The Uniprot Knowledgebase

Total Page:16

File Type:pdf, Size:1020Kb

The Uniprot Knowledgebase Bringing bioinformatics into the classroom The UniProt Knowledgebase UniProtKB Using Bioinformatics to hunt SARS-CoV-2, its variants & its origins A PRACTICAL GUIDE 1 Version: 19 August 2021 A Practical Guide to SARS-CoV-2, its variants & its origins Hunting SARS-CoV-2, its variants & its origins Overview This Practical Guide outlines basic bioinformatics approaches for exploring the SARS-CoV-2 genome and its corresponding proteins, focusing on the protein exposed on the viral particle surface: the spike protein. The ways in which bioinformatics can be harnessed to study a new virus, its genome, its proteins, its origins and its evolution are explored. Teaching Goals & Learning Outcomes This Guide introduces a range of bioinformatics tools for comparing and analysing nucleotide and protein sequences. On reading the Guide and completing the exercises, you will be able to: • discover SARS-CoV-2 genome(s) available in a public nucleotide repository; • compare SARS-CoV-2 genome sequences, look for their differences (mutations) and identify the variants; • translate the spike gene into its encoded protein sequence; • discover the 3D structure of the spike protein; • understand the impact of mutations on infectivity and immune responses; and • infer the origin of SARS-CoV-2 by comparing coronavirus spike protein sequences from different animal origins. 1 Introduction 2 About this Guide Viruses are, by far, the most abundant microbes on the planet1. This Guide outlines basic bioinformatics approaches for exploring The living world could not exist without them! They encompass SARS-CoV-2 genomes and the proteins they encode. We focus on much of the biological diversity on the planet, catalyse nutrient the spike protein, located at the surface of the virion, which is cycling, affect the microbial make-up of communities through selec- responsible for virion entry into human cells. Exercises are provided tive mortality, and play a key role in the regulation of carbon dioxide to show how to study the spike gene, its protein sequence and 3D production by the oceans; last but not least, they are important structure, focusing in particular on the impact of a mutation found actors in the evolution of species. As an example, ~8 % of the human in the Alpha, Beta, Gamma and Delta virus variants. We also show genome is believed to have originated from viral genome integra- how we can generate hypotheses on the animal origins of SARS- tions: e.g., placenta development originates from the integration of CoV-2 (pangolin or bat). Exercises are adapted from a freely accessi- a virus into a primate genome more than 40 million years ago2. ble online workshop9. Throughout the text, key terms – rendered in The number of virus particles on Earth is frequently reported as bold type – are defined in green boxes. Additional information is being of the order of 1031 3. There are typically 10 million viruses per provided in various other supplementary boxes throughout the text. milliliter in coastal seawater4. Each day, viruses fall from the sky: in each square metre, tens of millions of bacteria and billions of virus- KEY TERMS 5 es are deposited . Amino acid: one of 20 common, naturally occurring building-blocks of Biologists estimate that 380 trillion viruses are living on and inside proteins 6 our body right now — 10 times the number of bacteria . If they Bacteria: unicellular microorganisms that can live in a variety of envi- cause disease, viruses are considered pathogenic. By 2021, ~160 ronments (air, soil, water, other organisms); bacteria constitute one viruses were known to be pathogenic to humans, such as Ebola, of the three primary kingdoms of life measles, Human Immunodeficiency Virus (HIV), dengue, papilloma- Catalyse: to accelerate a chemical reaction 7,8 virus, hepatitis and certain coronaviruses . Genome: the entirety of an organism’s genetic information, encoded as Coronaviruses took on a new and rather frightening significance either DNA or RNA (in some viruses) towards the end of 2019 and in the early months of 2020, when a Mutation: a change in a genome sequence, such as a change in a nucle- new and deadly coronavirus took the world by storm, leaving a trail otide base, or the deletion or addition of a base of infection, illness and death in its wake. Caught off guard, commu- Protein: an organic compound containing one or more linear polymers nities around the world were galvanised into action, racing to se- of amino acids; existing in globular, fibrous or membrane-bound quence its genome, to trace its origins, and to develop life-saving forms, proteins participate in virtually all cellular processes, including treatments and vaccines. This Guide illustrates part of this story: it the construction of viruses shows how, for example, with the help of bioinformatics approach- Vaccine: a substance or agent designed to stimulate the production of es, various aspects of viruses can be studied today, highlighting antibodies & hence provide immunity against a particular pathogen some key facts about how viruses are monitored, once we have Virion: an entire virus particle, comprising an outer protein envelope & access to their genome sequences. an inner core of nucleic acid 2 A Practical Guide to SARS-CoV-2, its variants & its origins 3 Corona viruses & SARS-CoV-2 SARS-CoV-2 genomes, which means that all the sequences collected worldwide are compared against it12. A virus is a parasitic agent transmitted via a microscopic particle Public nucleotide sequence databases made of strands of RNA or DNA (its genome) inside a protein coat (capsid) and/or envelope (Figure 1). GenBank is the nucleotide sequence database maintained by the Na- tional Centre for Biotechnology Information (NCBI). It is a member of the International Nucleotide Sequence Database Collaboration (INSDC), a long-standing, foundational initiative that was devised in order to bring together the three major nucleotide sequence repositories (DDBJ, from Japan; EMBL-Bank, from Europe; GenBank, from the USA) & harmonise their annotations. These databases, which contain all the publicly available DNA & RNA sequences (& their annotations) submit- ted by the scientific community, exchange their data daily. 3.2 Setting up a test for the presence of SARS-CoV-2 Sequencing the SARS-CoV-2 genome made it possible to rapidly Figure 1 Basic anatomy of a virus particle (virion). All particles house a set up a test, based on a method known as the Polymerase Chain genome, encoded as DNA or RNA. SARS-CoV-2 has an RNA genome Reaction (PCR), to detect the presence of the virus in nasopharyn- packed inside a protein coat (capsid), with an outer envelope containing geal (nose) or oropharyngeal (throat) swabs. The method is so the well-known ‘spike’ protein. sensitive that swabs can test 'positive' with just 100 viruses present! A virus can only replicate by entering a cell and using the cellular Because the SARS-CoV-2 genome is RNA-based, it’s necessary to machinery of its host. Some viruses infect animals; others infect use a Reverse Transcription-PCR (RT-PCR) approach, whereby the plants or bacteria. When infected, a host cell is directed to rapidly RNA is first converted into DNA, then selectively amplified (or ‘pho- produce hundreds of copies of the original virus. When not inside an tocopied’) to create millions to billions of fragment copies. In the infected cell, viruses exist as independent particles, which are for- amplification step, DNA replication is initiated by two small DNA mally referred to as virions. sequences (of ~20 nucleotides) called primers. These are designed Coronaviruses constitute a large family of viruses that includes to bind specifically to either side of the section of DNA to be copied. more than 40 species, most of which are harmless to humans. Seven coronaviruses are human pathogens: four (OC43, 229E, NL63, HKU1) KEY TERMS are endemic and known to cause colds; three are zoonotic and can Annotation: notes included within database entries to make them both cause severe lung infections: Severe Acute Respiratory Syndrome- informative & re-usable related Coronavirus (SARS-CoV); Middle East Respiratory Syndrome- Cell: the fundamental structural & functional unit, or building block, of related coronavirus (MERS); and Severe Acute Respiratory Syn- living organisms; eukaryotic cells typically contain cytoplasm & a nu- drome-related Coronavirus 2 (SARS-CoV-2) – the latter successfully cleus bounded within a membrane transitioned from zoonotic to endemic in 2020. DNA: deoxyribonucleic acid, a molecule comprising two nucleotide SARS-CoV-2 is responsible for Coronavirus Disease-19, or COVID- chains that coil together, forming a double-helix structure in which A 19. The virus was first identified in December 2019 in Wuhan, China. always binds to T, & G to C, rather like a twisted ladder The World Health Organisation declared the outbreak a Public Endemic: a disease, condition or infection that is constantly maintained Health Emergency of International Concern in January 2020, and a at a base level in a given area or population pandemic in March 2020. By 19 August 2021, more than 209 million Nucleotide: a chemical base (one of 4 building-blocks of DNA & RNA) cases had been confirmed worldwide, with more than 4 million linked to a molecule of sugar & a molecule of phosphoric acid. In deaths attributed to COVID-19, making it one of the deadliest pan- DNA, the nucleotide bases are adenine (A), cytosine (C), guanine (G) 10 demics in history (ninth out of the top ten) . & thymine (T), whose
Recommended publications
  • Killed Whole-Genome Reduced-Bacteria Surface-Expressed Coronavirus Fusion Peptide Vaccines Protect Against Disease in a Porcine Model
    Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model Denicar Lina Nascimento Fabris Maedaa,b,c,1, Debin Tiand,e,1, Hanna Yua,b,c, Nakul Dara,b,c, Vignesh Rajasekarana,b,c, Sarah Menga,b,c, Hassan M. Mahsoubd,e, Harini Sooryanaraind,e, Bo Wangd,e, C. Lynn Heffrond,e, Anna Hassebroekd,e, Tanya LeRoithd,e, Xiang-Jin Mengd,e,2, and Steven L. Zeichnera,b,c,f,2 aDepartment of Pediatrics, University of Virginia, Charlottesville, VA 22908-0386; bPendleton Pediatric Infectious Disease Laboratory, University of Virginia, Charlottesville, VA 22908-0386; cChild Health Research Center, University of Virginia, Charlottesville, VA 22908-0386; dDepartment of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0913; eCenter for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0913; and fDepartment of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908-0386 Contributed by Xiang-Jin Meng, February 14, 2021 (sent for review December 13, 2020; reviewed by Diego Diel and Qiuhong Wang) As the coronavirus disease 2019 (COVID-19) pandemic rages on, it Vaccination specifically with conserved E. coli antigens did not is important to explore new evolution-resistant vaccine antigens alter the gastrointestinal (GI) microbiome (6, 9). In human stud- and new vaccine platforms that can produce readily scalable, in- ies, volunteers were immunized orally with a KWCV against expensive vaccines with easier storage and transport. We report ETEC (10) with no adverse effects. An ETEC oral KWCV along here a synthetic biology-based vaccine platform that employs an with a cholera B toxin subunit adjuvant was studied in children expression vector with an inducible gram-negative autotransporter and found to be safe (11).
    [Show full text]
  • Genomic Sequencing of SARS-Cov-2: a Guide to Implementation for Maximum Impact on Public Health
    Genomic sequencing of SARS-CoV-2 A guide to implementation for maximum impact on public health 8 January 2021 Genomic sequencing of SARS-CoV-2 A guide to implementation for maximum impact on public health 8 January 2021 Genomic sequencing of SARS-CoV-2: a guide to implementation for maximum impact on public health ISBN 978-92-4-001844-0 (electronic version) ISBN 978-92-4-001845-7 (print version) © World Health Organization 2021 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/mediation/rules/).
    [Show full text]
  • A Molecular Classification of Human Mesenchymal Stromal Cells Florian Rohart1, Elizabeth Mason1, Nicholas Matigian1, Rowland
    bioRxiv preprint doi: https://doi.org/10.1101/024414; this version posted August 11, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Rohart'et'al,'The'MSC'Signature' 1' 1' A Molecular Classification of Human Mesenchymal Stromal Cells 2' Florian Rohart1, Elizabeth Mason1, Nicholas Matigian1, Rowland Mosbergen1, 3' Othmar Korn1, Tyrone Chen1, Suzanne Butcher1, Jatin Patel2, Kerry Atkinson2, 4' Kiarash Khosrotehrani2,3, Nicholas M Fisk2,4, Kim-Anh Lê Cao3 and Christine A 5' Wells1,5* 6' 1 Australian Institute for Bioengineering and Nanotechnology, The University of 7' Queensland, Brisbane, QLD Australia 4072 8' 2 The University of Queensland Centre for Clinical Research, Herston, Brisbane, 9' Queensland, Australia, 4029 10' 3 The University of Queensland Diamantina Institute, Translational Research 11' Institute, Woolloongabba, Brisbane QLD Australia, 4102 12' 4 Centre for Advanced Prenatal Care, Royal Brisbane & Women’s Hospital, Herston, 13' Brisbane, Queensland, Australia, 4029 14' 5 Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary & 15' Life Sciences, The University of Glasgow, Scotland, UK G12 8TA 16' *Correspondence to: Christine Wells, [email protected] 17' bioRxiv preprint doi: https://doi.org/10.1101/024414; this version posted August 11, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Identification of Pathways in Liver Repair Potentially Targeted By
    International Journal of Molecular Sciences Article Identification of Pathways in Liver Repair Potentially Targeted by Secretory Proteins from Human Mesenchymal Stem Cells Sandra Winkler 1, Madlen Hempel 1, Sandra Brückner 1, Hans-Michael Tautenhahn 1, Roland Kaufmann 2 and Bruno Christ 1,* 1 Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany; [email protected] (S.W.); [email protected] (M.H.); [email protected] (S.B.); [email protected] (H.-M.T.) 2 Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-160-903-19121; Fax: +49-341-971-13559 Academic Editor: Maurizio Muraca Received: 26 May 2016; Accepted: 29 June 2016; Published: 9 July 2016 Abstract: Background: The beneficial impact of mesenchymal stem cells (MSC) on both acute and chronic liver diseases has been confirmed, although the molecular mechanisms behind it remain elusive. We aim to identify factors secreted by undifferentiated and hepatocytic differentiated MSC in vitro in order to delineate liver repair pathways potentially targeted by MSC. Methods: Secreted factors were determined by protein arrays and related pathways identified by biomathematical analyses. Results: MSC from adipose tissue and bone marrow expressed a similar pattern of surface markers. After hepatocytic differentiation, CD54 (intercellular adhesion molecule 1, ICAM-1) increased and CD166 (activated leukocyte cell adhesion molecule, ALCAM) decreased. MSC secreted different factors before and after differentiation.
    [Show full text]
  • Analysis of Mesenchymal Stem Cells (Mscs) Secretome from Mouse Models and Human Patients to Characterize Their Immunomodulatory Properties: a Proteomic Approach
    UNIVERSITÀ DEGLI STUDI DI MILANO SCUOLA DI DOTTORATO Scienze Biochimiche DIPARTIMENTO DI MEDICINA VETERINARIA CORSO DI DOTTORATO DI RICERCA IN SCIENZE BIOCHIMICHE Ciclo XXX TESI DI DOTTORATO DI RICERCA Analysis of mesenchymal stem cells (MSCs) secretome from mouse models and human patients to characterize their immunomodulatory properties: a proteomic approach. Dott.ssa Fabiana SANTAGATA MATRICOLA: R10884 TUTOR: prof.ssa Gabriella TEDESCHI COORDINATORE DEL DOTTORATO: prof. Sandro SONNINO Anno Accademico 2016 - 2017 AIM OF THE WORK/SUMMARY ........................................................................................ 3 INTRODUCTION ................................................................................................................. 5 1.1 Stem cells ..................................................................................................................... 6 1.1.1 Definition and origin ................................................................................................. 6 1.1.1.1 Self-renewal .................................................................................................. 7 1.1.1.2 Potency ......................................................................................................... 7 1.1.2 Types of stem cells .................................................................................................. 8 1.1.2.1 Embryonic stem cells ........................................................................................ 8 1.1.2.2 Adult stem cells ................................................................................................
    [Show full text]
  • Gene-Expression and in Vitro Function of Mesenchymal Stromal Cells Are Affected in Juvenile Myelomonocytic Leukemia
    Myeloproliferative Disorders SUPPLEMENTARY APPENDIX Gene-expression and in vitro function of mesenchymal stromal cells are affected in juvenile myelomonocytic leukemia Friso G.J. Calkoen, 1 Carly Vervat, 1 Else Eising, 2 Lisanne S. Vijfhuizen, 2 Peter-Bram A.C. ‘t Hoen, 2 Marry M. van den Heuvel-Eibrink, 3,4 R. Maarten Egeler, 1,5 Maarten J.D. van Tol, 1 and Lynne M. Ball 1 1Department of Pediatrics, Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Med - ical Center, the Netherlands; 2Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; 3Dutch Childhood Oncology Group (DCOG), The Hague, the Netherlands; 4Princess Maxima Center for Pediatric Oncology, Utrecht, the Nether - lands; and 5Department of Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Hospital for Sick Children, University of Toronto, ON, Canada ©2015 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.126938 Manuscript received on March 5, 2015. Manuscript accepted on August 17, 2015. Correspondence: [email protected] Supplementary data: Methods for online publication Patients Children referred to our center for HSCT were included in this study according to a protocol approved by the institutional review board (P08.001). Bone-marrow of 9 children with JMML was collected prior to treatment initiation. In addition, bone-marrow after HSCT was collected from 5 of these 9 children. The patients were classified following the criteria described by Loh et al.(1) Bone-marrow samples were sent to the JMML-reference center in Freiburg, Germany for genetic analysis. Bone-marrow samples of healthy pediatric hematopoietic stem cell donors (n=10) were used as control group (HC).
    [Show full text]
  • 915.Full.Pdf
    A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection Wafaa B. Alsoussi, Jackson S. Turner, James B. Case, Haiyan Zhao, Aaron J. Schmitz, Julian Q. Zhou, Rita E. This information is current as Chen, Tingting Lei, Amena A. Rizk, Katherine M. McIntire, of September 27, 2021. Emma S. Winkler, Julie M. Fox, Natasha M. Kafai, Larissa B. Thackray, Ahmed O. Hassan, Fatima Amanat, Florian Krammer, Corey T. Watson, Steven H. Kleinstein, Daved H. Fremont, Michael S. Diamond and Ali H. Ellebedy Downloaded from J Immunol 2020; 205:915-922; Prepublished online 26 June 2020; doi: 10.4049/jimmunol.2000583 http://www.jimmunol.org/content/205/4/915 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2020/06/23/jimmunol.200058 Material 3.DCSupplemental References This article cites 51 articles, 10 of which you can access for free at: http://www.jimmunol.org/content/205/4/915.full#ref-list-1 by guest on September 27, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc.
    [Show full text]
  • Highly Susceptible SARS-Cov-2 Model in CAG Promoter-Driven Hace2 Transgenic Mice
    Highly susceptible SARS-CoV-2 model in CAG promoter-driven hACE2 transgenic mice Masamitsu N. Asaka, … , Keiji Kuba, Yasuhiro Yasutomi JCI Insight. 2021. https://doi.org/10.1172/jci.insight.152529. Resource and Technical Advance In-Press Preview COVID-19 COVID-19, caused by SARS-CoV-2, has spread worldwide with a dire disaster situation. To urgently investigate the pathogenicity of COVID-19 and develop vaccines and therapeutics, animal models that are highly susceptible to SARS- CoV-2 infection are needed. In the present study, we established an animal model highly susceptible to SARS-CoV-2 via the intratracheal tract infection in CAG-promoter-driven human angiotensin-converting enzyme 2 transgenic (CAG- hACE2) mice. The CAG-hACE2 mice showed several severe symptoms of SARS-CoV-2 infection, with definitive weight loss and subsequent death. Acute lung injury with elevated cytokine and chemokine levels was observed at an early stage of infection in CAG-hACE2 mice infected with SARS-CoV-2. The analysis of the hACE2 gene in CAG-hACE2 mice revealed that more than 15 copies of hACE2 genes were tandemly integrated into the mouse genome, supporting the high susceptibility to SARS-CoV-2. In the developed model, immunization with viral antigen or injection of plasma from immunized mice prevented body weight loss and lethality due to infection with SARS-CoV-2. These results indicate that a highly susceptible model of SARS-CoV-2 infection in CAG-hACE2 mice via the intratracheal tract is suitable for evaluating vaccines and therapeutic medicines. Find
    [Show full text]
  • SARS-Cov-2 Orf1b Gene Sequence in the NTNG1 Gene on Human Chromosome 1 STEVEN LEHRER 1 and PETER H
    in vivo 34 : 1629-1632 (2020) doi:10.21873/invivo.11953 SARS-CoV-2 orf1b Gene Sequence in the NTNG1 Gene on Human Chromosome 1 STEVEN LEHRER 1 and PETER H. RHEINSTEIN 2 1Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A.; 2Severn Health Solutions, Severna Park, MD, U.S.A. Abstract. Severe acute respiratory syndrome coronavirus 2 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV- (SARS-CoV-2) is a positive-sense single-stranded RNA virus. 2) is a positive-sense single-stranded RNA virus (1). The rapid It is contagious in humans and is the cause of the coronavirus spread of the infection suggests that the virus could have disease 2019 (COVID-19) pandemic. In the current analysis, adapted in the past to human hosts. If so, some of its gene we searched for SARS-CoV-2 sequences within the human sequences might be found in the human genome. To investigate genome. To compare the SARS-CoV-2 genome to the human this possibility, we utilized the UCSC Genome Browser, an on- genome, we used the blast-like alignment tool (BLAT) of the line genome browser at the University of California, Santa University of California, Santa Cruz Genome Browser. BLAT Cruz (UCSC) (https://genome.ucsc.edu) (2). can align a user sequence of 25 bases or more to the genome. To compare the SARS-CoV-2 genome to the human BLAT search results revealed a 117-base pair SARS-CoV-2 genome, we used the blast-like alignment tool (BLAT) of the sequence in the human genome with 94.6% identity.
    [Show full text]
  • The Knockout Mouse Project
    COMMENTARY The Knockout Mouse Project Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain. Now that the human and mouse genome expression pattern of the knocked-out gene in a dedicated project to produce knockout alleles http://www.nature.com/naturegenetics sequences are known1–3, attention has turned mouse tissues. Such marking of cells by a for all mouse genes and place them into the to elucidating gene function and identifying reporter gene facilitates the identification of public domain. The meeting took place from gene products that might have therapeutic new cell types according to their gene expres- 30 September to 1 October 2003 at the value. The laboratory mouse (Mus musculus) sion patterns and allows further characteriza- Banbury Conference Center at Cold Spring has had a prominent role in the study of tion of marked tissues and single cells. Harbor Laboratory. The attendees of the meet- human disease mechanisms throughout the Appreciation of the power of mouse genet- ing are the authors of this paper.
    [Show full text]
  • The First Correct Three-Dimensional Structure of the DNA Molecule Was
    Mutah University Dr. Jehad Al-Shuneigat Molecular Biology Faculty of Medicine Lecture 1 + 2 Second Semester: 2020/2021 Mu'tah University Faculty of Medicine Department of Biochemistry and Molecular Biology Course title: Molecular Biology Course code: 1503102 Credit hours: 2 credit hours Calendar description: 17 weeks / Second semester / 1st year Medicine Course description: This two-credit hours course is mandatory for first-year medical students. It consists of one lecture (1.5 hours) and a laboratory session a week. The course is designed to introduce students to the basics of molecular biology and genetics via starting with the chemical structures of the genetic material, cellular regulation of gene expression, mutations, and their relationship to health and disease. The laboratory is intended to facilitate students' understanding of theoretical concepts of both molecular biology and biochemistry. Objectives (intended learning outcomes): The overall objective is to enhance student understanding of advanced molecular biology and genetics-based medical topics to be covered in later courses. 1. Knowledge: A. Lectures Understand the involvement of molecular biology in medicine Understand the chemical structures of DNA and chromosomes Understand the mechanism and regulation of DNA replication Understand the mechanism and regulation of gene expression (transcription and translation) Understand the types and causes of DNA mutations Understand the mechanisms of DNA repair Understand the mechanism of inheritance Understand the mechanism
    [Show full text]
  • Database Resources of the National Center for Biotechnology Information: Update
    Nucleic Acids Research, 2004, Vol. 32, Database issue D35±D40 DOI: 10.1093/nar/gkh073 Database resources of the National Center for Biotechnology Information: update David L. Wheeler*, Deanna M. Church, Ron Edgar, Scott Federhen, Wolfgang Helmberg, Thomas L. Madden, Joan U. Pontius, Gregory D. Schuler, Lynn M. Schriml, Edwin Sequeira, Tugba O. Suzek, Tatiana A. Tatusova and Lukas Wagner National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA Received September 17, 2003; Revised and Accepted September 30, 2003 ABSTRACT nih.gov. In most cases, the data underlying these resources are available for bulk download at `ftp.ncbi.nih.gov', a link from In addition to maintaining the GenBank(R) nucleic the home page. acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available DATABASE RETRIEVAL TOOLS through NCBI's website. NCBI resources include Entrez Entrez, PubMed, PubMed Central, LocusLink, the NCBI Taxonomy Browser, BLAST, BLAST Link Entrez (2) is an integrated database retrieval system that (BLink), Electronic PCR, OrfFinder, Spidey, RefSeq, enables text searching, using simple Boolean queries, of a diverse set of 20 databases, several added during the past year. UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, These databases include DNA and protein sequences derived Cancer Chromosome Aberration Project
    [Show full text]