Characteristics of Meiofauna in Extreme

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Meiofauna in Extreme Characteristics of meiofauna in extreme marine ecosystems: a review Daniela Zeppilli, Daniel Leduc, Christophe Fontanier, Diego Fontaneto, Sandra Fuchs, Andrew Gooday, Aurélie Goineau, Jeroen Ingels, Viatcheslav Ivanenko, Reinhardt Kristensen, et al. To cite this version: Daniela Zeppilli, Daniel Leduc, Christophe Fontanier, Diego Fontaneto, Sandra Fuchs, et al.. Charac- teristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity, Springer Verlag, 2018, 48 (1), pp.35-71. 10.1007/s12526-017-0815-z. hal-01972633 HAL Id: hal-01972633 https://hal.archives-ouvertes.fr/hal-01972633 Submitted on 7 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mar Biodiv (2018) 48:35–71 https://doi.org/10.1007/s12526-017-0815-z MEIO EXTREME Characteristics of meiofauna in extreme marine ecosystems: a review Daniela Zeppilli1 & Daniel Leduc2 & Christophe Fontanier3 & Diego Fontaneto4 & Sandra Fuchs 1 & Andrew J. Gooday5 & Aurélie Goineau5 & Jeroen Ingels6 & Viatcheslav N. Ivanenko7 & Reinhardt Møbjerg Kristensen8 & Ricardo Cardoso Neves9 & Nuria Sanchez1 & Roberto Sandulli10 & Jozée Sarrazin1 & Martin V. Sørensen8 & Aurélie Tasiemski11 & Ann Vanreusel 12 & Marine Autret13 & Louis Bourdonnay13 & Marion Claireaux13 & Valérie Coquillé 13 & Lisa De Wever13 & Durand Rachel13 & James Marchant13 & Lola Toomey13 & David Fernandes14 Received: 28 April 2017 /Revised: 16 October 2017 /Accepted: 23 October 2017 /Published online: 17 November 2017 # The Author(s) 2017. This article is an open access publication Abstract Extreme marine environments cover more than deep-sea canyons, deep hypersaline anoxic basins [DHABs] 50% of the Earth’s surface and offer many opportunities for and hadal zones). Foraminiferans, nematodes and copepods investigating the biological responses and adaptations of or- are abundant in almost all of these habitats and are dominant ganisms to stressful life conditions. Extreme marine environ- in deep-sea ecosystems. The presence and dominance of some ments are sometimes associated with ephemeral and unstable other taxa that are normally less common may be typical of ecosystems, but can host abundant, often endemic and well- certain extreme conditions. Kinorhynchs are particularly well adapted meiofaunal species. In this review, we present an in- adapted to cold seeps and other environments that experience tegrated view of the biodiversity, ecology and physiological drastic changes in salinity, rotifers are well represented in po- responses of marine meiofauna inhabiting several extreme lar ecosystems and loriciferans seem to be the only metazoan marine environments (mangroves, submarine caves, Polar able to survive multiple stressors in DHABs. As well as nat- ecosystems, hypersaline areas, hypoxic/anoxic environments, ural processes, human activities may generate stressful condi- hydrothermal vents, cold seeps, carcasses/sunken woods, tions, including deoxygenation, acidification and rises in Communicated by S. Gollner * Daniela Zeppilli 8 Natural History Museum of Denmark, University of Copenhagen, [email protected] Universitetsparken 15, 2100 Copenhagen Ø, Denmark 9 Biozentrum, University of Basel, Klingelbergstrasse 50, 1 IFREMER, Centre Brest, REM/EEP/LEP, ZI de la pointe du diable, 4056 Basel, Switzerland CS10070, 29280 Plouzané, France 10 Di.S.T., University of Naples BParthenope^, Centro Direzionale Isola 2 National Institute of Water and Atmospheric Research, Private Bag C4, 80143 Napoli, Italy 14-901, Wellington 6021, New Zealand 3 IFREMER, Centre Brest, REM/GM/LES, ZI de la pointe du diable, 11 CNRS, UMR 8198 - Evo-Eco-Paleo, SPICI Group, Université de CS10070, 29280 Plouzané, France Lille, 59000 Lille, France 4 National Research Council, Institute of Ecosystem Study, Largo 12 Department of Biology, Marine Biology Section, Ghent University, Tonolli 50, 28922 Verbania Pallanza, Italy Krijgslaan 281, S8, 9000 Ghent, Belgium 5 National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton S014 3ZH, UK 13 Institut Universitaire Européen de la Mer, Laboratoire des Sciences de l’Environnement Marin (UMR6539 CNRS/IRD/UBO), 6 Florida State University Coastal and Marine Laboratory, 3618 Université de Brest, rue Dumont d’Urville, 29280 Plouzané, France Coastal Highway 98, St. Teresa, FL 32327, USA 7 Department of Invertebrate Zoology, Biological Faculty, Lomonosov 14 IFREMER, Centre Brest, BLP, Institut Carnot Ifremer-EDROME, ZI Moscow State University, Moscow, Russia de la pointe du diable, CS10070, 29280 Plouzané, France 36 Mar Biodiv (2018) 48:35–71 temperature. The behaviour and physiology of different extremophile species has even made the search for life meiofaunal taxa, such as some foraminiferans, nematode and outside Earth more plausible and has revitalised the bio- copepod species, can provide vital information on how organ- technology industry (Rothschild and Mancinelli 2001). isms may respond to these challenges and can provide a warn- Furthermore, the fauna adapted to extreme environments ing signal of anthropogenic impacts. From an evolutionary may be particularly sensitive to environmental changes, perspective, the discovery of new meiofauna taxa from ex- either because of the addition of potentially intolerable treme environments very often sheds light on phylogenetic anthropogenic stressors or because of changes in their relationships, while understanding how meiofaunal organisms current environmental conditions (Catalan et al. 2006; are able to survive or even flourish in these conditions can Bellard et al. 2012); thus, such fauna can also be used explain evolutionary pathways. Finally, there are multiple po- as biological indicators of pollution and global change tential economic benefits to be gained from ecological, bio- (Walther et al. 2002; Cavicchioli et al. 2011). logical, physiological and evolutionary studies of meiofauna Among the communities present in extreme natural envi- in extreme environments. Despite all the advantages offered ronments, we constantly find meiofauna organisms. by meiofauna studies from extreme environments, there is still Meiofauna is a collective name for a diverse assemblage of an urgent need to foster meiofauna research in terms of com- eukaryotic organisms found in both freshwater ecosystems position, ecology, biology and physiology focusing on ex- and the marine realm (Mare 1942;HigginsandThiel1988; treme environments. Fig. 1). They include small microscopic animals and protists, operationally defined based on the standardised mesh size of Keywords Extremeenvironments .Meiofauna .Mangroves . sieves with 500 μm(1000μm) as upper and 44 μm(63μm) Submarine caves . Polar ecosystems . Melting ice . as lower limits (Giere 2009), living in aquatic sediments. A Hypersaline areas . Anoxic and hypoxic zones . Hydrothermal lower size limit of 31 or 20 μm has been suggested in order to vents . Cold seeps . Carcasses and sunken woods . Deep sea . retain even the smaller meiofaunal organisms in the deep sea Submarine canyons . Deep hypersaline anoxic basins (Giere 2009;Danovaro2010). (DHABs) . Hadal zones Owing to their high abundance and diversity, wide- spread distribution, rapid generation times and fast meta- bolic rates, meiofaunal organisms are important contribu- Introduction tors to ecosystem processes and functions, including nu- trient cycling and provision of food to higher trophic Natural environments are considered extreme when one or levels, among many others (Woodward 2010; more environmental parameters show values permanently Schratzberger and Ingels 2017). Several studies have close to the lower or upper limits for life (CAREX 2011). shown that meiofauna can adapt to extreme environments. Terrestrial, marine, polar and deep-sea ecosystems include The discovery of abundant and well-adapted meiofaunal both stable and unstable environments. In stable environ- communities in several environments with extreme condi- ments (e.g. polar ecosystems), well-adapted organisms tions has provided new insights into the ecology and live near the limits of their physiological potential for physiology of species thriving in very challenging settings long periods. In less stable environments (e.g. hydrother- (e.g. Danovaro et al. 2010b;Fontanetoetal.2015). mal vents), organisms intermittently experience the limits In this review, we present a summary of studies that address of their physiological potential and develop diverse strat- the biodiversity, ecology and physiological responses of ma- egies to survive these stochastic variations (CAREX rine meiofauna inhabiting what appear, at least from the hu- 2011). Other environments can be considered extreme in man perspective, to be extreme marine environments. We also the sense that organisms are exposed to environmental discuss how the behavioural and physiological adaptations of variabilitytosuchanextentthatthecommunitiesarein different meiofauna taxa to these harsh conditions can provide constant ecological flux, limiting the establishment of ma- information on how organisms
Recommended publications
  • Hydrothermal Vents. Teacher's Notes
    Hydrothermal Vents Hydrothermal Vents. Teacher’s notes. A hydrothermal vent is a fissure in a planet's surface from which geothermally heated water issues. They are usually volcanically active. Seawater penetrates into fissures of the volcanic bed and interacts with the hot, newly formed rock in the volcanic crust. This heated seawater (350-450°) dissolves large amounts of minerals. The resulting acidic solution, containing metals (Fe, Mn, Zn, Cu) and large amounts of reduced sulfur and compounds such as sulfides and H2S, percolates up through the sea floor where it mixes with the cold surrounding ocean water (2-4°) forming mineral deposits and different types of vents. In the resulting temperature gradient, these minerals provide a source of energy and nutrients to chemoautotrophic organisms that are, thus, able to live in these extreme conditions. This is an extreme environment with high pressure, steep temperature gradients, and high concentrations of toxic elements such as sulfides and heavy metals. Black and white smokers Some hydrothermal vents form a chimney like structure that can be as 60m tall. They are formed when the minerals that are dissolved in the fluid precipitates out when the super-heated water comes into contact with the freezing seawater. The minerals become particles with high sulphur content that form the stack. Black smokers are very acidic typically with a ph. of 2 (around that of vinegar). A black smoker is a type of vent found at depths typically below 3000m that emit a cloud or black material high in sulphates. White smokers are formed in a similar way but they emit lighter-hued minerals, for example barium, calcium and silicon.
    [Show full text]
  • Cold Seep Benthic Communities in Japan Subduction Zones: Spatial Organization, Trophic Strategies and Evidence for Temporal Evolution*
    MARINE ECOLOGY - PROGRESS SERIES Vol. 40: 115-126. 1987 Published October 7 Mar. Ecol. Prog. Ser. Cold seep benthic communities in Japan subduction zones: spatial organization, trophic strategies and evidence for temporal evolution* S. Kim Juniper", Myriam Sibuet IFREMER, Centre de Brest. BP 337. F-29273 Brest Cedex. France ABSTRACT: Submersible exploration of the Japan subduction zones has revealed benthic communities dominated by clams (Calyptogena spp.) around sed~mentporewater seeps at depths from 3850 to 6000 m. Photographic and video records were used to produce microcartographlc reconstructions of 3 contrasting cold seep sites. Spatial and abundance relations of megafauna lead us to propose several hypotheses regard~ngthe ecological functioning of these cold seep communities. We dlst~nguish between the likely direct use of reducing substances in venting fluids by Calyptogena-bacteria symbioses and indirect usage by accompanying abyssal species not known to harbour symbionts. Microdistribution and known or presumed feedmg modes of the accompanying species indicate 2 different sources of organic matter enrichment within cold seep sites: organic debris originating from bivalve colonies, and enrichment of extensive areas of surrounding surface sediments where weaker, more hffuse porewater seepage may support chemosynthetic production by free-living bacteria. The occurrence of colony-like groupings of empty Calyptogena valves indicates that cold seeps are ephemeral, with groups of living clams, mixed living and dead clams, and empty dissolving shells marlung the course of a cycle of porewater venting and offering clues to the recent history of cold seep activity. INTRODUCTION al. 1985). One of the bivalve species from this area has been shown to harbour symbiotic bacteria in its gill The discovery of deep-sea hydrothermal vents has tissue and to oxidise methane (Childress et al.
    [Show full text]
  • Thureborn Et Al 2013
    http://www.diva-portal.org This is the published version of a paper published in PLoS ONE. Citation for the original published paper (version of record): Thureborn, P., Lundin, D., Plathan, J., Poole, A., Sjöberg, B. et al. (2013) A Metagenomics Transect into the Deepest Point of the Baltic Sea Reveals Clear Stratification of Microbial Functional Capacities. PLoS ONE, 8(9): e74983 http://dx.doi.org/10.1371/journal.pone.0074983 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-20021 A Metagenomics Transect into the Deepest Point of the Baltic Sea Reveals Clear Stratification of Microbial Functional Capacities Petter Thureborn1,2*., Daniel Lundin1,3,4., Josefin Plathan2., Anthony M. Poole2,5, Britt-Marie Sjo¨ berg2,4, Sara Sjo¨ ling1 1 School of Natural Sciences and Environmental Studies, So¨derto¨rn University, Huddinge, Sweden, 2 Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden, 3 Science for Life Laboratories, Royal Institute of Technology, Solna, Sweden, 4 Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden, 5 School of Biological Sciences, University of Canterbury, Christchurch, New Zealand Abstract The Baltic Sea is characterized by hyposaline surface waters, hypoxic and anoxic deep waters and sediments. These conditions, which in turn lead to a steep oxygen gradient, are particularly evident at Landsort Deep in the Baltic Proper. Given these substantial differences in environmental parameters at Landsort Deep, we performed a metagenomic census spanning surface to sediment to establish whether the microbial communities at this site are as stratified as the physical environment.
    [Show full text]
  • The C-Floor and Zones
    The C-Floor and zones Table of Contents ` ❖ The ocean zones ❖ Sunlight zone and twilight zone ❖ Midnight and Abyssal zone ❖ The hadal zone ❖ The c-floor ❖ The c-floor definitions ❖ The c-floor definitions pt.2 ❖ Cites ❖ The end The ocean zones 200 meters deep 1,000 Meters deep 4,000 Meters deep 6,000 Meters deep 10,944 meters deep Sunlight zone Twilight zone ❖ The sunlight zone is 200 meters from the ocean's ❖ The twilight zone is about 1,000 meters surface deep from the ❖ Animals that live here ocean's surface sharks, sea turtles, ❖ Animals that live jellyfish and seals here are gray ❖ Photosynthesis normally whales, greenland occurs in this part of the Shark and clams ocean ❖ The twilight get only a faint amount of sunlight DID YOU KNOW Did you know That no plants live That the sunlight zone in the twilight zone could be called as the because of the euphotic and means well lit amount of sunlight in greek Midnight zone Abyssal zone ❖ The midnight zone is ❖ The abyssal zone is 4,000 meters from 6,000 meters from the the ocean's surface ocean’s surface ❖ Animals that live in ❖ Animals that live in the the midnight zone Abyssal zone are fangtooth fish, pacific are, vampire squid, viperfish and giant snipe eel and spider crabs anglerfish ❖ Supports only ❖ Animals eat only the DID YOU KNOW invertebrates and DID YOU KNOW leftovers that come That only 1 percent of light fishes That most all the way from the travels through animals are sunlight zone to the the midnight zone either small or midnight zone bioluminescent The Hadal Zone (Trench ● The Hadal Zone is 10,944 meters under the ocean ● Snails, worms, and sea cucumbers live in the hadal zone ● It is pitch black in the Hadal Zone The C-Floor The C-Floor Definitions ❖ The Continental Shelf - The flat part where people can walk.
    [Show full text]
  • A Dolomitization Event at the Oceanic Chemocline During the Permian-Triassic Transition Mingtao Li1, Haijun Song1*, Thomas J
    https://doi.org/10.1130/G45479.1 Manuscript received 11 August 2018 Revised manuscript received 4 October 2018 Manuscript accepted 5 October 2018 © 2018 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 23 October 2018 A dolomitization event at the oceanic chemocline during the Permian-Triassic transition Mingtao Li1, Haijun Song1*, Thomas J. Algeo1,2,3, Paul B. Wignall4, Xu Dai1, and Adam D. Woods5 1State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science, China University of Geosciences, Wuhan 430074, China 2State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Science, China University of Geosciences, Wuhan 430074, China 3Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221-0013, USA 4School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK 5Department of Geological Sciences, California State University, Fullerton, California 92834-6850, USA ABSTRACT in dolomite in the uppermost Permian–lowermost Triassic was first noted The Permian-Triassic boundary (PTB) crisis caused major short- by Wignall and Twitchett (2002) and has been attributed to an increased term perturbations in ocean chemistry, as recorded by the precipita- weathering flux of Mg-bearing clays to the ocean (Algeo et al., 2011). tion of anachronistic carbonates. Here, we document for the first time Here, we examine the distribution of dolomite in 22 PTB sections, docu- a global dolomitization event during the Permian-Triassic transition menting a global dolomitization event and identifying additional controls based on Mg/(Mg + Ca) data from 22 sections with a global distri- on its formation during the Permian-Triassic transition.
    [Show full text]
  • Towards a Management Hierarchy (Classification) for the Catalogue of Life
    TOWARDS A MANAGEMENT HIERARCHY (CLASSIFICATION) FOR THE CATALOGUE OF LIFE Draft Discussion Document Rationale The Catalogue of Life partnership, comprising Species 2000 and ITIS (Integrated Taxonomic Information System), has the goal of achieving a comprehensive catalogue of all known species on Earth by the year 2011. The actual number of described species (after correction for synonyms) is not presently known but estimates suggest about 1.8 million species. The collaborative teams behind the Catalogue of Life need an agreed standard classification for these 1.8 million species, i.e. a working hierarchy for management purposes. This discussion document is intended to highlight some of the issues that need clarifying in order to achieve this goal beyond what we presently have. Concerning Classification Life’s diversity is classified into a hierarchy of categories. The best-known of these is the Kingdom. When Carl Linnaeus introduced his new “system of nature” in the 1750s ― Systema Naturae per Regna tria naturae, secundum Classes, Ordines, Genera, Species …) ― he recognised three kingdoms, viz Plantae, Animalia, and a third kingdom for minerals that has long since been abandoned. As is evident from the title of his work, he introduced lower-level taxonomic categories, each successively nested in the other, named Class, Order, Genus, and Species. The most useful and innovative aspect of his system (which gave rise to the scientific discipline of Systematics) was the use of the binominal, comprising genus and species, that uniquely identified each species of organism. Linnaeus’s system has proven to be robust for some 250 years. The starting point for botanical names is his Species Plantarum, published in 1753, and that for zoological names is the tenth edition of the Systema Naturae published in 1758.
    [Show full text]
  • Microbial Community and Geochemical Analyses of Trans-Trench Sediments for Understanding the Roles of Hadal Environments
    The ISME Journal (2020) 14:740–756 https://doi.org/10.1038/s41396-019-0564-z ARTICLE Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments 1 2 3,4,9 2 2,10 2 Satoshi Hiraoka ● Miho Hirai ● Yohei Matsui ● Akiko Makabe ● Hiroaki Minegishi ● Miwako Tsuda ● 3 5 5,6 7 8 2 Juliarni ● Eugenio Rastelli ● Roberto Danovaro ● Cinzia Corinaldesi ● Tomo Kitahashi ● Eiji Tasumi ● 2 2 2 1 Manabu Nishizawa ● Ken Takai ● Hidetaka Nomaki ● Takuro Nunoura Received: 9 August 2019 / Revised: 20 November 2019 / Accepted: 28 November 2019 / Published online: 11 December 2019 © The Author(s) 2019. This article is published with open access Abstract Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and fi 1234567890();,: 1234567890();,: Mariana Trenches. Tag-sequencing analyses showed speci c distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean.
    [Show full text]
  • 'Regulation' of Gutless Annelid Ecology by Endosymbiotic Bacteria
    MARINE ECOLOGY PROGRESS SERIES Published January 3 Mar. Ecol. Prog. Ser. 'Regulation' of gutless annelid ecology by endosymbiotic bacteria ' Zoological Institute, University of Hamburg, Martin-Luther-King-Platz 3, D-2000 Hamburg 13, Germany Woods Hole Oceanographic Institution. Coastal Research Lab, Woods Hole, Massachusetts 02543, USA ABSTRACT: In studies on invertebrates from sulphidic environments which exploit reduced substances through symbiosis with bacteria, experimental ecological results are often underrepresented. For such studies the gutless oligochaete Inanidrilus leukodermatus is suitable due to its mobility and local abundance. It contains endosymbiotic sulphur-oxidizing bacteria and inhabits the sediment layers around the redox potential discontinuity (RPD) with access to both microoxic and sulphidic conditions. By experimental manipulation of physico-chemical gradients we have shown that the distribution pattern of these worms directly results from active migrations towards the variable position of the RPD, demonstrating the ecological relevance of the concomitant chemical conditions for these worms. Their distributional behaviour probably helps to optimize metabolic conditions for the endosymbiotic bacteria, coupling the needs of symbiont physiology with host behavioural ecology. The substantial bacterial role in the ecophysiology of the symbiosis was confirmed by biochemical analyses (stable isotope ratios for C and N; assays of lipid and amino acid composition) which showed that a dominant portion of the biochemical
    [Show full text]
  • I. Convergent Plate Boundaries (Destructive Margins) (Colliding Plates)
    I. Convergent plate boundaries (destructive margins) (colliding plates) 1. Plates collide, an ocean trench forms, lithosphere is subducted into the mantle 2. Types of convergence—three general classes, created by two types of plates —denser oceanic plate subsides into mantle SUBDUCTION --oceanic trench present where this occurs -- Plate descends angle average 45o a. Oceanic-continental convergence 1. Denser oceanic slab sinks into the asthenosphere—continental plate floats 2. Pockets of magma develop and rise—due to water added to lower part of overriding crust—100-150 km depth 3. Continental volcanic arcs form a. e.g., Andes Low angle, strong coupling, strong earthquakes i. Nazca plate ii. Seaward migration of Peru-Chile trench b. e.g., Cascades c. e.g., Sierra Nevada system example of previous subduction b. Oceanic-oceanic convergence 1. Two oceanic slabs converge HDEW animation Motion at Plate Boundaries a. one descends beneath the other b. the older, colder one 2. Often forms volcanoes on the ocean floor 3. Volcanic island arcs forms as volcanoes emerge from the sea 200-300 km from subduction trench TimeLife page 117 Philippine Arc a. e.g., Aleutian islands b. e.g., Mariana islands c. e.g., Tonga islands all three are young volcanic arcs, 20 km thick crust Japan more complex and thicker crust 20-35 km thick c. Continental-continental convergence— all oceaninc crust is destroyed at convergence, and continental crust remains 1. continental crust does not subside—too buoyant 2. two continents collide—become ‘sutured’ together 3. Can produce new mountain ranges such as the Himalayas II. Transform fault boundaries 1.
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • The Hadal Zone Deep-Sea Trenches
    The Hadal Zone Deep-sea Trenches •! Hadal - Ocean habitats deeper than 6,000m •! Deep-sea trenches comprise the overwhelming majority of these habitats •! Deepest: Mariana Trench – 10,998 m The Hadal Zone Map > 6000 m (Not only trenches!) World Hadal Trenches (Jamieson et al. 2009) 37 deep-sea trenches Most in the Pacific, deepest 9 in the Pacific Trench Environment Temperature: 1.0-2.5oC Temperature increases below 4000 m due to adiabatic heating South Pacific trench temperatures increase from 1.16 to 1.91oC between 6000 and 10000 m (40%) North Pacific trench temperatures rise from 1.67 to 2.40 oC between 6000 and 10000 m. (30%) Tonga Trench Temperature (Jamieson et al. 2009 TREE) Temperatures in trenches are comparable to 3000 m cont. margin Challenger Deep Cross Section CTD Casts Temperature and Salinity Taira et al. 2005 J. Of Oceanography Flow regime: Deep currents ventilate trenches with values up to 8.1 cm/sec in the Challenger Deep Up to 32 cm/s in other trenches Currents exhibit lunar and semi-lunar tidal cycles Mean oxygen in N. Pacific trenches 3.43 ml L-1 Why is the Mariana Trench so deep? 1. Plate configuration – Pacific plate is old and cold and plunging beneath the Philippine plate. The Philippine plate is young and soft and is carried downward with the Pacific plate. 2. Remoteness from sediment sources – it doesn’t fill up over time! Trench Biology – Historical (courtesy of L. Blankenship) •! Challenger – sounding to 8200 m (no fauna) •! Incidental collection of arenaceous foraminiferan at 7228 m Japan Trench (Brady 1984 – 14 spp.) •! In 1899, the “Albatross” trawled the Tonga Trench deeper waters for the first time.
    [Show full text]
  • Article Is Available Gen Availability
    Hydrol. Earth Syst. Sci., 23, 1763–1777, 2019 https://doi.org/10.5194/hess-23-1763-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Oxycline oscillations induced by internal waves in deep Lake Iseo Giulia Valerio1, Marco Pilotti1,4, Maximilian Peter Lau2,3, and Michael Hupfer2 1DICATAM, Università degli Studi di Brescia, via Branze 43, 25123 Brescia, Italy 2Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany 3Université du Quebec à Montréal (UQAM), Department of Biological Sciences, Montréal, QC H2X 3Y7, Canada 4Civil & Environmental Engineering Department, Tufts University, Medford, MA 02155, USA Correspondence: Giulia Valerio ([email protected]) Received: 22 October 2018 – Discussion started: 23 October 2018 Revised: 20 February 2019 – Accepted: 12 March 2019 – Published: 2 April 2019 Abstract. Lake Iseo is undergoing a dramatic deoxygena- 1 Introduction tion of the hypolimnion, representing an emblematic exam- ple among the deep lakes of the pre-alpine area that are, to a different extent, undergoing reduced deep-water mixing. In Physical processes occurring at the sediment–water inter- the anoxic deep waters, the release and accumulation of re- face of lakes crucially control the fluxes of chemical com- duced substances and phosphorus from the sediments are a pounds across this boundary (Imboden and Wuest, 1995) major concern. Because the hydrodynamics of this lake was with severe implications for water quality. In stratified shown to be dominated by internal waves, in this study we in- lakes, the boundary-layer turbulence is primarily caused by vestigated, for the first time, the role of these oscillatory mo- wind-driven internal wave motions (Imberger, 1998).
    [Show full text]