Characterization of Lithium Peroxide Formation in Lithium Air Battery
Total Page:16
File Type:pdf, Size:1020Kb
Characterization of lithium peroxide formation in lithium air battery electrode via titration techniques and EIS by Jeremiah Deboever, B.S. Thesis Presented to the Faculty of the Graduate School of Oregon Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Renewable Energy Engineering Oregon Institute of Technology July 2014 © 2014 Jeremiah Deboever All Rights Reserved Final approval form ACKNOWLEDGEMENTS This thesis could not have been written without Dr. C. Torres Garibay, who not only served as my supervisor but also encouraged and supported me to pursue my academic and professional career. The technical support and expertize of Dr. S. Petrovic and Dr. E. Nasybulin pushed me to exceed my potential. The academic support of Dr. H. Corsair exposed me to various opportunities and experiences as a graduate assistant at Oregon Tech. The assistance and ingenuity of Mr. R. Ellis was an invaluable commodity throughout the establishment of the new laboratory station. The patience and concern of Mrs. S. McHenry expedited the lengthy ordering and purchasing process. I would like to also acknowledge a number of undergraduate laboratory assistant for their involvement throughout the project: Stephen Lothrop, Paulo Santos Vasconcelos and Niels Williams. Finally, I would like to thank Oregon Tech and the National Institute for Transportation and Communities from the Oregon Transportation Research and Education Consortium for the financial support of this project. i ABSTRACT Lithium-oxygen (Li-O2) batteries have attracted attention in the last decade for their remarkable theoretical energy density of 3,500 Wh kg-1 when mass of lithium and oxygen are counted which is over 10 times higher than that of conventional lithium-ion (Li-ion) batteries. However, cells have not yet demonstrated to be rechargeable as the internal reactions are highly unstable. The oxygen-rich environment in combination with a wide potential window and the presence of lithium promote uncontrolled and irreversible reactions in the cell. A fundamental understanding of the mechanisms behind the various complex reactions was the approach taken in this thesis. The targeted reaction should result in the reversible formation of lithium peroxide (Li2O2). Here, the characterization of Li2O2 formation in air electrode via titration techniques and electrochemical impedance spectroscopy (EIS) was proposed as a Master of Science thesis study. This research evaluated various carbon materials with different surface area and pore volumes and correlated it to the discharge capacity, yield of the desired discharge product (Li2O2), discharge-charge voltage profiles and the impedance spectra of the cell. Three testing techniques, life cycle testing, Li2O2 titration and EIS, provided the different perspectives on the complex chemical mechanisms in Li-O2 batteries. The results of this study showed slight variation in Li2O2 yield across the different carbon cathodes. Furthermore, the electrolyte decomposition was confirmed to be the main factor to the overall yield. As expected, the specific capacity significantly varied from carbon to carbon and the voltage profiles were demonstrated to be dependent on the carbon cathode. Lastly, the impedance spectrum showed to correlate to the discharge capacity of the battery but not directly to the Li2O2 yield. ii TABLE OF CONTENTS I. Introduction ............................................................................................................... 1 A. Metal-Air Batteries ............................................................................................... 3 B. Lithium-oxygen Batteries ..................................................................................... 5 i. Lithium-oxygen chemical reactions .................................................................. 6 ii. Literature Review.............................................................................................. 7 iii. Current limitations .......................................................................................... 12 C. Scope of work..................................................................................................... 13 II. Experimental Setup ................................................................................................. 15 A. Cathode Preparation Instruments ....................................................................... 15 i. Homogenizer ................................................................................................... 15 ii. Ultrasonic bath ................................................................................................ 18 iii. Vacuum oven .................................................................................................. 18 B. Controlled Environmental Chamber (glovebox) ................................................ 19 i. Custom Gas Connection ................................................................................. 19 ii. Gas Monitoring Instruments ........................................................................... 22 iii. System Performance Improvements ............................................................... 24 iv. Operational Glovebox System ........................................................................ 27 C. Battery Cycling Station ...................................................................................... 29 III. Experimental Work ................................................................................................. 31 A. Sample Preparation ............................................................................................ 31 i. Electrolyte preparation .................................................................................... 31 ii. Air Electrode Preparation ............................................................................... 32 iii. Cell Assembly ................................................................................................. 33 iii B. Testing Technique Procedures ........................................................................... 36 i. Galvanostatic Cyclic Test ............................................................................... 36 ii. Iodometric Titration ........................................................................................ 39 iii. Electrochemical Impedance Spectroscopy ..................................................... 42 IV. Results ....................................................................................................................... 45 A. Galvanostatic cycling results .............................................................................. 45 i. First discharge cycle test ................................................................................ 45 ii. Third discharge cycle test ............................................................................... 47 iii. First discharge with different electrolyte composition ................................... 51 iv. First discharge at a higher current density ...................................................... 52 B.Iodometric titration results ....................................................................................................................................... 54 i. First and third discharge peroxide yield.......................................................... 54 ii. Peroxide yield of different cell composition ................................................... 56 iii. Peroxide yield with different testing conditions ............................................. 57 C. Electrochemical Impedance Spectroscopy results ............................................. 58 i. First and third discharge impedance ............................................................... 58 ii. Electrolyte impedance ..................................................................................... 61 iii. Impedance after different testing conditions ................................................... 66 iv. Additional EIS testing ..................................................................................... 67 V. Discussion ................................................................................................................. 70 A. Carbon dependent capacity output ..................................................................... 70 B. Effect of carbons on voltage profile ................................................................... 72 C. Lithium peroxide independency of the carbon material..................................... 73 iv D. State-of-charge characterization using EIS ........................................................ 74 E. Lithium peroxide characterization ..................................................................... 76 F. Future Work ........................................................................................................... 79 i. Laboratory station improvements ................................................................... 79 ii. Expansion on the current study ....................................................................... 80 iii. Cyclic voltammetry ......................................................................................... 80 iv. Additives ......................................................................................................... 84 VI. Conclusion ...............................................................................................................