The Role of Red Coloration and Song in Peacock Spider Courtship: Insights Into Complex Signaling Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance. -
Ecology and Behavior of the Giant Wood Spider in New Guinea
Ecology and Behavior of the Giant Wood Spider Nephila maculata (Fabricius) in New Guinea MICHAEL H. ROBINSON and BARBARA ROBINSON SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 149 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available. -
Salticidae (Arachnida, Araneae) of Islands Off Australia
1999. The Journal of Arachnology 27:229±235 SALTICIDAE (ARACHNIDA, ARANEAE) OF ISLANDS OFF AUSTRALIA Barbara Patoleta and Marek ZÇ abka: Zaklad Zoologii WSRP, 08±110 Siedlce, Poland ABSTRACT. Thirty nine species of Salticidae from 33 Australian islands are analyzed with respect to their total distribution, dispersal possibilities and relations with the continental fauna. The possibility of the Torres Strait islands as a dispersal route for salticids is discussed. The studies of island faunas have been the ocean level ¯uctuations over the last 50,000 subject of zoogeographical and evolutionary years, at least some islands have been sub- research for over 150 years and have resulted merged or formed land bridges with the con- in hundreds of papers, with the syntheses by tinent (e.g., Torres Strait islands). All these Carlquist (1965, 1974) and MacArthur & Wil- circumstances and the human occupation son (1967) being the best known. make it rather unlikely for the majority of Modern zoogeographical analyses, based islands to have developed their own endemic on island spider faunas, began some 60 years salticid faunas. ago (Berland 1934) and have continued ever When one of us (MZ) began research on since by, e.g., Forster (1975), Lehtinen (1980, the Australian and New Guinean Salticidae 1996), Baert et al. (1989), ZÇ abka (1988, 1990, over ten years ago, close relationships be- 1991, 1993), Baert & Jocque (1993), Gillespie tween the faunas of these two regions were (1993), Gillespie et al. (1994), ProÂszynÂski expected. Consequently, it was hypothesized (1992, 1996) and Berry et al. (1996, 1997), that the Cape York Peninsula and Torres Strait but only a few papers were based on veri®ed islands were the natural passage for dispersal/ and suf®cient taxonomic data. -
Catalogue of the Australian Peacock Spiders (Araneae: Salticidae: Euophryini: Maratus, Saratus)
Peckhamia 148.1 Catalogue of peacock spiders 1 PECKHAMIA 148.1, 28 March 2017, 1―21 ISSN 2161―8526 (print) urn:lsid:zoobank.org:pub:08BCEFD6-7FBA-4B06-BA5D-25215F507DC4 (registered 24 MAR 2017) ISSN 1944―8120 (online) Catalogue of the Australian peacock spiders (Araneae: Salticidae: Euophryini: Maratus, Saratus) Jürgen C. Otto 1 and David E. Hill 2 119 Grevillea Avenue, St. Ives, New South Wales 2075, Australia, email [email protected] 2213 Wild Horse Creek Drive, Simpsonville, SC 29680-6513, USA, email [email protected] Presently the Australian peacock spiders are assigned to two genera, Maratus Karsch 1878 and Saratus Otto & Hill 2017. Whereas only a single species of Saratus has been described, the genus Maratus includes a diverse variety of at least 59 described species endemic to Australia. After we synonymized the genus Lycidas Karsch 1878 with Maratus (Otto & Hill 2012c) a number of species previously associated with Lycidas by Żabka (1987) have been carried under Maratus with an unresolved status. Some are insufficiently known to determine the genus to which they should be assigned, others lack the characters that we associate with peacock spiders but they have not yet been assigned to another genus. Only described species and none of the unresolved species are listed here. Thus this catalogue should be viewed as a work in progress. Only adult males are shown in photographs below. Each range map shows areas that have been identified in prior publications (white circles), or by unpublished observations and posted photographs that we consider reliable (yellow circles). Each marked area may include multiple localities of record. -
Evidence for Nanocoulomb Charges on Spider Ballooning Silk
PHYSICAL REVIEW E 102, 012403 (2020) Evidence for nanocoulomb charges on spider ballooning silk E. L. Morley1,* and P. W. Gorham 2,† 1School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom 2Department of Physics & Astronomy, University of Hawaii at Manoa, 2505 Correa Rd., Honolulu, Hawaii 96822, USA (Received 10 December 2019; revised 5 March 2020; accepted 6 March 2020; published 9 July 2020) We report on three launches of ballooning Erigone spiders observed in a 0.9m3 laboratory chamber, controlled under conditions where no significant air motion was possible. These launches were elicited by vertical, downward-oriented electric fields within the chamber, and the motions indicate clearly that negative electric charge on the ballooning silk, subject to the Coulomb force, produced the lift observed in each launch. We estimate the total charge required under plausible assumptions, and find that at least 1.15 nC is necessary in each case. The charge is likely to be nonuniformly distributed, favoring initial longitudinal mobility of electrons along the fresh silk during extrusion. These results demonstrate that spiders are able to utilize charge on their silk to attain electrostatic flight even in the absence of any aerodynamic lift. DOI: 10.1103/PhysRevE.102.012403 I. INTRODUCTION nificant upward components to the local wind velocity distri- bution; whether actual wind momentum spectra provide the The phenomenon of aerial dispersal of spiders using required distributions is still unproven, particularly for takeoff strands of silk often called gossamer was identified and stud- conditions. Even so, recent detailed observations of spider ied first with some precision by Martin Lister in the late 17th ballooning analyzed exclusively in terms of aerodynamic century [1], followed by Blackwall in 1827 [2], Darwin [3]on forces [12] provide plausible evidence that larger spiders can the Beagle voyage, and a variety of investigators since [4–7]. -
Spiders at the Cinema
ACADEMIA Spider ecology, behavior, and learning Behavioral Ecology Spiders at the Cinema Focus on extremely receptive sensory organs allow MACIEJ BARTOS them to perceive those signals accurately, There are plenty Faculty of Biology and Environmental Protection helping them construct complex webs and of spiders that are University of Łódź remotely localize insects flying or scuttling as colorful as the [email protected] nearby. Eyesight and sensory organs used prettiest butterflies, Dr Maciej Bartos studies the behavior of jumping spiders to perceive chemical stimuli also play an have better eyesight important role in orientation and commu- than many birds or In spite of severe brain size limitations, nication between individuals. Most spiders’ mammals, and exhibit many spiders are able to solve simple eyes, like those of insects, are not more complex behavior complex problems, recognize their prey capable of perceiving complex images. They than many higher allow them to notice motion, changes in light animals. Pictured: with great accuracy, and learn new intensity, and to a lesser degree allow them American Cardinal hunting techniques to identify a partner or prey. As such the jumper (Phiddippus majority of spiders exhibit relatively simple cardinalis) To most people, spiders are hairy crea- behavior. However, not tures that lurk in dark corners behind the all spiders are limited by cupboard. They are widely disliked, and low acuity of vision. in some people even trigger panic fuelled There is in fact a large by tales of the creatures’ terrible venom. group of diurnal spiders However, arachnophobia can be cured: those whose world is domi- afflicted simply need to find out more about nated by visual stimuli. -
Portia Perceptions: the Umwelt of an Araneophagic Jumping Spider
Portia Perceptions: The Umwelt of an Araneophagic Jumping 1 Spider Duane P. Harland and Robert R. Jackson The Personality of Portia Spiders are traditionally portrayed as simple, instinct-driven animals (Savory, 1928; Drees, 1952; Bristowe, 1958). Small brain size is perhaps the most compelling reason for expecting so little flexibility from our eight-legged neighbors. Fitting comfortably on the head of a pin, a spider brain seems to vanish into insignificance. Common sense tells us that compared with large-brained mammals, spiders have so little to work with that they must be restricted to a circumscribed set of rigid behaviors, flexibility being a luxury afforded only to those with much larger central nervous systems. In this chapter we review recent findings on an unusual group of spiders that seem to be arachnid enigmas. In a number of ways the behavior of the araneophagic jumping spiders is more comparable to that of birds and mammals than conventional wisdom would lead us to expect of an arthropod. The term araneophagic refers to these spiders’ preference for other spiders as prey, and jumping spider is the common English name for members of the family Saltici- dae. Although both their common and the scientific Latin names acknowledge their jumping behavior, it is really their unique, complex eyes that set this family of spiders apart from all others. Among spiders (many of which have very poor vision), salticids have eyes that are by far the most specialized for resolving fine spatial detail. We focus here on the most extensively studied genus, Portia. Before we discuss the interrelationship between the salticids’ uniquely acute vision, their predatory strategies, and their apparent cognitive abilities, we need to offer some sense of what kind of animal a jumping spider is; to do this, we attempt to offer some insight into what we might call Portia’s personality. -
Multi-Modal Courtship in the Peacock Spider, Maratus Volans (O.P.-Cambridge, 1874)
Multi-Modal Courtship in the Peacock Spider, Maratus volans (O.P.-Cambridge, 1874) Madeline B. Girard1*, Michael M. Kasumovic2, Damian O. Elias1 1 Department of Environmental Science, Policy and Management, University of California, Berkeley, California, United States of America, 2 Evolution & Ecology Research Centre, University of New South Wales, Kensington, Sydney, Australia Abstract The peacock spider, Maratus volans, has one of the most elaborate courtship displays in arthropods. Using regular and high- speed video segments captured in the lab, we provide detailed descriptions of complete male courtship dances. As research on jumping spiders has demonstrated that males of some species produce vibrations concurrently with visual displays, we also used laser vibrometry to uncover such elements for this species. Our recordings reveal and describe for the first time, that M. volans males use vibratory signals in addition to complex body ornaments and motion displays. The peacock spider and other closely related species are outstanding study organisms for testing hypotheses about the evolution and functional significance of complex displays, thus, this descriptive study establishes a new model system for behavioral ecology, one that certainly stands to make important contributions to the field. Citation: Girard MB, Kasumovic MM, Elias DO (2011) Multi-Modal Courtship in the Peacock Spider, Maratus volans (O.P.-Cambridge, 1874). PLoS ONE 6(9): e25390. doi:10.1371/journal.pone.0025390 Editor: Adrian G. Dyer, Monash University, Australia Received July 18, 2011; Accepted September 2, 2011; Published September 27, 2011 Copyright: ß 2011 Girard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
UC Santa Barbara Electronic Theses and Dissertations
UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title How Collective Personality, Behavioral Plasticity, Information, and Fear Shape Collective Hunting in a Spider Society Permalink https://escholarship.org/uc/item/4pm302q6 Author Wright, Colin Morgan Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara How Collective Personality, Behavioral Plasticity, Information, and Fear Shape Collective Hunting in a Spider Society A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Colin M. Wright Committee in charge: Professor Jonathan Pruitt, Chair Professor Erika Eliason Professor Thomas Turner June 2018 The dissertation of Colin M. Wright is approved. ____________________________________________ Erika Eliason ____________________________________________ Thomas Turner ____________________________________________ Jonathan Pruitt, Committee Chair April 2018 ACKNOWLEDGEMENTS I would like to thank my Ph.D. advisor, Dr. Jonathan Pruitt, for supporting me and my research over the last 5 years. I could not imagine having a better, or more entertaining, mentor. I am very thankful to have had his unwavering support through academic as well as personal challenges. I am also extremely thankful for all the members of the Pruitt Lab (Nick Keiser, James Lichtenstein, and Andreas Modlmeier), as well as my cohorts at both the University of Pittsburgh and UCSB that have been my closest friends during graduate school. I appreciate Dr. Walter Carson at the University of Pittsburgh for being an unofficial second mentor to me during my time there. Most importantly, I would like to thank my family, Rill (mother), Tom (father), and Will (brother) Wright. -
Comparative Analysis of Courtship in <I>Agelenopsis</I> Funnel-Web Spiders
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Comparative analysis of courtship in Agelenopsis funnel-web spiders (Araneae, Agelenidae) with an emphasis on potential isolating mechanisms Audra Blair Galasso [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Behavior and Ethology Commons Recommended Citation Galasso, Audra Blair, "Comparative analysis of courtship in Agelenopsis funnel-web spiders (Araneae, Agelenidae) with an emphasis on potential isolating mechanisms. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1377 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Audra Blair Galasso entitled "Comparative analysis of courtship in Agelenopsis funnel-web spiders (Araneae, Agelenidae) with an emphasis on potential isolating mechanisms." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. Susan E. Riechert, Major -
Exploring the Relationship Between Behaviour and Neurochemistry in the Polyphenic Spider, Anelosimus Studiosus (Araneae: Theridiidae) Jennifer B
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2016 Exploring the Relationship Between Behaviour and Neurochemistry in the Polyphenic Spider, Anelosimus studiosus (Araneae: Theridiidae) Jennifer B. Price East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Behavioral Neurobiology Commons, Behavior and Ethology Commons, Comparative and Evolutionary Physiology Commons, Molecular Biology Commons, Other Animal Sciences Commons, and the Other Ecology and Evolutionary Biology Commons Recommended Citation Price, Jennifer B., "Exploring the Relationship Between Behaviour and Neurochemistry in the Polyphenic Spider, Anelosimus studiosus (Araneae: Theridiidae)" (2016). Electronic Theses and Dissertations. Paper 3114. https://dc.etsu.edu/etd/3114 This Dissertation - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Exploring the Relationship Between Behaviour and Neurochemistry in the Polyphenic Spider, Anelosimus studiosus (Araneae: Theridiidae) ______________________ A dissertation Presented to the faculty of the Department of Biomedical Sciences East Tennessee State University In partial fulfillment of the requirements -
Maddisonia—A New Jumping Spider Genus from Australia (Arachnida: Araneae: Salticidae)
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Żabka, Marek. 2014. Maddisonia—a new jumping spider genus from Australia (Arachnida: Araneae: Salticidae). Records of the Australian Museum 66(4): 217– 223. [Published 28 May 2014]. http://dx.doi.org/10.3853/j.2201-4349.66.2014.1599 ISSN 0067-1975 (print), ISSN 2201-4349 (online) Published by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://australianmuseum.net.au/Scientific-Publications 6 College Street, Sydney NSW 2010, Australia © The Author, 2014. Journal compilation © Australian Museum, Sydney, 2014 Records of the Australian Museum (2014) Vol. 66, issue number 4, pp. 217–223. ISSN 0067-1975 (print), ISSN 2201-4349 (online) http://dx.doi.org/10.3853/j.2201-4349.66.2014.1599 Maddisonia—A New Jumping Spider Genus from Australia (Arachnida: Araneae: Salticidae) Marek Żabka Department of Zoology, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland [email protected] Abstract. The genus Maddisonia is described from Queensland, New South Wales and Western Australia to include three new species: M. richardsoni, M. whytei and M. berbekai. Maddisonia richardsoni is designated the type species. Keywords: Salticidae; new genus; new species; jumping spiders; taxonomy. Żabka, Marek. 2014. Maddisonia—a new jumping spider genus from Australia (Arachnida: Araneae: Salticidae). Records of the Australian Museum 66(4): 217–223. According to the official databases, 81 genera and about 364 Material and methods species of Saticidae are known from Australia (Richardson & Żabka, 2011; Platnick, 2014). The lists, however, are The material for this study was provided by the curators of the far from being complete.