25 Sequential Applications of Glufosinate and Dicamba with and without Acetochlor ........................................................................................................ 25 Sequential Applications of Glufosinate or Dicamba at 3, 7, and 10 Day Intervals ............................................................................................................ 29 Literature Cited ....................................................................................................... 32 CHAPTER III: THE INFLUENCE OF GLUFOSINATE IN 2,4-D BASED HERBICIDE SYSTEMS .................................................................................................41 Abstract ................................................................................................................... 41 Introduction ............................................................................................................. 43 Materials and Methods ............................................................................................ 45 Sequential Applications of Glufosinate and 2,4-D Choline ............................. 46 2,4-D Choline Tank-Mix Applications ............................................................ 47 Results and Discussion ............................................................................................ 49 Sequential Applications of Glufosinate and 2,4-D Choline ............................. 49 2,4-D Choline Tank-Mix Applications ............................................................ 50 Literature Cited ....................................................................................................... 53 SUMMARY AND CONCLUSIONS ..............................................................................62 iii Texas Tech University, Grace Flusche Ogden, December 2020 ABSTRACT Palmer amaranth (Amaranthus palmeri S. Watson) is native to the southwestern United States and for decades has been one of the most common weeds in West Texas. In recent years, this weed has been considered one of the most troublesome across the southern United States. The management of Palmer amaranth has changed since the discovery of glyphosate resistant populations in 2005. Dicamba and 2,4-D tolerant cotton (Gossypium hirsutum L.) systems were introduced in 2017 and provide a new opportunity to manage glyphosate resistant populations of Palmer amaranth. The use of glufosinate (Liberty® 280 SL) in auxinic-based herbicide systems may not only improve the management of glyphosate-resistant Palmer amaranth, but also be effective against new developments of herbicide resistance to group 4 modes of action. Four field studies were conducted in a non-crop environment in Lubbock, Texas in 2018 and 2019 to determine the influence of sequential spray order and role of glufosinate when used in a system with dicamba or 2,4-D to control Palmer amaranth at different growth stages. Palmer amaranth control decreased as Palmer amaranth size at initial application increased for both dicamba and 2,4-D studies. A difference in efficacy based on herbicide order was observed for < 10 cm Palmer amaranth in the sequential applications of glufosinate and dicamba with and without acetochlor study. Glufosinate followed by dicamba was less effective than dicamba followed by glufosinate at multiple rating dates in both years. Dicamba + acetochlor followed by glufosinate provided greater Palmer amaranth control than dicamba followed by dicamba at one or more rating dates across all weed sizes. The addition of acetochlor reduced new weed flushes when applied to > 30 cm Palmer amaranth in 6 out of 8 treatments. No treatment controlled > 30 cm Palmer amaranth more than 55%. No consistent difference in efficacy based on herbicide order was observed for > 10 cm Palmer amaranth. Sequential applications of glufosinate or dicamba at 3, 7, and 10 day intervals evaluated the influence of sequential spray timing of dicamba and glufosinate. Sufficient evidence was not obtained in these studies to alter sequential application timing interval recommendation from current label restrictions. Sequential applications of glufosinate and 2,4-D choline evaluated the influence of sequential spray order when applying glufosinate and 2,4-D choline with or without pyrithiobac when controlling 7 to 15 cm and 25 to 30 cm Palmer amaranth. When applied to 7 to 15 cm iv Texas Tech University, Grace Flusche Ogden, December 2020 Palmer amaranth, 2,4-D choline + glyphosate followed by glufosinate controlled Palmer amaranth 100% 10 days after sequential application in 2018 and 97% 21 days after sequential application in 2019. When applied to 25 to 30 cm, Palmer amaranth 2,4-D choline + glyphosate followed by glufosinate controlled Palmer amaranth 98% 11 and 21 days after sequential application in 2018. 2,4-D choline provided greater control when used in the initial application and followed by glufosinate than glufosinate followed by 2,4-D choline in both weed sizes. 2,4-D choline tank-mix applications evaluated the efficacy of tank-mixing 2,4-D choline, 2,4-D choline + glyphosate, and glufosinate when controlling 7 to 15 cm and 25 to 30 cm Palmer amaranth. Seven days after initial application, 2,4-D choline + glufosinate controlled 7
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • View Science Comments I
    March 11, 2014 Regulatory Analysis and Development, PPD, APHIS Station 3A-03.8 4700 River Road, Unit 118 Riverdale, MD 20737- 1238 RE: Docket No. APHIS-2013-0042 Comments to USDA APHIS on Dow AgroSciences LLC; Draft Environmental Impact Statement for Determination of Nonregulated Status of Herbicide Resistant Corn and Soybeans Center for Food Safety, Science Comments I By: Bill Freese, Science Policy Analyst Introduction These comments submitted by Center for Food Safety are one of two sets of science comments from our organization. Legal comments are also being submitted. The references cited have been uploaded as supporting materials. The filenames for these documents match the citations in the text, and are all incorporated as (e.g. Benbrook 2012). Full citations are included at the end. These comments supplement and incorporate by reference our earlier two rounds of comments on the draft Environmental Assessments for event DAS-68416-4 (Enlist soybeans) and event DAS-40278-9 (Enlist corn), as well as all the references submitted previously. The previous CFS science comments on the draft EAs have been resubmitted as Appendix B, and will be cited in the text as “CFS Science Soy”, “CFS Science Corn I”, and “CFS Science Corn II.” References to the Appendix of the EIS cite the Appendix number followed by a hyphen then the page number (e.g. 4-29). Only references that are new to these draft EIS comments are listed in the References section at the end. Executive Summary The growing unsustainability of U.S. agriculture U.S. agriculture is becoming progressively less sustainable.
    [Show full text]
  • Glufosinate (Ignite): a New Promising Postemergence Herbicide for Citrus
    Glirus Section Proc. Fla. State Hort. Soc. 100:58-61. 1987. GLUFOSINATE (IGNITE): A NEW PROMISING POSTEMERGENCE HERBICIDE FOR CITRUS Megh Singh and D. P. H. Tucker ported that the pattern of plant responses to glufosinate University of Florida, IFAS and glyphosate was distinctly different. Glufosinate has li Citrus Research and Education Center mited translocation to rootstocks and rhizomes, etc. of per 700 Experiment Station Road ennial weeds as compared to glyphosate. Therefore, even Lake Alfred, FL 33850 tual regrowth from these plant parts will occur. Glufosinate may be a useful herbicide for weed control Additional index words. Basta, Buster, Conquest, Finale, in no-tillage systems, for orchards and vineyards, and for HOE-00661, HOE-39866, glufosinate-ammonium. general weed control in rangeland and non-cropland situ ations. Kapusta (6) reported effective control of several weed species using glufosinate in no-till fields. Glufosinate Abstract. Glufosinate [ammonium (3-amino-3-carboxypropyl) at 1.0 to 2.0 kg/ha provided effective control of several methyl phosphinate] is a non-selective postemergence her annual and perennial weeds in vineyards, citrus, and other bicide for the control of a broad spectrum of grasses and fruit orchards as well as in uncultivated areas (3). Lawson broad leaf weed species. It is known worldwide by various names such as Basta, Buster, Conquest, and Finale. Glufosi and Wiseman (9) reported satisfactory runner control in nate controls both annual and perennial weeds. The activity strawberries without the adverse effect on the growth and of glufosinate is somewhat slower than paraquat but dis yield of the crop.
    [Show full text]
  • Interaction of 2,4-D Or Dicamba with Glufosinate for Control of Glyphosate-Resistant Giant Ragweed (Ambrosia Trifida L.) in Glufosinate-Resistant Maize (Zea Mays L.)
    fpls-08-01207 July 6, 2017 Time: 18:18 # 1 ORIGINAL RESEARCH published: 10 July 2017 doi: 10.3389/fpls.2017.01207 Interaction of 2,4-D or Dicamba with Glufosinate for Control of Glyphosate-Resistant Giant Ragweed (Ambrosia trifida L.) in Glufosinate-Resistant Maize (Zea mays L.) Zahoor A. Ganie and Amit J. Jhala* Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States Glyphosate-resistant (GR) giant ragweed is a problematic broadleaf weed in crops including maize and soybean in the Midwestern United States. Commercialization of crops with 2,4-D or dicamba and glufosinate resistance will allow post-emergence (POST) applications of these herbicides. Therefore, information is needed on how Edited by: 2,4-D/dicamba will interact with glufosinate in various rate combinations. The objectives Ilias Travlos, Agricultural University of Athens, of this study were to evaluate the interaction of glufosinate plus 2,4-D and/or dicamba for Greece control of GR giant ragweed, and to determine their effect on GR giant ragweed density, Reviewed by: biomass, maize injury, and yield. Field experiments were conducted in 2013 and 2014 Milena S. Simic, Maize Research Institute Zemun Polje, in a field infested with GR giant ragweed in Nebraska, United States. The treatments − Serbia included POST applications of glufosinate (450 or 590 g ai ha 1), 2,4-D, or dicamba Yosra Menchari, at 280 or 560 g ae ha−1 applied alone and in tank-mixtures in glufosinate-resistant University of Jendouba, Tunisia maize. The results showed that dicamba applied alone resulted in 56 to 62% and *Correspondence: Amit J.
    [Show full text]
  • Corn and Soybean Mode of Action Herbicide Chart
    By Premix Corn and Soybean This chart lists premix herbicides alphabetically by their trade names so you can identify the premix’s component herbicides and their respective site of action groups. Refer Herbicide Chart to the Mode of Action chart for more information. Component Repeated use of herbicides with the same Site of Premix Trade Active Action site of action can result in the development of Trade Name ® Name ® Ingredient Group* herbicide-resistant weed populations. Authority First ............... Spartan sulfentrazone 14 FirstRate cloransulam 2 Axiom ........................... Define flufenacet 15 This publication was designed for commercial printing, color shifts may occur on other printers and on-screeen. Sencor metribuzin 5 Basis . ........................... Resolve rimsulfuron 2 Harmony GT thifensulfuron 2 By Mode of Action (effect on plant growth) Bicep II Magnum .......... Dual II Magnum s-metolachlor 15 AAtrex atrazine 5 This chart groups herbicides by their modes of action to assist Bicep Lite II Magnum .... Dual II Magnum s-metolachlor 15 AAtrex atrazine 5 you in selecting herbicides 1) to maintain greater diversity in Boundary ...................... Dual Magnum s-metolachlor 15 herbicide use and 2) to rotate among herbicides with different Sencor metribuzin 5 Breakfree ATZ ............... Breakfree acetochlor 15 sites of action to delay the development of herbicide resistance. atrazine atrazine 5 Breakfree ATZ Lite ........ Breakfree acetochlor 15 Number of atrazine atrazine 5 resistant weed Buctril + Atrazine ......... Buctril bromoxynil 6 atrazine atrazine 5 species in U.S. Bullet ............................ Micro-Tech alachlor 15 Site of Chemical Active atrazine atrazine 5 Action Product Examples Camix ........................... Callisto mesotrione 28 Group* Site of Action Family Ingredient (Trade Name ®) Dual II Magnum s-metolachlor 15 Lipid Canopy DF ..................
    [Show full text]
  • Control of Glyphosate-Resistant Common Waterhemp (Amaranthus Rudis)In Glufosinate-Resistant Soybean
    Weed Technology 2017 31:32–45 © Weed Science Society of America, 2017 Control of Glyphosate-Resistant Common Waterhemp (Amaranthus rudis)in Glufosinate-Resistant Soybean Amit J. Jhala, Lowell D. Sandell, Debalin Sarangi, Greg R. Kruger, and Steven Z. Knezevic* Glyphosate-resistant (GR) common waterhemp has become a significant problem weed in Nebraska and several Midwestern states. Several populations of GR common waterhemp are also resistant to acetolactate synthase (ALS)-inhibiting herbicides, making them difficult to control with POST herbicides in GR soybean. Glufosinate-resistant (GFR) soybean is an alternate system for controlling GR common waterhemp, justifying the need for evaluating glufosinate-based herbicide programs. The objectives of this study were to compare POST-only herbicide programs (including one-pass and two-pass POST programs) with PRE followed by (fb) POST herbicide programs for control of GR common waterhemp in GFR soybean and their effect on common waterhemp density, biomass, and soybean yield. Field experiments were conducted in 2013 and 2014 near Fremont, NE in a grower’s field infested with GR common waterhemp. Glufosinate applied early- and late-POST provided 76% control of GR common waterhemp at 14 d after late-POST (DALPOST) compared with 93% control with a PRE fb POST program when averaged across treatments. The PRE application of chlorimuron plus thifensulfuron plus flumioxazin, S-metolachlor plus fomesafen or metribuzin, saflufenacil plus dimethenamid-P fb glufosinate provided ≥95% control of common waterhemp throughout the ≤ −2 ≥ growing season, reduced common waterhemp− density to 2.0 plants m ,caused 94% biomass reduction, and led to 1,984 to 2,210 kg ha 1 soybean yield.
    [Show full text]
  • Greenhouse and Field Evaluation of Isoxaflutole for Weed Control In
    www.nature.com/scientificreports OPEN Greenhouse and field evaluation of isoxaflutole for weed control in maize in China Received: 27 June 2017 Ning Zhao, Lan Zuo, Wei Li, Wenlei Guo, Weitang Liu & Jinxin Wang Accepted: 18 September 2017 Greenhouse and field studies were conducted to provide a reference for pre-emergence (PRE) Published: xx xx xxxx application of isoxaflutole on maize in China. In greenhouse study, the isoxaflutole PRE application at 30 g active ingredient (a.i.) ha−1 could effectively control large numbers of weeds, especially some large-seeded broadleaves, tested in this study. The tolerance results indicated 21 maize hybrids showed different responses to isoxaflutole under greenhouse conditions. In 2015 and 2016, field experiments were conducted to determine and compare the weed control efficacy and safety to Zhengdan 958 maize with 6 herbicide treatments. In both years, isoxaflutole PRE at 100 to 250 g a.i. ha−1 was sufficient to provide satisfactory full-season control of the dominant common broadleaf and grass weeds in the field. Temporary injury to maize was observed with isoxaflutole treatments of 125, 150, and 250 g a.i. ha−1 in both years, but plants recovered within 4 to 6 wk. To maximize maize yield and provide satisfactory weed control, a range of 100 to 150 g a.i. ha−1 of isoxaflutole is recommended, depending on the soil characteristics, weather, and weed species present at the experimental site. Based on the results, isoxaflutole PRE has good potential for weed control in maize in China. Maize was planted on more hectares than any other crops in China from 2010 to 2014, with an average of 35 million ha planted per year and yield averaging 5,779 kg per ha per year1.
    [Show full text]
  • U.S. Geological Survey National Water-Quality Assessment Program
    U.S. Geological Survey National Water-Quality Assessment Program Stream water-quality analytes Major ions and trace elements­schedule 998 (20 constituents) Pesticides ­­schedule 2437 (229 compounds) Alkalinity 1H­1,2,4­Triazole Arsenic 2,3,3­Trichloro­2­propene­1­sulfonic acid (TCPSA) Boron 2,4­D Calcium 2­(1­Hydroxyethyl)­6­methylaniline Chloride 2­[(2­Ethyl­6­methylphenyl)amino]­1­propanol Fluoride 2­Amino­N­isopropylbenzamide Iron 2­Aminobenzimidazole Lithium 2­Chloro­2',6'­diethylacetanilide 2­Chloro­4,6­diamino­s­triazine {CAAT} Magnesium (Didealkylatrazine) pH 2­Chloro­4­isopropylamino­6­amino­s­triazine Potassium 2­Chloro­6­ethylamino­4­amino­s­triazine {CEAT} Total dissolved solids 2­Chloro­N­(2­ethyl­6­methylphenyl)acetamide Selenium 2­Hydroxy­4­isopropylamino­6­amino­s­triazine 2­Hydroxy­4­isopropylamino­6­ethylamino­s­triazin Silica e {OIET} Sodium 2­Hydroxy­6­ethylamino­4­amino­s­triazine Specific conductance 2­Isopropyl­6­methyl­4­pyrimidinol Strontium 3,4­Dichlorophenylurea Sulfate 3­Hydroxycarbofuran Turbidity 3­Phenoxybenzoic acid Vanadium 4­(Hydroxymethyl)pendimethalin 4­Chlorobenzylmethyl sulfoxide Suspended sediment 4­Hydroxy molinate 4­Hydroxychlorothalonil Nutrients­schedule 2430 (18 constituents) 4­Hydroxyhexazinone A Inorganic carbon, suspended Acephate Dissolved inorganic carbon Acetochlor ammonia + organic nitrogen (unfiltered­Kjeldahl) Acetochlor oxanilic acid ammonia + organic nitrogen (filtered­Kjeldahl) Acetochlor sulfonic acid Ammonia as N, filtered Acetochlor sulfynilacetic acid nitrite, filtered Alachlor
    [Show full text]
  • CFS Science Comments I
    April 27, 2012 Docket No. APHIS–2010–0103 Regulatory Analysis and Development PPD, APHIS Station 3A-03.8 4700 River Road Unit 118 Riverdale, MD 20737-1238 Comments to USDA APHIS on Environmental Assessment for the Determination of Nonregulated Status of Herbicide-Tolerant DAS-40278-9 Corn, Zea mays, Event DAS- 40278-9 Center for Food Safety, Science Comments I – By Bill Freese, Science Policy Analyst These comments submitted by Center for Food Safety are one of three sets of comments from our organization. Legal comments and a second set of science comments are also being submitted. The references cited have been uploaded as supporting materials. The filenames for these documents match the citations in the text, and are all incorporated as (e.g. Benbrook 2012). Full citations are included at the end of each section. THE IMPACT OF DAS-40278-9 ON CORN HERBICIDE USE Summary of herbicide use Dow’s DAS-402787-9 corn is genetically engineered for resistance to 2,4-D and quizalofop, and if deregulated would be marketed with additional resistance to glyphosate and likely glufosinate – fostering greater use of three to four herbicide classes. APHIS must assess DAS-42078-9 as Dow intends it to be used, as a weed control system. DAS-40278-9 eliminates the risk of crop injury that currently limits 2,4-D use on corn, and is thus reasonably projected to trigger an up to 30-fold increase in the use of this toxic herbicide on corn, equivalent to a four-fold increase in overall agricultural use of 2,4-D, by the end of the decade.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Amaranthus Palmeri) in 2,4-D , Glufosinate-, and Glyphosate-Resistant Soybean
    Weed Technology Management of glyphosate-resistant Palmer – www.cambridge.org/wet amaranth (Amaranthus palmeri) in 2,4-D , glufosinate-, and glyphosate-resistant soybean 1 2 3 4 Research Article Chandrima Shyam , Parminder S. Chahal , Amit J. Jhala and Mithila Jugulam 1 2 Cite this article: Shyam C, Chahal PS, Jhala AJ, Graduate Student, Department of Agronomy, Kansas State University, Manhattan, KS, USA; Postdoctoral Research 3 Jugulam M (2021) Management of glyphosate- Associate, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; Associate resistant Palmer amaranth (Amaranthus Professor, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA and palmeri) in 2,4-D–, glufosinate-, and 4Professor, Department of Agronomy, Kansas State University, Manhattan, KS, USA glyphosate-resistant soybean. Weed Technol. 35:136–143. doi: 10.1017/wet.2020.91 Abstract Received: 7 May 2020 Glyphosate-resistant (GR) Palmer amaranth is a problematic, annual broadleaf weed in Revised: 7 July 2020 soybean production fields in Nebraska and many other states in the United States. Soybean Accepted: 29 July 2020 TM First published online: 18 August 2020 resistant to 2,4-D, glyphosate, and glufosinate (Enlist E3 ) has been developed and was first grown commercially in 2019. The objectives of this research were to evaluate the effect of herbicide Associate Editor: programs applied PRE, PRE followed by (fb) late-POST (LPOST), and early-POST (EPOST) fb Kevin Bradley, University of Missouri LPOST on GR Palmer amaranth control, density, and biomass reduction, soybean injury, and ’ Nomenclature: yield. Field experiments were conducted near Carleton, NE, in 2018, and 2019 in a grower sfield 2,4-D chlorimuron-ethyl; cloransulam-methyl; infested with GR Palmer amaranth in 2,4-D–, glyphosate-, and glufosinate-resistant soybean.
    [Show full text]
  • Mixture of Glufosinate and Atrazine for Ryegrass (Lolium Multiflorum Lam
    Research article http://www.revistas.unal.edu.co/index.php/refame Mixture of glufosinate and atrazine for ryegrass (Lolium multiflorum Lam.) control and its effect on seeds’ quality Mezcla de glufosinato y atrazina para el control de raigrás (Lolium multiflorum Lam.) y su efecto en la calidad de semillas doi: 10.15446/rfnam.v72n1.69093 1 2 3 4 André da Rosa Ulguim , Dirceu Agostinetto , Leandro Vargas , Jessica Dias Gomes da Silva *, Theodoro Schneider5 and Bruno Moncks da Silva6 ABSTRACT Keywords: Ryegrass management has been difficult by the occurrence of resistant biotypes to several herbicides Antagonism with different action mechanisms. Since herbicides mixes and rotations are an important alternative Glutamine synthetase for resistant weed management, the objective of this work was to evaluate the interaction of the dose inhibitor of the herbicides glufosinate and atrazine on ryegrass control and its seeds’ quality exposed to their Lolium multiflorum association. For this study, three experiments were carried out using factorial design in field, laboratory, Photosystem II inhibitor and greenhouse conditions. Two factors (A and B) were evaluated in each experiment, where factor A and B represented the doses of glufosinate and atrazine, respectively. Ryegrass control was evaluated in field experiment, while germination percentage and Emergence Speed Index (ESI), were obtained in laboratory and greenhouse analyses, respectively. The data were submitted to variance analysis (P≤0.05) and the significant results were analyzed through response surface graphs. For ryegrass control data, the effect of the interaction was analyzed by the Colby method; glufosinate provides efficient ryegrass control, but its association with atrazine reduces the efficiency, being characterized as an antagonism between molecules.
    [Show full text]