Identification of Problem Laterite Soils in Highway Engineering: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Problem Laterite Soils in Highway Engineering: a Review IDENTIFICATION OF PROBLEM LATERITE SOILS IN HIGHWAY ENGINEERING: A REVIEW M. D. Gidigasu, Building and Road Research Institute, Kumasi, Ghana Some laterite materials are known to be either inferior pavement aggre­ gates or troublesome highway and earth dam construction materials. How­ ever, not all laterite soils belong to this group. A criterion for distinguish­ ing problem laterite soils from non-problem ones for highway construction is proposed. Such a differentiation would be a considerable asset to high­ way engineers in determining the quality and suitability of doubtful laterite soils for highway and airfield construction. Laterite soils range in per­ formance from excellent to poor, and in spite of considerable field and laboratory studies on these soils it is still not yet possible to predict ac­ curately the behavior of all grades and genetic groups of laterite soils. From an engineering viewpoint, a criterion based on significant engineering characteristics, including such genetically inherent properties as sensitivity to drying and remolding, degree of potential swell and self-stabilization, and predominant clay minerals, may be more useful in predicting probable in situ behavior of laterite soils than the existing temperate-zone soil classification systems. •STANDARD methods of identification of temperate-zone soils based mainly on particle size distribution and plasticity are applicable to most laterite soils. For example, the unified soils classification system has been found adaptable to some laterite soils when extended to include subclassifications for the durability characteristics of gravel and sand and for the plasticity characteristics of the clay and silt fractions of gravels and sands (20). Indeed, the extended unified soil classification system may be applicable to all laterite soils "whose different modes of formation, color, mineralogical composition, etc., do not necessarily mean wide differences in engineering properties beyond the scope of presently used test methods and criteria" (120). The major difficulty in trying to develop a satisfaeto1-y identification system for laterite soils appears tc evolve around the so-called problem laterite soils, which may not yield reproducible test re­ sults using standard laboratory test procedures and whose engineering behavior may not be accurately predicted on the basis of standard classification tests. No criterion appears to be available for distinguishing problem laterite soils from non-problem ones. Such a system would be a considerable asset to soils engineers in determining the quality and suitability of doubtful late rite soils for construction purposes. This review attempts to propose a criterion for separating probiem and non-problem laterite soils for highway const1~uction based on reported significaJ1t geotochnical prop­ erties. The term geotechnical properties is used here in a broad sense to include not only index and engineering properties but also such characteristics as sensitivity to drying and remolding, degree of potential swell and self-stabilization, and resistance to degradation during and after construction. This is only a broad grouping that would serve as a basis from which, by expansion and amplification within the original framework, the more detailed and specific classi­ fication system required for various practical problems may be built up. Publication of this paper sponsored by Committee on !:;011 and Hock Properties. 96 97 IDENTIFICATION BASED ON PEDOLOGICAL INFORMATION Geotechnical studies on laterite soils (118) have revealed that similar combinations of soil-forming processes lead to soils of similar index and engineering properties. In surveys for highway materials and in finding sources of satisfactory fill material for embankment construction, the identification of localities in which pedogenic processes are similar has been found useful (~ ~ g 23). Since laterite soils have developed under the influence of pedogenic factors, these factors have been found useful in re­ gional identification and classification of laterite soils for engineering purposes (47). Indeed, it has been shown (.!Q, 118) that no system of classification nor any attemptto classify most tropically weathered soils can succeed if it is not based on an apprecia­ tion of tropical weathering processes. Because similar profiles do develop under similar weathering conditions, a useful means of regional description of laterite soils for highway construction would be to group and classify profiles at least as a first ap­ proximation on a regional and local basis according to the similarities or differences among the important soil-forming factors (49). Depending on the degree of weathering (i.e., decomposition, laterization, and des­ sication), laterite materials occur in various textural forms ranging from practically unconsolidated soft clays breakable under finger pressure to hard pedogenic rocks. Empirical concepts of degree of hardness have been used (75), and such terms as "soft" and "hard" laterite rocks may be found in the literature, butsuch qualitative expres­ sions without quantitative relation to any mechanical properties may be of limited value to engineers engaged in the use of laterite soils for construction. Because of the great variety of laterite materials along with the hardening or softening of these materials with changes in environmental conditions (97), it appears that any identification system based on purely morphological concepts isnot likely to be of much use to the soils engineer. However, an engineering classification system based on degree of weather­ ing and morphological characteristics has been proposed (68) for laterite soils. "It has been used now for some years with considerable success whereas the temperate climate classification has had to be discarded for tropical soils" (68). A major limitation of the pedological classification system is that one material in this system may have a wide range of properties; the engineer desires a classification system based on significant geotechnical properties that fall within such small ranges that the material can be specified by its classification type. However, once geotechnical characteristics have been established for a pedological soil group, these data may always be applicable to soils formed under similar conditions. IDENTIFICATION BASED ON CHEMICAL AND MINERALOGICAL CHARACTERISTICS Fermor (39) was perhaps the first to propose a comprehensive chemical nomencla­ ture for laterite soils. Martin and Doyne (76) proposed silica-alumina ratio for clas­ sifi.cation of laterite soils while others (~ 125) proposed silica-sesquioxide ratio; at­ tempts were also made to relate chemical property to engineering behavior (84). Lukens (73) summarized available data on the chemical composition of laterite soils and grouped these soils chemically. Some empirical correlations were found between the chemical composition of laterite aggregates and their strength properties. For example, Millard (79) reported a fairly good positive correlation between the iron oxide (Fe203) content andthe strength, and Maignien (75) noted that ferruginous materials are stronger than aluminous ones. Apparently ferruginous late rite aggregates would be preferable to aluminous ones for base course construction because they are harder at the same degree of induration (75). However, chemical data are not always avail­ able; the determination of even therelatively simple silica sesquioxide ratio requires a chemical analysis not likely to be available to the soils engineer. Experience has also shown that this "ratio is by no means a unique indicator of index properties or engineering characteristics required by the engineer" (92). Moreover, available litera­ ture on laterite soils (75) would indicate that chemical analyses are often too crude to reveal the origin, nature, and composition of laterite soils. The important minerals identified in laterite soils include goethite, hematite, limonite, 98 chlorite, halloysite (hydrated and dehydrated), kaolinite, and allophane (75). Free alumina was identified in the form of gibbsite, boehmite, and other amorphous forms, and combined silica is frequently present as clay, especially kaolinite or clays of the same group, such as halloysite, mainly in amorphous or subcrystalline forms. Mont­ morillonite and illite types of clays have not been identified in significant amounts. Clay mineral analysis is not normally employed in the routine examination of soils for engineering purposes. However, in the engineering studies of laterite soils (35) consideration of the clay mineral present has been useful in a number of ways: (if in the characterization of different groups of laterite soils having distinct engineering characteristics (~ g 34); (b) in the formulation of local engineering soils classifica­ tions, taking into account not only the soil but its environment, which affects both the nature of the soil and the engineering consideration; and (c) in the search for basic understanding of engineering properties of some laterite soils and interpretation of their test results (~ ~ ~ 114, 115). Mineralogical composition of the clay fraction seems to be very important from an engineering point of view and can be used as a means of identification and classification. For example, laterite soils containing high percentages of hydrated halloysite, goethite, or gibbsite are known to be problem laterite soils; those containing montmorillonite and illite may have lower strengths, high construction
Recommended publications
  • Engineering Behavior and Classification of Lateritic Soils in Relation to Soil Genesis Erdil Riza Tuncer Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 Engineering behavior and classification of lateritic soils in relation to soil genesis Erdil Riza Tuncer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Civil Engineering Commons Recommended Citation Tuncer, Erdil Riza, "Engineering behavior and classification of lateritic soils in relation to soil genesis " (1976). Retrospective Theses and Dissertations. 5712. https://lib.dr.iastate.edu/rtd/5712 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Stability of Superparamagnetic Minerals in Soils and Rocks 0.5Ex
    Stability of superparamagnetic minerals in soils and rocks Can frequency-dependent susceptibility be used as a proxy for climate in the past? Jan Igel1, Holger Preetz1;2 & Christian Rolf1 1Leibniz Institute for Applied Geophysics, Hannover, Germany Leibniz Institute for 2OFD Niedersachsen, Federal Competence Center for Soil and Applied Geophysics Groundwater Protection / UXO Clearance, Hannover, Germany Motivation Results & Interpretation I Frequency-dependent (FD) magnetic susceptibility is a property of I Samples treated with oxygen free water and samples treated superparamagnetic (SP) minerals. The presence of these minerals with sodium sulphide (shown here) show similar results. in soils and sediments is commonly attributed to neoformation Magnetic susceptibility during weathering and pedogenesis. 55000 Warm and humid conditions give rise to neoformation of SP mi- 50000 I Rocks: after dithionite 45000 reduction experiment Tuff nerals and thus frequency-dependent susceptibility is often used as treatment Tephra palaeoclimate proxy in sediment stratigraphy. Rhyolite SI] 40000 6 − I SP minerals can also be of lithogenic origin and occur in magmatic [10 Soils: LF rocks and volcanic ashes. However, a lithogenic origin is commonly κ ≈ Luvisol Humous loess 10000 Laterite neglected in palaeoclimatic studies. Terra Rossa I Pedogenic SP minerals are assumed to be less stable than lithoge- 5000 nic SP minerals. 0 0 50 100 150 200 250 time [days] Materials I No decrease of κLF or ∆κ in reducing environment ! SP minerals stable regardless of their origin (lith./ped.) A number of 7 samples with high I Some soils show increase of κLF and ∆κ during reduction content of SP minerals were in- ! neoformation of SP minerals due to bacterial activity vestigated.
    [Show full text]
  • DOGAMI MP-20, Investigations of Nickel in Oregon
    0 C\1 a: w a.. <( a.. en ::::> 0 w z <( __j __j w () en � INVESTIGATIONS OF NICKEL IN OREGON STATE OF OREGON DEPARTMENT OF GEOL.OGY AND MINERAL. IN OUSTRIES DONAL.D .A HUL.L. STATE GEOLOGIST 1978 STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1069 State Office Building, Portland, Oregon 97201 MISCELLANEOUS PAPER 20 INVESTIGATIONS OF NICKEL IN OREGON Len Ramp, Resident Geologist Grants Pass Field Office Oregon Department of Geology and Mineral Industries Conducted in conformance with ORS 516.030 . •. 5 1978 GOVERNING BOARD Leeanne MacColl, Chairperson, Portland Talent Robert W. Doty STATE GEOLOGIST John Schwabe Portland Donald A. Hull CONTENTS INTRODUCTION -- - ---- -- -- --- Purpose and Scope of this Report Acknowledgments U.S. Nickel Industry GEOLOGY OF LATERITE DEPOSITS - -- - 3 Previous Work - - - - --- 3 Ultramafic Rocks - ----- --- 3 Composition - - -------- - 3 Distribution ------ - - - 3 Structure - 3 Geochemistry of Nickel ---- 4 Chemical Weathering of Peridotite - - 4 The soi I profile ------- 5 M i nero I ogy -- - ----- 5 Prospecting Guides and Techniques- - 6 OTHER TYPES OF NICKEL DEPOSITS - - 7 Nickel Sulfide Deposits- - - - - - 7 Deposits in Oregon 7 Other areas --- 8 Prospecting techniques 8 Silica-Carbonate Deposits - -- 8 DISTRIBUTION OF LATERITE DEPOSITS - ------ 9 Nickel Mountain Deposits - - ------ --------- 9 Location --------------- --- 9 Geology - ------- ----- 11 Ore deposits ----------- - -- 11 Soil mineralogy - ------- 12 Structure --- ---- ---- 13 Mining and metallurgy ------------ ---- 13 Production-
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • S41598-021-96384-7.Pdf
    www.nature.com/scientificreports OPEN A mechanical insight into the triggering mechanism of frequently occurred landslides along the contact between loess and red clay Baoqin Lian1, Xingang Wang1*, Kai Liu1, Sheng Hu2 & Xiao Feng3 The triggering mechanism and movement evolution of loess-red clay landslides, which occurred frequently along the contact between the loess and red clay on the Loess Plateau, are closely related to the mechanical properties of the contact surface. This work presents an experimental investigation on loess, clay and loess-red clay interlaminar (LRCI) samples obtained from a typical loess-red clay landslide in northern part of Shaanxi province of China, using a series of ring shear tests, microscopic observation and scanning electron microscopy tests, in an attempt to explore the mechanical behavior of loess, clay and LRCI samples with variation in moisture content, normal stress and shear rate. The results revealed that for all specimens, both the peak shear strength τp and the residual shear strength τr decreased with increasing moisture content, among which, moisture content has the greatest infuence on the τp and τr of red clay, followed by the LRCI specimen, and the loess specimen is least afected by moisture content. Meanwhile, exponential functions describing the correlations between shear strength and moisture content of LRCI, red clay and loess specimens were proposed. Furthermore, the macroscopic morphological characteristics and the microstructure of shear surface obtained from the LRCI specimens showed that a localized water accumulation was built up within the shear surface as the water content increases to some extent, and a high degree of liquefaction developed within shear surface when the moisture content reached to the saturate degree.
    [Show full text]
  • Geotechnical Properties of Lateritic Soil Stabilized with Periwinkle Shells Powder
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 November 2018 doi:10.20944/preprints201811.0100.v1 Article GEOTECHNICAL PROPERTIES OF LATERITIC SOIL STABILIZED WITH PERIWINKLE SHELLS POWDER Abiola. M. Dauda1, Joseph O. Akinmusuru1, Oluwaseun. A. Dauda1, Taiwo O. Durotoye1, and Kunle E. Ogundipe*2 Kehinde O. Oyesomi3 [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 1 Department of Civil Engineering, Covenant University, Ota 112233, Ogun State Nigeria. 2 Department of Building Technology, Covenant University, Ota 112233, Ogun State Nigeria. 3 Department of Mass Communication, Covenant University, Ota 112233, Ogun State Nigeria. *Corresponding Author: [email protected]; Tel.: +234-806-237-1086 Abstract: This study used eco-friendly materials known as Periwinkle Shell Powder (PSP) in stabilizing the engineering properties of lateritic soil. Preliminary test was performed on the un-stabilized lateritic soil for the purposes of identification and classification (natural moisture content, liquid limits, plastic limits, and plasticity index). The engineering tests were conducted on the lateritic soil stabilized with additions of (2, 4, 6, 8 and 10 %) PSP and OPC respectively. The result showed that cement gave a progressive increase in the Maximum Dry Density (MDD) of the lateritic soil from 1875 kg/m3 (2 %) to 2294 kg/m3 (10 %) respectively. This represents 22 % increase in the MDD from the un-stabilized state. For PSP, the Maximum MDD was attained at 6 % (1974 kg/m3), representing 5.3 % increase in MDD of the soil from the un-stabilized state. For both stabilizing agent, the Optimum Moisture Content (OMC) increases from 13.65 % to 13.83 % and from 11.72 % to 14.41 % for Cement and Periwinkle Shell Powder respectively.
    [Show full text]
  • Open-File 77-885
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PROJECT REPORT Nigerian Investigation (IR)N-I Open-File 77-885 PRELIMINARY ENGINEERING GEOLOGIC REPORT ON SELECTION OF URBANSITES IN THE FEDERAL CAPITAL TERRITORY, NIGERIA Prepared by the U. S. Geological Survey for the Federal Capital Development Authority of Nigeria 1977 Open file report (IR)N-l PRELIMINARY ENGINEERING GEOLOGIC REPORT ON SELECTION OF URBAN SITES IN THE FEDERAL CAPITAL TERRITORY, NIGERIA CONTENTS SUMMARY ...................................................... INTRODUCTION ................................................. 5 Location ................................................... 5 Purpose and method of study ................................ 5 Acknowledgments ............................................ 8 BEDROCK GEOLOGY .............................................. 9 Precambrian rocks .......................................... 11 Metamorphic rocks ........................................ 11 Igneous rocks ............................................ 19 Cretaceous sedimentary rocks ............................... 21 Tertiary laterite .......................................... 24 Quaternary alluvium .................................... f ... 24 Geologic structure ......................................... 25 Central fold ............................................. 25 Eastern shear zone ....................................... 25 Northwest-trending faults and fractures .................. 28 Mineral deposits ........................................... 28 Tin deposits
    [Show full text]
  • Step 2-Soil Mechanics
    Step 2 – Soil Mechanics Introduction Webster defines the term mechanics as a branch of physical science that deals with energy and forces and their effect on bodies. Soil mechanics is the branch of mechanics that deals with the action of forces on soil masses. The soil that occurs at or near the surface of the earth is one of the most widely encountered materials in civil, structural and architectural engineering. Soil ranks high in degree of importance when compared to the numerous other materials (i.e. steel, concrete, masonry, etc.) used in engineering. Soil is a construction material used in many structures, such as retaining walls, dams, and levees. Soil is also a foundation material upon which structures rest. All structures, regardless of the material from which they are constructed, ultimately rest upon soil or rock. Hence, the load capacity and settlement behavior of foundations depend on the character of the underlying soils, and on their action under the stress imposed by the foundation. Based on this, it is appropriate to consider soil as a structural material, but it differs from other structural materials in several important aspects. Steel is a manufactured material whose physical and chemical properties can be very accurately controlled during the manufacturing process. Soil is a natural material, which occurs in infinite variety and whose engineering properties can vary widely from place to place – even within the confines of a single construction project. Geotechnical engineering practice is devoted to the location of various soils encountered on a project, the determination of their engineering properties, correlating those properties to the project requirements, and the selection of the best available soils for use with the various structural elements of the project.
    [Show full text]
  • Soil Mechanics Lectures Third Year Students
    2016 -2017 Soil Mechanics Lectures Third Year Students Includes: Stresses within the soil, consolidation theory, settlement and degree of consolidation, shear strength of soil, earth pressure on retaining structure.: Soil Mechanics Lectures /Coarse 2-----------------------------2016-2017-------------------------------------------Third year Student 2 Soil Mechanics Lectures /Coarse 2-----------------------------2016-2017-------------------------------------------Third year Student 3 Soil Mechanics Lectures /Coarse 2-----------------------------2016-2017-------------------------------------------Third year Student Stresses within the soil Stresses within the soil: Types of stresses: 1- Geostatic stress: Sub Surface Stresses cause by mass of soil a- Vertical stress = b- Horizontal Stress 1 ∑ ℎ = ͤͅ 1 Note : Geostatic stresses increased lineraly with depth. 2- Stresses due to surface loading : a- Infintly loaded area (filling) b- Point load(concentrated load) c- Circular loaded area. d- Rectangular loaded area. Introduction: At a point within a soil mass, stresses will be developed as a result of the soil lying above the point (Geostatic stress) and by any structure or other loading imposed into that soil mass. 1- stresses due Geostatic soil mass (Geostatic stress) 1 = ℎ , where : is the coefficient of earth pressure at # = ͤ͟ 1 ͤ͟ rest. 4 Soil Mechanics Lectures /Coarse 2-----------------------------2016-2017-------------------------------------------Third year Student EFFECTIVESTRESS CONCEPT: In saturated soils, the normal stress ( σ) at any point within the soil mass is shared by the soil grains and the water held within the pores. The component of the normal stress acting on the soil grains, is called effective stressor intergranular stress, and is generally denoted by σ'. The remainder, the normal stress acting on the pore water, is knows as pore water pressure or neutral stress, and is denoted by u.
    [Show full text]
  • Hydrologic Processes in Vertisols
    the united nations educational, scientific abdus salam and cultural organization international centre for theoretical physics ternational atomic energy agency H4.SMR/1304-11 "COLLEGE ON SOIL PHYSICS" 12 March - 6 April 2001 Hydrologic Processes in Vertisols M. Kutilek and D. R. Nielsen Elsevier Soil and Tillage Research (Journal) Prague Czech Republic These notes are for internal distribution onlv strada costiera, I I - 34014 trieste italy - tel.+39 04022401 I I fax +39 040224163 - [email protected] - www.ictp.trieste.it College on Soil Physics ICTP, TRIESTE, 12-29 March, 2001 LECTURE NOTES Hydrologic Processes in Vertisols Extended text of the paper M. Kutilek, 1996. Water Relation and Water Management of Vertisols, In: Vertisols and Technologies for Their Management, Ed. N. Ahmad and A. Mermout, Elsevier, pp. 201-230. Miroslav Kutilek Professor Emeritus Nad Patankou 34, 160 00 Prague 6, Czech Republic Fax/Tel +420 2 311 6338 E-mail: [email protected] Developments in Soil Science 24 VERTISOLS AND TECHNOLOGIES FOR THEIR MANAGEMENT Edited by N. AHMAD The University of the West Indies, Faculty of Agriculture, Depart, of Soil Science, St. Augustine, Trinidad, West Indies A. MERMUT University of Saskatchewan, Saskatoon, sasks. S7N0W0, Canada ELSEVIER Amsterdam — Lausanne — New York — Oxford — Shannon — Tokyo 1996 43 Chapter 2 PEDOGENESIS A.R. MERMUT, E. PADMANABHAM, H. ESWARAN and G.S. DASOG 2.1. INTRODUCTION The genesis of Vertisols is strongly influenced by soil movement (contraction and expansion of the soil mass) and the churning (turbation) of the soil materials. The name of Vertisol is derived from Latin "vertere" meaning to turn or invert, thus limiting the development of classical soil horizons (Ahmad, 1983).
    [Show full text]
  • 2001 01 0122.Pdf
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Soil classification: a proposal for a structural approach, with reference to existing European and international experience Classification des sols: une proposition pour une approche structurelle, tenant compte de l’expérience Européenne et internationale lr. Gauthier Van Alboom - Geotechnics Division, Ministry of Flanders, Belgium ABSTRACT: Most soil classification schemes, used in Europe and all over the world, are of the basic type and are mainly based upon particle size distribution and Atterberg limits. Degree of harmonisation is however moderate as the classification systems are elabo­ rated and / or adapted for typical soils related to the country or region considered. Proposals for international standardisation have not yet resulted in ready for use practical classification tools. In this paper a proposal for structural approach to soil classification is given, and a basic soil classification system is elaborated. RESUME: La plupart des méthodes de classification des sols, en Europe et dans le monde entier, sont du type de base et font appel à la distribution des particules et aux limites Atterberg. Le degré d’harmonisation est cependant modéré, les systèmes de classification étant élaborés et / ou adaptés aux sols qui sont typiques pour le pays ou la région considérée.
    [Show full text]
  • Processes in the Unsaturated Zone by Reliable Soil Water Content
    sustainability Article Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy Lucio Di Matteo * , Alessandro Spigarelli and Sofia Ortenzi Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli s.n.c., 06123 Perugia, Italy; [email protected] (A.S.); sofi[email protected] (S.O.) * Correspondence: [email protected]; Tel.: +39-0755-849-694 Abstract: Reliable soil moisture data are essential for achieving sustainable water management. In this framework, the performance of devices to estimate the volumetric moisture content by means dielectric properties of soil/water system is of increasing interest. The present work evaluates the performance of the PR2/6 soil moisture profile probe with implications on the understanding of processes involving the unsaturated zone. The calibration at the laboratory scale and the validation in an experimental field in Central Italy highlight that although the shape of the moisture profile is the same, there are essential differences between soil moisture values obtained by the calibrated equation and those obtained by the manufacturer one. These differences are up to 10 percentage points for fine-grained soils containing iron oxides. Inaccurate estimates of soil moisture content do not help with understanding the soil water dynamic, especially after rainy periods. The sum of antecedent soil moisture conditions (the Antecedent Soil moisture Index (ASI)) and rainfall related to different stormflow can be used to define the threshold value above which the runoff significantly increases. Without an accurate calibration process, the ASI index is overestimated, thereby affecting the threshold evaluation.
    [Show full text]