Characterization of Lithium Peroxide Formation in Lithium Air Battery

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Lithium Peroxide Formation in Lithium Air Battery Characterization of lithium peroxide formation in lithium air battery electrode via titration techniques and EIS by Jeremiah Deboever, B.S. Thesis Presented to the Faculty of the Graduate School of Oregon Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Renewable Energy Engineering Oregon Institute of Technology July 2014 © 2014 Jeremiah Deboever All Rights Reserved Final approval form ACKNOWLEDGEMENTS This thesis could not have been written without Dr. C. Torres Garibay, who not only served as my supervisor but also encouraged and supported me to pursue my academic and professional career. The technical support and expertize of Dr. S. Petrovic and Dr. E. Nasybulin pushed me to exceed my potential. The academic support of Dr. H. Corsair exposed me to various opportunities and experiences as a graduate assistant at Oregon Tech. The assistance and ingenuity of Mr. R. Ellis was an invaluable commodity throughout the establishment of the new laboratory station. The patience and concern of Mrs. S. McHenry expedited the lengthy ordering and purchasing process. I would like to also acknowledge a number of undergraduate laboratory assistant for their involvement throughout the project: Stephen Lothrop, Paulo Santos Vasconcelos and Niels Williams. Finally, I would like to thank Oregon Tech and the National Institute for Transportation and Communities from the Oregon Transportation Research and Education Consortium for the financial support of this project. i ABSTRACT Lithium-oxygen (Li-O2) batteries have attracted attention in the last decade for their remarkable theoretical energy density of 3,500 Wh kg-1 when mass of lithium and oxygen are counted which is over 10 times higher than that of conventional lithium-ion (Li-ion) batteries. However, cells have not yet demonstrated to be rechargeable as the internal reactions are highly unstable. The oxygen-rich environment in combination with a wide potential window and the presence of lithium promote uncontrolled and irreversible reactions in the cell. A fundamental understanding of the mechanisms behind the various complex reactions was the approach taken in this thesis. The targeted reaction should result in the reversible formation of lithium peroxide (Li2O2). Here, the characterization of Li2O2 formation in air electrode via titration techniques and electrochemical impedance spectroscopy (EIS) was proposed as a Master of Science thesis study. This research evaluated various carbon materials with different surface area and pore volumes and correlated it to the discharge capacity, yield of the desired discharge product (Li2O2), discharge-charge voltage profiles and the impedance spectra of the cell. Three testing techniques, life cycle testing, Li2O2 titration and EIS, provided the different perspectives on the complex chemical mechanisms in Li-O2 batteries. The results of this study showed slight variation in Li2O2 yield across the different carbon cathodes. Furthermore, the electrolyte decomposition was confirmed to be the main factor to the overall yield. As expected, the specific capacity significantly varied from carbon to carbon and the voltage profiles were demonstrated to be dependent on the carbon cathode. Lastly, the impedance spectrum showed to correlate to the discharge capacity of the battery but not directly to the Li2O2 yield. ii TABLE OF CONTENTS I. Introduction ............................................................................................................... 1 A. Metal-Air Batteries ............................................................................................... 3 B. Lithium-oxygen Batteries ..................................................................................... 5 i. Lithium-oxygen chemical reactions .................................................................. 6 ii. Literature Review.............................................................................................. 7 iii. Current limitations .......................................................................................... 12 C. Scope of work..................................................................................................... 13 II. Experimental Setup ................................................................................................. 15 A. Cathode Preparation Instruments ....................................................................... 15 i. Homogenizer ................................................................................................... 15 ii. Ultrasonic bath ................................................................................................ 18 iii. Vacuum oven .................................................................................................. 18 B. Controlled Environmental Chamber (glovebox) ................................................ 19 i. Custom Gas Connection ................................................................................. 19 ii. Gas Monitoring Instruments ........................................................................... 22 iii. System Performance Improvements ............................................................... 24 iv. Operational Glovebox System ........................................................................ 27 C. Battery Cycling Station ...................................................................................... 29 III. Experimental Work ................................................................................................. 31 A. Sample Preparation ............................................................................................ 31 i. Electrolyte preparation .................................................................................... 31 ii. Air Electrode Preparation ............................................................................... 32 iii. Cell Assembly ................................................................................................. 33 iii B. Testing Technique Procedures ........................................................................... 36 i. Galvanostatic Cyclic Test ............................................................................... 36 ii. Iodometric Titration ........................................................................................ 39 iii. Electrochemical Impedance Spectroscopy ..................................................... 42 IV. Results ....................................................................................................................... 45 A. Galvanostatic cycling results .............................................................................. 45 i. First discharge cycle test ................................................................................ 45 ii. Third discharge cycle test ............................................................................... 47 iii. First discharge with different electrolyte composition ................................... 51 iv. First discharge at a higher current density ...................................................... 52 B.Iodometric titration results ....................................................................................................................................... 54 i. First and third discharge peroxide yield.......................................................... 54 ii. Peroxide yield of different cell composition ................................................... 56 iii. Peroxide yield with different testing conditions ............................................. 57 C. Electrochemical Impedance Spectroscopy results ............................................. 58 i. First and third discharge impedance ............................................................... 58 ii. Electrolyte impedance ..................................................................................... 61 iii. Impedance after different testing conditions ................................................... 66 iv. Additional EIS testing ..................................................................................... 67 V. Discussion ................................................................................................................. 70 A. Carbon dependent capacity output ..................................................................... 70 B. Effect of carbons on voltage profile ................................................................... 72 C. Lithium peroxide independency of the carbon material..................................... 73 iv D. State-of-charge characterization using EIS ........................................................ 74 E. Lithium peroxide characterization ..................................................................... 76 F. Future Work ........................................................................................................... 79 i. Laboratory station improvements ................................................................... 79 ii. Expansion on the current study ....................................................................... 80 iii. Cyclic voltammetry ......................................................................................... 80 iv. Additives ......................................................................................................... 84 VI. Conclusion ...............................................................................................................
Recommended publications
  • Standardal /Z<-Z
    Hamilton Ui StandardAl HANL1r0N STNTVI) Bi;.TVGircr1h VP0FT SVHCA, 5712 1 0 L 'K-KY-o LaIUI P~FrcX.-19F TEST2 ?i0&at CONrxyhCT NO. TIAS 9-8159 NASA Aid!,zj.. SACECAFT CF.CErR ,_eb-r 1970 Prepared Byi/kA / 70 L.A. Wilis, axrer.mwtal Enineer Pae Aproved ByA1"" /Z<-Z -;' W. A. Blezhcr0 Chiet Pa tc Advanced -nginee.rin­ ONUMBE) AHRU) U NASA CR OR ?MX OR AD NUMBER) (CATEGORY) Hamilton L Standard cnisni _ This report contairs test results defining the operating chsractcristics of lithin peroxide to the extcnt required to quantify system level ponalties. The effects of chemical caulysts, bed cooling, che.,ical Panufacturing tech­ uiques, opera ing conditions, and cheaica) handling jroc Curea are evaluated. ii! StandardHamilton i5U TAlBLE OF CO_&E!PS Section me No. 1.0 SUMM4ARY 1 2 .0 INTRODUCTION 3 3.0 PROGRAM DEFINITION 3.1 Program Objectives 4 3.2 Test Objectives 4 3.3 Program Description 5 3.4 Test Conitions T 3.5 Test Facility 7 3.6 - Test Hardware 12 3.7 Planned Test Sequence 18 3.8 Test.Results 21 ho TEST DATA PRESENTATION 22 4.1 Performance Data 22 4.2 Chemical Analysis Data 1o6 5.0 PERFOrd4ICE ANALYSIS 109 5.1 Catalyst Evaluation 109 5.2 Bed Cooling Evaluation 134 5.3 Procedural Test Evaluation 0h5 5.4 Off Design Test Evaluation 153 5.5 End Item Canister Evaluation 157 5.6 Li 2O2 System Penalty Evaluation 163 6.0 RECOM ENDED FUTURE EFFORT 165 7.0 APPENDIX 167 7.1 Specification for Lithium Peroxide 167 Manufacturing 7.2 Specification for Lithium Peroxide Storage a68 7.3 Specification for Lithium Peroxide 170 Cartridge Loading iv Standard 5712 LIST OP TABLFS Table No.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • United States Patent Office Patented May 26, 964 1
    3,134,646 United States Patent Office Patented May 26, 964 1. 2 3,134,646 anhydrous lithium peroxide. The rapid drying step PREPARATION 6Fiff UM PEROXIDE. serves not only to effect the removal of water added Ricardo O. Bach, Gastonia, N.C., assignor to Lithium through the water solutions of the reactants and, addi Corporation of America, inc., New York, N.Y., a cor tionally, formed in the course of the reaction, but serves, poration of Minnesota also, and quite surprisingly, to bring about the important No Drawing, Filed Jan. 5, 1962, Set. No. 166,395 function of effecting rapid transfer of the active oxygen 10 Claims. (CI. 23-184) of the hydrogen peroxide to the lithium hydroxide to consummate formation of the desired lithium peroxide. This invention relates to an improved method of pro The lithium hydroxide (which term also includes ducing substantially anhydrous lithium peroxide, and to O lithium hydroxide hydrates such as lithium hydroxide the product produced thereby. monohydrate) is most advantageously used in the form Methods for the production of substantially anhydrous of a strong to substantially saturated aqueous solution, lithium peroxide have long been known in the art. More for instance, from about 8 or 10 to 12% concentration. recently, improvements in such methods have been pro In those instances where the resulting lithium hydroxide posed as disclosed, for instance, in U.S. Patents Nos. 5 solutions contain insoluble impurities as, for instance, 2,448,485 and 2,962,358. However, each of the methods lithium carbonate, it is desirable to filter the solutions disclosed in these patents has certain significant disad to remove said impurities so as to bring about greater vantages, particularly from an economic standpoint, purity of the final substantially anhydrous lithium which make their utilization in commercial operations peroxide.
    [Show full text]
  • Investigation of Lithium Superoxide-Based Batteries
    Investigation of Lithium Superoxide-Based Batteries P.I.: K. Amine L. Curtiss Argonne National Laboratory DOE merit review June 1-4, 2020 Project ID# BAT-431 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Overview Timeline Barriers ▪ Start: 2019 ▪ Barriers addressed ▪ Finish: 2023 – Cycle life ▪ 60 % – Capacity – Efficiency Budget Partners • Total project funding • Interactions/ collaborations – DOE share: $ 1280 K • M. Asadi, IIT – Contractor 0 • S. Al-Hallaj and B. Chaplin, UIC • FY 18: $ 400 K • J. G. Wen, ANL • FY 19: $ 450 K • K. C. Lau University of • FY 20: $ 430 K California-Northridge • M. Asadi, IIT 2 Project Objectives and Relevance ▪ Investigation of Li-O2 batteries based on lithium superoxide to achieve understanding of discharge chemistry and how to enhance cycle life. ▪ Use an integrated approach based on experimental synthesis and state-of-the-art characterization combined with high level computational studies focused on materials design and understanding ▪ Li-air batteries based on lithium superoxide have the potential for being the basis for closed systems without need for an external O2 source 3 Milestones Month/ Milestones Year Characterization of electronic properties of high temperature Jun/20 synthesized Ir3Li, (Completed) Voltage profiles and characterization of discharge product by titration Sep/20 and other techniques in an Ir3Li cell, (Completed) TEM studies of large LiO particles, investigation of stability and Dec/21 2 formation mechanism, (Completed)
    [Show full text]
  • The Structure of Alkali Silicate Glasses and Melts: a Multi-Spectroscopic Approach
    The structure of alkali silicate glasses and melts: A multi-spectroscopic approach by Cedrick A. O'Shaughnessy A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy in Geology Graduate Department of Earth Sciences University of Toronto c Copyright 2019 by Cedrick A. O'Shaughnessy Abstract The structure of alkali silicate glasses and melts: A multi-spectroscopic approach Cedrick A. O'Shaughnessy Doctor of Philosophy in Geology Graduate Department of Earth Sciences University of Toronto 2019 The structure of alkali silicate glasses and melts is investigated using a multi-spectroscopic approach. Raman spectroscopy is used to characterize the local to intermediate range order within the glasses. We show that the distribution of rings varies as a function of composition, with 3-membered rings gaining importance with increasing alkali content. We apply a newly developed model for the fitting of the high n frequency envelope related to SiO4 symmetric stretch vibrations of Q species. These fits are interpreted using the idea of modifier bound bridging oxygen. The proportions of the different Qn species vary with alkali concentration with Q4 species breaking down to form lower order Qn species with increasing alkali 2 content. The Q peak appears at increasingly higher concentrations of M2O with increasing cation size. This leads us to believe that cations with a higher charge density cluster more readily than cations with a lower charge density. At the ∼20 mol. % composition we see a change in the silicate network, as shown by the absence of a Q4 peak and the proportion of 3-membered rings.
    [Show full text]
  • Design Guidelines for Carbon Dioxide Scrubbers I
    "NCSCTECH MAN 4110-1-83 I (REVISION A) S00 TECHNICAL MANUAL tow DESIGN GUIDELINES FOR CARBON DIOXIDE SCRUBBERS I MAY 1983 REVISED JULY 1985 Prepared by M. L. NUCKOLS, A. PURER, G. A. DEASON I OF * Approved for public release; , J 1"73 distribution unlimited NAVAL COASTAL SYSTEMS CENTER PANAMA CITY, FLORIDA 32407 85. .U 15 (O SECURITY CLASSIFICATION OF TNIS PAGE (When Data Entered) R O DOCULMENTATIONkB PAGE READ INSTRUCTIONS REPORT DOCUMENTATION~ PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2a. GOVT AQCMCSION N (.SAECIP F.NTTSChALOG NUMBER "NCSC TECHMAN 4110-1-83 (Rev A) A, -NI ' 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED "Design Guidelines for Carbon Dioxide Scrubbers '" 6. PERFORMING ORG. REPORT N UMBER A' 7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(S) M. L. Nuckols, A. Purer, and G. A. Deason 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK AREA 6t WORK UNIT NUMBERS Naval Coastal PanaaLSystems 3407Project CenterCty, S0394, Task Area Panama City, FL 32407210,WrUnt2 22102, Work Unit 02 II. CONTROLLING OFFICE NAME AND ADDRE1S t2. REPORT 3ATE May 1983 Rev. July 1985 13, NUMBER OF PAGES 69 14- MONI TORING AGENCY NAME & ADDRESS(if different from Controtling Office) 15. SECURITY CLASS. (of this report) UNCLASSIFIED ISa. OECL ASSI FICATION/DOWNGRADING _ __N•AEOULE 16. DISTRIBUTION STATEMENT (of thia Repott) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report) IS. SUPPLEMENTARY NOTES II. KEY WORDS (Continue on reverse side If noceassry and Identify by block number) Carbon Dioxide; Scrubbers; Absorption; Design; Life Support; Pressure; "Swimmer Diver; Environmental Effects; Diving., 20.
    [Show full text]
  • Zllniit?Dstates Patent' ”
    , 2,962,358 zllniit?dstates Patent‘ ” ICC. Patented Nov. 29,1969 7 l . , r 2 . percent recovery of the theoretical amount of lithium peroxide available-can be obtained. 2,96%“ The drying may bedone underatmosphen'c pressure at 1 METHOD on MAKING LITHIUM PERoxmE suitable temperatures to keep decomposition of the lithium IN METHANOL peroxide at a ' ‘Ethyl alcohol can be used, as well as methanol, and Henry H. Strater, May?eld Heights, Ohio, assignor to commercial strength alcohols are satisfactory. The re 8: Chemicals, Willoughby, Ohio, a corporation action of the invention will occur at room tempera 0 o ture. No Drawing. Filed June 2, 1958, Ser. No. 738,959 10 Should it be desired to recover the lithium present in the end ?ltrate material, the ?ltrate can be heated to 4 Claims. (Cl. 23-184) distill the alcohol therein which can be recovered for further use. The water present also is evaporated o? and the residue material will have been partially con The present invention relates to a method of preparing 15 verted from lithium peroxide over to lithium hydroxide. lithium' peroxide, and particularly relates to the prepara Such end product can be puri?ed in any conventional tion of such material in an alcohol reacting medium. manner and be again used in the practice of the process, Heretofore there have been some methods proposed or it can be used for other purposes, as desired. for the production of lithium peroxide, vbut none of such The reaction conditions are readily controllable by methods have been completely satisfactory for low cost 20 the process described, as the hydrogen peroxide is slowly eifective production of lithium peroxide, so far as I am added to the reacting materials and no excessive tem aware.
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • Synthesis of Lithium Peroxide from Hydrogen Peroxide and Lithium Hydroxide in Aqueous-Organic Medium: Wasteless Technology
    MATEC Web of Conferences 96, 00004 (2017) DOI: 10.1051/ matecconf/20179600004 REE-2016 Synthesis of Lithium Peroxide from Hydrogen Peroxide and Lithium Hydroxide in Aqueous-Organic Medium: Wasteless Technology Roman Nefedov* and Yury Ferapontov Tambov State Technical University, Tambov, Russia Abstract. Lithium is a rare element, and widely used in manufacturing, electronics, medicine, and etc. One of the important lithium compounds is lithium peroxide. It is a component of regenerating products to protect the human respiratory system from damaging factors of chemical and biological nature. This paper describes the methods of obtaining the lithium peroxide. All industrial techniques for the synthesis of lithium peroxide are presented. A critical assessment of these techniques is given. A new wasteless synthesis technology of lithium peroxide from Hydrogen Peroxide and Lithium Hydroxide in Aqueous-Organic Medium is presented. This technology allows obtaining the pure product containing Li2O2 up to 94 %. The possibility of the solvent regeneration by the anhydrous lithium hydroxide has been shown. The yield of the lithium – 98 % and a significant reduction in solvent consumption per unit of finished product has been obtained. 1 Introduction The use of ethanol is not a prerequisite for obtaining lithium peroxide, although it is beneficial in terms of that The inorganic peroxide compounds based on rare, lithium peroxide contained in it unlike other organic radioactive, and especially alkali metals have a wide substances practically insoluble (dissolved in methanol range of industrial applications (e.g., energy storage and about 3.5 g/L Li2O2. Ethanol can be replaced by other oxygen source, etc.) [1, 2]. organic solvents (methanol, pyridine, propanol, kenotic An identifying characteristic of inorganic peroxide and others [12, 14]).
    [Show full text]
  • Charging Ahead FINDING INVESTMENT OPPORTUNITIES from the GREAT BATTERY TAKE-OFF
    November 2016 Charging ahead FINDING INVESTMENT OPPORTUNITIES FROM THE GREAT BATTERY TAKE-OFF Duncan Goodwin Alex Scott Head of Global Resources Equities Investment Analyst, Barings, London Baring Global Resources Equities Barings, London Barings | 155 Bishopsgate | London | EC2M 3XY Authorised and Regulated by the Financial Conduct Authority Tel: +44 (0)20 7628 6000 | Fax: +44 (0)20 7638 7928 | www.barings.com FOR INSTITUTIONAL INVESTORS / PROFESSIONAL ADVISERS ONLY Contents EXECUTIVE SUMMARY 3 THE ECONOMICS BEHIND THE TAKE-OFF 4 BATTERY MANUFACTURING: COMPETITION AND COMMODITISATION 6 THE TECHNOLOGY OF TOMORROW 8 CATHODE MANUFACTURERS 13 SEPARATOR MANUFACTURERS 16 COMMODITIES 19 CONCLUSION 23 Barings | 155 Bishopsgate | London | EC2M 3XY November 2016 Tel: +44 (0)20 7628 6000 | Fax: +44 (0)20 7638 7928 | www.barings.com For institutional investors / professional advisers only 2 Executive Summary Following on from the work presented in our white paper In this white paper, we delve deeper into the supply chain “Enabling a Revolution”, this paper is intended as an update on to further identify the potential winners from this structural the sector, and the continuing work we have undertaken. growth theme. We remain permanently cognisant of both the potential for disruptive technology to be, itself, disrupted, as Over the past nine months the idea that we are on the verge of well as for a bubble to emerge within such nascent thematic an electric vehicle take-off has become increasingly palpable. trends. We identify the next rung of potential winners, and also Tesla announced the launch of its long-awaited Model 3 at the re-examine the investment case for those stocks we previously end of March 2016 and already has a pre-order book of more identified as beneficiaries.
    [Show full text]
  • Peroxides, Su Peroxides, and Ozonides of Alkali and Alkaline Earth Metals
    Peroxides, Su peroxides, and Ozonides of Alkali and Alkaline Earth Metals Il'ya Ivanovich Vol'nov Head, Laboratory of Peroxide Chemistry N. S. Kurnakov Institute of General and Inorganic Chemistry Academy of Sciences of the USSR, Moscow Translated from Russian by J. Woroncow Life Sciences Group General Dynamics/Convair Division San Diego, California Edited by A. W. Petrocelli Chief, Chemistry and Chemical Engineering Section General Dynamics / Electric Boat Division Groton, Connecticut PLENUM PRESS· NEW YORK· 1966 Born in 1913, Il'ya Ivanovich Vol'nov is head of the laboratory of peroxide chemistry of the N. S. Kurnakov Institute of General and Inorganic Chem­ istry of the Academy of Sciences of the USSR in Moscow. He joined the Institute in 1939 and since 1949 he has authored more than 50 articles dealing with the chemistry of the inorganic peroxides, superoxides, and ozonides. Vol'nov served as editor for the proceedings of the 2nd All-Union Conference on the Chemistry of Peroxide Compounds, published by the Academy of Sciences in 1963. He was also editor of T. A. Dobrynina's monograph on Lithium Peroxide, published in 1964, and edited a biblio­ graphical index covering the world-wide literature for the period 1956 to 1962 on the chemistry of peroxide compounds ( other than hydrogen peroxide) published under the auspices of the library of the Academy of Sciences of the USSR. ISBN 978-1-4684-8254-6 ISBN 978-1-4684-8252-2 (eBook) DOl 10.10071978-1-4684-8252-2 Library of Congress Catalog Card Number 66-22125 The original Russian text, first published for the N.
    [Show full text]
  • Batteries: Avoiding Oxygen
    PUBLISHED: 25 JULY 2016 | ARTICLE NUMBER: 16115 | DOI: 10.1038/NENERGY.2016.115 news & views BATTERIES Avoiding oxygen In the development of lithium–air batteries, managing the phase change between gaseous oxygen and crystalline lithium peroxide is a key challenge. Now, a high-performing sealed battery with an oxygen anion-redox electrode is presented that does not involve any gas evolution. Laurence J. Hardwick nergy storage in the form of capacity of around 550 Ah kg–1, and the cycle shuttle, that is, a redox species that diffuses rechargeable batteries is becoming can be repeated over 100 times. When used in-between both electrodes essentially increasingly important for a range as the positive electrode in a Li-ion cell, a allowing electrons to flow through the E –1 of applications including transportation specific energy of 1,000 Wh kg was shown, electrolyte. A redox shuttle in this example and grid reserves. Recent interest in non- which rivals the Li–O2 cell and outcompetes could be thought of as a ‘chemical short aqueous metal–oxygen batteries, particularly the state-of-the-art Li-ion technology by circuit’. As shown in Fig. 1, the redox 1 – lithium–oxygen (Li–O2), has stemmed a factor of 2.5–3 at the materials level . shuttle (Sh ) is created from the reaction from their high theoretical gravimetric The cell also showed a minor voltage gap between surface exposed LiO2 and the 1 energy densities . In Li–O2 batteries, the of 0.24 V between discharge and charge, electrolyte solvent (ethylene carbonate). – reactant (O2) is not contained within implying possible high roundtrip efficiencies Sh diffuses to the negative electrode where the cell; instead, it enters from outside in operation.
    [Show full text]