Rock Property Characteristics and Correlation from Outcrop To

Total Page:16

File Type:pdf, Size:1020Kb

Rock Property Characteristics and Correlation from Outcrop To ROCK PROPERTY CHARACTERISTICS AND CORRELATION FROM OUTCROP TO WIRELINE LOGS OF THE GREEN RIVER FORMATION, RED WASH FIELD, EASTERN UINTA BASIN by Andrew Gordon A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Masters of Science (Geology). Golden, Colorado Date__________________________ Signed: _____________________________ Andrew Gordon Signed: _____________________________ Dr. J. Frederick Sarg Thesis Advisor Golden, Colorado Date__________________________ Signed: _____________________________ Dr. M. Stephen Enders Department Head of Geology and Geological Engineering ii ABSTRACT The Green River Formation is an Eocene-aged fluivo-lacustrine system that was deposited across the Uinta and Piceance basins between 53 Ma and 46 Ma. Log evaluation and correlation through the Green River Formation is made difficult due to the heterogeneous mineralogy and depositional facies. Lake deposition responds to environmental and tectonic changes that controls both the heterogeneity and mineral complexity. The use of log curves alone has proved misleading when correlating into the basin where control from core is sparse. The collection of outcrop and subsurface data helped tie physical rock properties to well logs. This allowed for a better correlation of facies changes from the littoral facies that are present in the outcrop to the more profundal facies that are present in the subsurface. Even with the large amount of subsurface core data that is available throughout the basin, the lateral variability requires tightly space control points that is not possible with core data alone. Subsurface logs provide the control needed in such an environment. To better understand the changes in lithology moving into the basin, a combined approach of outcrop and subsurface rock properties in conjunction with modeling was used to predict facies across the Wonsits/Red Wash Field study area. The use of a deterministic model developed by Cluff et al. (2015), and modified by Peacock (2017), aided in the creating of a four-mineral model that consists of silicate, calcite, dolomite, and shale. The model relied on electric log curves that are commonly run in wells drilled throughout the Uinta basin making it easily applied across the study area. The model is qualitative as it does not account for borehole conditions and is not corrected for diagenesis. The model is used to identify large general trends in mineral volume changes deposited across the study area. The model was only applied to wells that have data available iii through the entire zone of investigation and thus spacing between data points is often larger than the lateral extent of the highly fluctuating lithologies. When applied to the lake stages proposed by Tӓnavsuu-Milkeviciene and Sarg (2017), distinct depositional patterns begin to appear. The mapping of mineralogical assemblages is closely related to the proposed lake stages with an increase in mixed clay and decrease in silicate deposition corresponding to overall lake level rise. Dolomite volumes also increase with lake level rise and make up the dominant mineral assemblage in the Mahogany zone, which is widely associated with dolomite-rich oil shales. A fluvial input source in the northeastern portion of the study controlled the deposition of main reservoir within Red Wash Field, which corresponds to the higher silicate deposition seen in both outcrop at the northern end of Raven Ridge, as well as core within the Red Wash/Wonsits oil field, which is directly down dip of North Raven Ridge. The producing facies within this reservoir is made up of deltaic sandstones and shallow lake carbonates which are encased in non- reservoir mudstones and shales that act as seals. iv TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iii LIST OF FIGURES ....................................................................................................................... xi LIST OF TABLES ........................................................................................................................ xx ACKNOWLEDGEMENTS ......................................................................................................... xxi CHAPTER 1: INTRODUCTION ................................................................................................... 1 1.1 Significance....................................................................................................... 1 1.2 Objectives ......................................................................................................... 3 1.3 Previous Work .................................................................................................. 5 CHAPTER 2: GEOLOGIC BACKGROUND ............................................................................... 8 2.1 Geologic History of Uinta Basin....................................................................... 8 2.1.1 Climate ..................................................................................................... 9 2.1.2 Tectonics ................................................................................................ 10 2.2 Deposition of Green River Formation in the Uinta Basin .............................. 12 2.3 Stratigraphy of Uinta Basin ............................................................................ 13 2.4 Green River Lacustrine System ...................................................................... 16 CHAPTER 3: STUDY AREA, DATABASE, AND METHODOLOGY .................................... 22 3.1 Study Area ...................................................................................................... 23 3.2 Outcrop Data and Location ............................................................................. 24 3.3 Core Data ........................................................................................................ 25 v 3.3.1 Aurora State 3-32D-7-20 ....................................................................... 28 3.3.2 FD State 10-36D-6-19............................................................................ 29 3.3.3 Wonsits Valley State-117 ...................................................................... 30 3.3.4 Red Wash Unit 292 42-32B ................................................................... 31 3.3.5 Broadhurst #4 ......................................................................................... 32 3.4 Core Plug and Thin Section ............................................................................ 33 3.4.1 TR 16-33T-820 ...................................................................................... 33 3.4.2 TR 32-48T-720 ...................................................................................... 33 3.4.3 TR 35-14-720 ......................................................................................... 34 3.5 Thin Section Preparation and Description ...................................................... 34 3.6 Well Data ........................................................................................................ 38 3.7 Deterministic Mineral Model .......................................................................... 38 3.7.1 Deterministic Model Application .......................................................... 39 3.8 Subsurface Mapping ....................................................................................... 42 3.8.1 Net to Gross (NGR) Mineral Volumes .................................................. 42 CHAPTER 4: FACIES AND FACIES ASSOCIATIONS ........................................................... 43 4.1 Facies Descriptions and Interpretations .......................................................... 43 4.1.1 F1 Homogeneous Clay Rich Mudstones and Siltstone .......................... 46 4.1.2 F2 Laminated Clay Rich Mudstone and Siltstone ................................. 46 4.1.3 F3 Wave Rippled Cross Laminated Sandstone ...................................... 49 vi 4.1.4 F4 Current Ripple Cross Laminated Sandstone ..................................... 49 4.1.5 F5 Planar Laminated Sandstones ........................................................... 54 4.1.6 F6 Cross Stratified Sandstone ................................................................ 54 4.1.7 F7 Hummocky Swaley Sandstone ......................................................... 54 4.1.8 F8 Structureless Sandstone .................................................................... 55 4.1.9 F9 Conglomerate .................................................................................... 55 4.1.10 F10 Microbial Limestone ..................................................................... 56 4.1.11 F11 Non-Skeletal Packstone and Grainstone ....................................... 56 4.1.12 F12 Skeletal Wackestone and Grainstone............................................ 58 4.1.13 F13 Finely Laminated Oil Shale .......................................................... 58 4.1.14 F14 Illitic Oil Shale .............................................................................. 62 4.1.15 F15 Laminated Silt-Rich Oil Shale ...................................................... 63 4.1.16 F16 Wavy Laminated Oil Shale ........................................................... 63 4.1.17 F17 Soft Sediment Disturbed Oil Shale ............................................... 63 4.1.18 F18
Recommended publications
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Revision of the Lower Part of the Tertiary System in the Central and \Vestern Uinta Basin, Utah______
    Revision of the Lower Part of the Tertiary System in the Central and \Vestern Uinta Basin, Utah_____ __________ GEOLOGICAL SURVEY BULLETIN 1405G Revision of the Lower Part of the Tertiary System in the Central and \Vfestern Uinta Basin, Utah By THOMAS D. FOUCH CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1405-C Correlation of lower Tertiary stratigraphic units recently penetrated in northeastern Utah UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Fouch, Thomas D. Revision of the lower part of the Tertiary system in the central and western Uinta Basin, Utah. (Contributions to stratigraphy) (Geological Survey Bulletin 1405-C) Bibliography: p. Supt. of Docs, no.: I 19.3:1405-C 1. Geology, Stratigraphic Tertiary. 2. Geology, Stratigraphic Nomenclature Utah Uinta Basin. I. Title. II. Series. III. Series: United States Geological Survey Bulletin 1405-C. QE75.B9 No. 1405-C [QE691] 557.3'08s [ 551.7'8'0979221] 75-619374 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D. C. 20402 Stock Number 024-001-02770-4 CONTENTS Page Abstract....................................................................................................................... Cl Introduction................................................................................................................ 1 North Horn Formation .............................................................................................
    [Show full text]
  • Stratigraphic Correlation Chart for Western Colorado and Northwestern New Mexico
    New Mexico Geological Society Guidebook, 32nd Field Conference, Western Slope Colorado, 1981 75 STRATIGRAPHIC CORRELATION CHART FOR WESTERN COLORADO AND NORTHWESTERN NEW MEXICO M. E. MacLACHLAN U.S. Geological Survey Denver, Colorado 80225 INTRODUCTION De Chelly Sandstone (or De Chelly Sandstone Member of the The stratigraphic nomenclature applied in various parts of west- Cutler Formation) of the west side of the basin is thought to ern Colorado, northwestern New Mexico, and a small part of east- correlate with the Glorieta Sandstone of the south side of the central Utah is summarized in the accompanying chart (fig. 1). The basin. locations of the areas, indicated by letters, are shown on the index map (fig. 2). Sources of information used in compiling the chart are Cols. B.-C. shown by numbers in brackets beneath the headings for the col- Age determinations on the Hinsdale Formation in parts of the umns. The numbers are keyed to references in an accompanying volcanic field range from 4.7 to 23.4 m.y. on basalts and 4.8 to list. Ages where known are shown by numbers in parentheses in 22.4 m.y. on rhyolites (Lipman, 1975, p. 6, p. 90-100). millions of years after the rock name or in parentheses on the line The early intermediate-composition volcanics and related rocks separating two chronostratigraphic units. include several named units of limited areal extent, but of simi- No Quaternary rocks nor small igneous bodies, such as dikes, lar age and petrology—the West Elk Breccia at Powderhorn; the have been included on this chart.
    [Show full text]
  • Eocene Green River Formation, Western United States
    Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States M. Elliot Smith* Alan R. Carroll Brad S. Singer Department of Geology and Geophysics, University of Wisconsin, 1215 West Dayton Street, Madison, Wisconsin 53706, USA ABSTRACT Members. Sediment accumulation patterns than being confi ned to a single episode of arid thus refl ect basin-center–focused accumula- climate. Evaporative terminal sinks were Numerous 40Ar/39Ar experiments on sani- tion rates when the basin was underfi lled, initially located in the Greater Green River dine and biotite from 22 ash beds and 3 and supply-limited accumulation when the and Piceance Creek Basins (51.3–48.9 Ma), volcaniclastic sand beds from the Greater basin was balanced fi lled to overfi lled. Sedi- then gradually migrated southward to the Green River, Piceance Creek, and Uinta ment accumulation in the Uinta Basin, at Uinta Basin (47.1–45.2 Ma). This history is Basins of Wyoming, Colorado, and Utah Indian Canyon, Utah, was relatively con- likely related to progressive southward con- constrain ~8 m.y. of the Eocene Epoch. Mul- stant at ~150 mm/k.y. during deposition of struction of the Absaroka Volcanic Prov- tiple analyses were conducted per sample over 5 m.y. of both evaporative and fl uctuat- ince, which constituted a major topographic using laser fusion and incremental heating ing profundal facies, which likely refl ects the and thermal anomaly that contributed to a techniques to differentiate inheritance, 40Ar basin-margin position of the measured sec- regional north to south hydrologic gradient. loss, and 39Ar recoil.
    [Show full text]
  • Rapid and Early Post-Flood Mammalian Diversification Videncede in the Green River Formation
    The Proceedings of the International Conference on Creationism Volume 6 Print Reference: Pages 449-457 Article 36 2008 Rapid and Early Post-Flood Mammalian Diversification videncedE in the Green River Formation John H. Whitmore Cedarville University Kurt P. Wise Southern Baptist Theological Seminary Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Whitmore, John H. and Wise, Kurt P. (2008) "Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation," The Proceedings of the International Conference on Creationism: Vol. 6 , Article 36. Available at: https://digitalcommons.cedarville.edu/icc_proceedings/vol6/iss1/36 In A. A. Snelling (Ed.) (2008). Proceedings of the Sixth International Conference on Creationism (pp. 449–457). Pittsburgh, PA: Creation Science Fellowship and Dallas, TX: Institute for Creation Research. Rapid and Early Post-Flood Mammalian Diversification Evidenced in the Green River Formation John H. Whitmore, Ph.D., Cedarville University, 251 N. Main Street, Cedarville, OH 45314 Kurt P. Wise, Ph.D., Southern Baptist Theological Seminary, 2825 Lexington Road.
    [Show full text]
  • Ichnotaxonomy of the Eocene Green River Formation
    Ichnotaxonomy of the Eocene Green River Formation, Soldier Summit and Spanish Fork Canyon, Uinta Basin, Utah: Interpreting behaviors, lifestyles, and erecting the Cochlichnus Ichnofacies By © 2018 Joshua D. Hogue B.S. Old Dominion University, 2013 Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Chair: Dr. Stephen T. Hasiotis Dr. Paul Selden Dr. Georgios Tsoflias Date Defended: May 1, 2018 ii The thesis committee for Joshua D. Hogue certifies that this is the approved version of the following thesis: Ichnotaxonomy of the Eocene Green River Formation, Soldier Summit and Spanish Fork Canyon, Uinta Basin, Utah: Interpreting behaviors, lifestyles, and erecting the Cochlichnus Ichnofacies Chair: Dr. Stephen T. Hasiotis Date Approved: May 1, 2018 iii ABSTRACT The Eocene Green River Formation in the Uinta Basin, Utah, has a diverse ichnofauna. Nineteen ichnogenera and 26 ichnospecies were identified: Acanthichnus cursorius, Alaripeda lofgreni, c.f. Aquatilavipes isp., Aulichnites (A. parkerensis and A. tsouloufeidos isp. nov.), Aviadactyla (c.f. Av. isp. and Av. vialovi), Avipeda phoenix, Cochlichnus (C. anguineus and C. plegmaeidos isp. nov.), Conichnus conichnus, Fuscinapeda texana, Glaciichnium liebegastensis, Glaroseidosichnus ign. nov. gierlowskii isp. nov., Gruipeda (G. fuenzalidae and G. gryponyx), Midorikawapeda ign. nov. semipalmatus isp. nov., Planolites montanus, Presbyorniformipes feduccii, Protovirgularia dichotoma, Sagittichnus linki, Treptichnus (T. bifurcus, T. pedum, and T. vagans), and Tsalavoutichnus ign. nov. (Ts. ericksonii isp. nov. and Ts. leptomonopati isp. nov.). Four ichnocoenoses are represented by the ichnofossils—Cochlichnus, Conichnus, Presbyorniformipes, and Treptichnus—representing dwelling, feeding, grazing, locomotion, predation, pupation, and resting behaviors of organisms in environments at and around the sediment-water-air interface.
    [Show full text]
  • Geology of the Northern Portion of the Fish Lake Plateau, Utah
    GEOLOGY OF THE NORTHERN PORTION OF THE FISH LAKE PLATEAU, UTAH DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State - University By DONALD PAUL MCGOOKEY, B.S., M.A* The Ohio State University 1958 Approved by Edmund M." Spieker Adviser Department of Geology CONTENTS Page INTRODUCTION. ................................ 1 Locations and accessibility ........ 2 Physical features ......... _ ................... 5 Previous w o r k ......... 10 Field work and the geologic map ........ 12 Acknowledgements.................... 13 STRATIGRAPHY........................................ 15 General features................................ 15 Jurassic system......................... 16 Arapien shale .............................. 16 Twist Gulch formation...................... 13 Morrison (?) formation...................... 19 Cretaceous system .............................. 20 General character and distribution.......... 20 Indianola group ............................ 21 Mancos shale. ................... 24 Star Point sandstone................ 25 Blackhawk formation ........................ 26 Definition, lithology, and extent .... 26 Stratigraphic relations . ............ 23 Age . .............................. 23 Price River formation...................... 31 Definition, lithology, and extent .... 31 Stratigraphic relations ................ 34 A g e .................................... 37 Cretaceous and Tertiary systems . ............ 37 North Horn formation. ..........
    [Show full text]
  • A North American Stem Turaco, and the Complex Biogeographic History of Modern Birds Daniel J
    Field and Hsiang BMC Evolutionary Biology (2018) 18:102 https://doi.org/10.1186/s12862-018-1212-3 RESEARCHARTICLE Open Access A North American stem turaco, and the complex biogeographic history of modern birds Daniel J. Field1,2* and Allison Y. Hsiang2,3 Abstract Background: Earth’s lower latitudes boast the majority of extant avian species-level and higher-order diversity, with many deeply diverging clades restricted to vestiges of Gondwana. However, palaeontological analyses reveal that many avian crown clades with restricted extant distributions had stem group relatives in very different parts of the world. Results: Our phylogenetic analyses support the enigmatic fossil bird Foro panarium Olson 1992 from the early Eocene (Wasatchian) of Wyoming as a stem turaco (Neornithes: Pan-Musophagidae), a clade that is presently endemic to sub-Saharan Africa. Our analyses offer the first well-supported evidence for a stem musophagid (and therefore a useful fossil calibration for avian molecular divergence analyses), and reveal surprising new information on the early morphology and biogeography of this clade. Total-clade Musophagidae is identified as a potential participant in dispersal via the recently proposed ‘North American Gateway’ during the Palaeogene, and new biogeographic analyses illustrate the importance of the fossil record in revealing the complex historical biogeography of crown birds across geological timescales. Conclusions: In the Palaeogene, total-clade Musophagidae was distributed well outside the range of crown Musophagidae in the present day. This observation is consistent with similar biogeographic observations for numerous other modern bird clades, illustrating shortcomings of historical biogeographic analyses that do not incorporate information from the avian fossil record.
    [Show full text]
  • The Origin of Modern Birds This Talk Was Given at the Denver Museum Of
    The Origin of Modern Birds This talk was given at the Denver Museum of Natural History by Dr. Daniel J. Field, a lecturer at the Department of Earth Sciences at Cambridge University. Dr. Field is a Research Associate at the Denver Museum of Natural Science and a Fellow in Natural Sciences at Christ’s College, Cambridge. He discussed how the K-T Mass Extinction affected the evolution on modern birds. Birds are the most ubiquitous and widespread vertebrate animals with nearly 11,000 species of different shapes, colors and sizes. Can the diversity be explained by extensively examining the fossil record? The last 10 years have been an exciting time to examine the origin of birds due to advances in genome sequencing, and in computing power to analyze vast datasets. The only direct method of determining bird evolution is the fossil record. For example, the pseudo-toothed birds, or pelagornis, can be traced to modern-day ducks and chickens. The name derives from the boney projections on the sides of their bills which are a re-invention of teeth. They are the largest flying birds to have ever lived, from the Paleocene to the Pleistocene, and the only way we know of their existence is through the fossil record. You can see representative size in the illustration comparing Pelagornis to the modern-day albatross. It is reconstructed in the Bird Hall of the Denver Museum. The closest relatives of birds are crocodilians which are in a group called the archosaurs, whose most recent common ancestor lived over 200 million years ago.
    [Show full text]
  • Paleontological Resources Technical Report Riley Ridge to Natrona Project DECEMBER 2018
    U.S. Department of the Interior Bureau of Land Management Paleontological Resources Technical Report Riley Ridge to Natrona Project DECEMBER 2018 Table of Contents 1.0 Introduction ......................................................................................................................................... 1 2.0 Regional Setting .................................................................................................................................. 1 3.0 Inventory Methodology ....................................................................................................................... 1 4.0 Potential Fossil-Bearing Geologic Formations ................................................................................... 4 4.1 Browns Park Formation (PFYC 3) ............................................................................................ 4 4.2 White River Formation or Group (PFYC 5) .............................................................................. 5 4.3 Wind River Formation (PFYC 5) .............................................................................................. 5 4.4 Green River Formation (PFYC 5) ............................................................................................. 5 4.5 Wasatch Formation (PFYC 5) ................................................................................................... 5 4.6 Battle Spring Formation (PFYC 3)............................................................................................ 6 4.7 Bridger Formation
    [Show full text]
  • Climatic Shifts Drove Major Contractions in Avian Latitudinal Distributions Throughout the Cenozoic
    Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic Erin E. Saupea,1,2, Alexander Farnsworthb, Daniel J. Luntb, Navjit Sagooc, Karen V. Phamd, and Daniel J. Fielde,1,2 aDepartment of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom; bSchool of Geographical Sciences, University of Bristol, Clifton, BS8 1SS Bristol, United Kingdom; cDepartment of Meteorology, Stockholm University, 106 91 Stockholm, Sweden; dDivision of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125; and eDepartment of Earth Sciences, University of Cambridge, CB2 3EQ Cambridge, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 7, 2019 (received for review March 8, 2019) Many higher level avian clades are restricted to Earth’s lower lati- order avian historical biogeography invariably recover strong evi- tudes, leading to historical biogeographic reconstructions favoring a dence for an origin of most modern diversity on southern land- Gondwanan origin of crown birds and numerous deep subclades. masses (2, 6, 11). However, several such “tropical-restricted” clades (TRCs) are repre- The crown bird fossil record has unique potential to reveal sented by stem-lineage fossils well outside the ranges of their clos- where different groups of birds were formerly distributed in deep est living relatives, often on northern continents. To assess the time. Fossil evidence, for example, has long indicated that total- drivers of these geographic disjunctions, we combined ecological group representatives of clades restricted to relatively narrow niche modeling, paleoclimate models, and the early Cenozoic fossil geographic regions today were formerly found in different parts of record to examine the influence of climatic change on avian geo- – graphic distributions over the last ∼56 million years.
    [Show full text]
  • Memorial to Lawrence C. Craig 1918-1983 FRED W
    Memorial to Lawrence C. Craig 1918-1983 FRED W. CATER. Jr. 1880 Applewood Drive. Lakew ood. Colorado 80215 On June 2. 1983. the U.S. Geological Survey lost a highly valued member, and the science of geology a gifted scientist. Lawrence C. Craig, who died of a heart attack at the age of 65. He is survived by his wife, Rachel; his father, Gerald, of Brighton, Colorado; a sister. Alice Craig Erney, of Madison. Wisconsin; a son. Gerald, of Flagstaff. Arizona; two daughters. Eliza­ beth Craig Rich, of Buffalo. New York, and Phebe Craig, of Oakland. California; and four grandchildren. Larry was the son of Dr. Gerald Spellman Craig and Prudence Bower Craig. He was born in Plainview. Texas, in 1918 while his father was overseas in World War 1. Dr. Craig has been a leader and innovator in elementary school science and an author of many texts and papers on science for elementary schools and ele­ mentary school teachers. He taught at Teachers College. Columbia, from 1924 to 1956. Larry’s mother was of pioneer stock, born on a homestead in the Red River Valley of North Dakota. Later her family moved to a farm near Olton. Texas, and she graduated from nearby Weyland College in Plainview. It was in Texas that she met and married Gerald, who had just graduated from Baylor University. They were married 67 years; she died just three months before her son, Lawrence. Larry graduated from Horace Mann School for Boys in 1935. entered Swarthmore that fall, and graduated with a degree in zoology-chemistry in 1939.
    [Show full text]