Distinct but Critical Roles for Integrin Aiibb3 in Platelet Lamellipodia Formation on Fibrinogen, Collagen-Related Peptide and T

Total Page:16

File Type:pdf, Size:1020Kb

Distinct but Critical Roles for Integrin Aiibb3 in Platelet Lamellipodia Formation on Fibrinogen, Collagen-Related Peptide and T Distinct but critical roles for integrin aIIbb3 in platelet lamellipodia formation on fibrinogen, collagen-related peptide and thrombin Kelly Thornber1, Owen J. T. McCarty2,3, Steve P. Watson2 and Catherine J. Pears1 1 Department of Biochemistry, University of Oxford, UK 2 Centre for Cardiovascular Sciences, Institute of Biomedical Research, University of Birmingham, UK 3 Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA Keywords Integrins are the major receptor type known to facilitate cell adhesion and aIIbb3; adhesion; integrins; lamellipodia; lamellipodia formation on extracellular matrix proteins. However, collagen- platelets related peptide and thrombin have recently been shown to mediate platelet lamellipodia formation when presented as immobilized surfaces. The aims Correspondence C. Pears, Department of Biochemistry, of this study were to establish if there exists a role for the platelet integrin South Parks Road, University of Oxford, aIIbb3 in this response; and if so, whether signalling from the integrin is Oxford, OX1 3QU, UK required for lamellipodia formation on these surfaces. Real-time analysis Fax: +44 1865 275259 was used to compare platelet morphological changes on surfaces of fibrino- Tel: +44 1865 275737 gen, collagen-related peptide or thrombin in the presence of various E-mail: [email protected] pharmacological inhibitors and platelets from ‘knockout’ mice. We demon- Website: http://www.bioch.ox.ac.uk strate that collagen-related peptide and thrombin stimulate distinct patterns 2+ (Received 11 July 2006, revised 22 August of platelet lamellipodia formation and elevation of intracellular Ca to 2006, accepted 12 September 2006) that induced by the integrin aIIbb3 ligand, fibrinogen. Nevertheless, lamelli- podia formation on collagen-related peptide and thrombin is dependent doi:10.1111/j.1742-4658.2006.05500.x upon engagement of aIIbb3, consistent with release of aIIbb3 ligand(s) from platelet granules. However, the requirement for signalling by the integrin on fibrinogen can be bypassed by the addition of thrombin to the solution. These observations reveal a critical role for aIIbb3 in forming lamellipodia on collagen-related peptide and thrombin which is dependent on its ability to function as an adhesive receptor but not necessarily on its ability to sig- nal. These results suggest that integrins may play an important role in lamellipodia formation triggered by nonintegrin ligands in platelets and possibly in other cell types. Platelets play an essential role in the formation of a series of morphological changes that include round- haemostatic plug at the site of vascular injury. This ing, generation of filopodia and lamellipodia, and for- process requires adhesion of the platelet to the mation of actin stress fibres [1]. These events serve to exposed subendothelial matrix, followed by powerful stabilize the thrombus, thereby enabling it to with- intracellular signalling events that lead to platelet– stand the high shear forces found in arteries and arte- platelet interactions and thrombus formation. One rioles. critical feature in this scheme is the dramatic alter- Stable adhesion of platelets to the subendothelial ation in platelet morphology in response to activa- matrix is dependent upon sustained activation of tion. Thus, the resting, discoid platelet undergoes a integrins [2]. Integrins are glycoprotein heterodimers Abbreviations CRP, collagen-related peptide. 5032 FEBS Journal 273 (2006) 5032–5043 ª 2006 The Authors Journal compilation ª 2006 FEBS K. Thornber et al. Platelet lamellipodia formation via aIIbb3 composed of a-subunits and b-subunits that exist in an formation but demonstrate that signalling by aIIbb3 is inactive or low-affinity conformation in nonactivated not essential for this response. cells. Intracellular signals within the platelet (known as ‘inside-out’ signalling) promote a conformational Results change in the extracellular domain, leading to an increase in affinity, thereby promoting integrin–ligand Morphological changes of human platelets on interactions [2]. In turn, clustering of integrins gene- fibrinogen, CRP and thrombin rates a series of intracellular signals (‘outside-in’ signal- ling) that serve to reinforce platelet activation [3]. The three ligands fibrinogen, CRP and thrombin sup- The major platelet integrin aIIbb3 is a receptor for port platelet adhesion and lamellipodia formation when fibrinogen, von Willebrand factor, vitronectin, CD40 presented as a monolayer, even though they bind to ligand and fibronectin. Integrin aIIbb3 plays a vital role distinct classes of surface receptor. This raises the ques- in supporting platelet adhesion to the extracellular tion of the molecular basis of adhesion to these ligands matrix and promoting platelet–platelet interaction and whether they induce distinct patterns of change in (aggregation). In addition, integrin aIIbb3 generates morphology. To address this, real-time imaging of outside-in signals that mediate platelet activation. It is platelets adhering to each surface was undertaken using now established that engagement of aIIbb3 activates a coating of ligands that induces maximal platelet adhe- Src family kinases, leading to activation of Syk [4], sion. These experiments were performed in the presence SLP-76 [5], Vav1 ⁄ 3 [4] and phospholipase Cc2 (PLCc2) of concentrations of apyrase and indomethacin shown [6], and thereby to activation of several second messen- to fully block the effect of the feedback agonists ADP 2+ ger pathways, including protein kinase C [7] and Ca and thromboxane A2, respectively, in order to directly [8]. These signalling events promote actin assembly, monitor the ability of each ligand to support adhesion leading to formation of filopodia, lamellipodia and and lamellipodia formation. stress fibres [9]. Consistent with previous reports, our results dem- In addition to integrin ligands, formation of filo- onstrate that platelets exposed to immobilized fibrin- podia and lamellipodia has been described on a ogen go through sequential formation of filopodia monolayer of collagen-related peptide (CRP), which and lamellipodia over a period of 30 min (Fig. 1 and selectively activates the immunoglobulin receptor glyco- supplementary Video S1). Both structures were stable protein VI (GPVI) [10,11], and on thrombin that has and did not retract once formed, although discrete been immobilized by fibrin. In platelets, thrombin binds movements could still be seen around the periphery to and signals via GPIba and the G protein-coupled of the cell. Fluorescent labelling of the actin cytoske- protease-activated receptor (PAR) receptors (PAR 1 leton revealed that stress fibres were formed within and 4) [12,13]. Immobilized thrombin that has become platelets that had undergone full lamellipodia forma- trapped by fibrin is able to promote platelet adhesion tion (Fig. 1B). In contrast, a distinct pattern of and aggregate formation at intermediate rates of flow, platelet morphological changes was observed on the leading to the speculation that it may function as an GPVI-specific agonist CRP (Fig. 1A and supplement- adhesion ligand in vivo [13]. In epithelial cells, it has ary Video S2). Limited small filopodia were seen, been suggested that immobilized thrombin can bind to with wave-like lamellipodia appearing before filopo- integrins through an RGD site, raising the possibility dia formation was complete, in contrast to the that is may bind directly to integrins in platelets [14]. spherically synchronized growth on fibrinogen. Full The present study was undertaken to investigate the lamellipodia formation was reached within 5–9 min, mechanism by which CRP and thrombin are able to three times more rapidly than on fibrinogen support platelet lamellipodia formation in comparison (Fig. 1C). Strikingly, even after platelets had reached to that induced by fibrinogen. It was of particular 90% of their final surface area, the lamellipodia were interest to discern whether thrombin and CRP stimu- very dynamic (supplementary Video S2), even though late lamellipodia formation directly, or whether they they were accompanied by formation of stress fibres require aIIbb3. The results demonstrate a critical role (Fig. 1B). A similar pattern of rapid yet unstable for aIIbb3 in promoting platelet lamellipodia formation lamellipodia formation and stress fibre formation on CRP, thrombin and on fibrinogen, but that out- was observed for platelets adhering to immobilized side-in signalling by the integrin is not required for thrombin (Fig. 1A,B and supplementary Video S3). lamellipodia formation on fibrinogen in the presence Significantly, lamellipodia formation on thrombin of thrombin. These results further emphasize the was not altered in the presence of the fibrin poly- importance of integrin engagement in lamellipodia merization inhibitor Gly-Pro-Arg-Pro (GPRP) (data FEBS Journal 273 (2006) 5032–5043 ª 2006 The Authors Journal compilation ª 2006 FEBS 5033 Platelet lamellipodia formation via aIIbb3 K. Thornber et al. A B C 120 100 80 60 FG CRP 40 THR % of maximum surface area 20 0 0 200 400 600 800 1000 1200 1400 1600 Time (sec) Fig. 1. Distinct morphological changes in human washed platelets exposed to fibrinogen, collagen-related peptide (CRP) and thrombin. (A) Human washed platelets were exposed to surfaces of fibrinogen (FG), CRP or thrombin (THR). Representative morphology of a single plate- let on each surface at the time points shown (s). (B) Rhodamine–phalloidin staining to show actin stress fibres of
Recommended publications
  • Hemoglobin Interaction with Gp1ba Induces Platelet Activation And
    ARTICLE Platelet Biology & its Disorders Hemoglobin interaction with GP1bα induces platelet activation and apoptosis: a novel mechanism associated with intravascular hemolysis Rashi Singhal,1,2,* Gowtham K. Annarapu,1,2,* Ankita Pandey,1 Sheetal Chawla,1 Amrita Ojha,1 Avinash Gupta,1 Miguel A. Cruz,3 Tulika Seth4 and Prasenjit Guchhait1 1Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region, Biotech Science Cluster, Faridabad, India; 2Biotechnology Department, Manipal University, Manipal, Karnataka, India; 3Thrombosis Research Division, Baylor College of Medicine, Houston, TX, USA, and 4Hematology, All India Institute of Medical Sciences, New Delhi, India *RS and GKA contributed equally to this work. ABSTRACT Intravascular hemolysis increases the risk of hypercoagulation and thrombosis in hemolytic disorders. Our study shows a novel mechanism by which extracellular hemoglobin directly affects platelet activation. The binding of Hb to glycoprotein1bα activates platelets. Lower concentrations of Hb (0.37-3 mM) significantly increase the phos- phorylation of signaling adapter proteins, such as Lyn, PI3K, AKT, and ERK, and promote platelet aggregation in vitro. Higher concentrations of Hb (3-6 mM) activate the pro-apoptotic proteins Bak, Bax, cytochrome c, caspase-9 and caspase-3, and increase platelet clot formation. Increased plasma Hb activates platelets and promotes their apoptosis, and plays a crucial role in the pathogenesis of aggregation and development of the procoagulant state in hemolytic disorders. Furthermore, we show that in patients with paroxysmal nocturnal hemoglobinuria, a chronic hemolytic disease characterized by recurrent events of intravascular thrombosis and thromboembolism, it is the elevated plasma Hb or platelet surface bound Hb that positively correlates with platelet activation.
    [Show full text]
  • A Microfluidic Approach for Evaluating Novel Antithrombotic Targets
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 A Microfluidic Approach For Evaluating Novel Antithrombotic Targets Shu Zhu University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Chemical Engineering Commons Recommended Citation Zhu, Shu, "A Microfluidic Approach For Evaluating Novel Antithrombotic Targets" (2017). Publicly Accessible Penn Dissertations. 2670. https://repository.upenn.edu/edissertations/2670 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2670 For more information, please contact [email protected]. A Microfluidic Approach For Evaluating Novel Antithrombotic Targets Abstract Microfluidic systems allow precise control of the anticoagulation/pharmacology protocols, defined reactive surfaces, hemodynamic flow and optical imaging outines,r and thus are ideal for studies of platelet function and coagulation response. This thesis describes the use of a microfluidic approach to investigate the role of the contact pathway factors XII and XI, platelet-derived polyphosphate, and thiol isomerases in thrombus growth and to evaluate their potential as safer antithrombotic drug targets. The use of low level of corn trypsin inhibitor allowed the study of the contact pathway on collagen/kaolin surfaces with minimally disturbed whole blood sample and we demonstrated the sensitivity of this assay to antithrombotic drugs. On collagen/tissue factor surfaces, we found
    [Show full text]
  • Urokinase Plasminogen Activator: a Potential Thrombolytic Agent for Ischaemic Stroke
    Urokinase Plasminogen Activator: A Potential Thrombolytic Agent for Ischaemic Stroke Rais Reskiawan A. Kadir1, Ulvi Bayraktutan1 1Stroke, Division of Clinical Neuroscience, School of Medicine, The University of Nottingham Address for correspondence: Dr. Ulvi Bayraktutan Associate Professor Stroke, Division of Clinical Neuroscience, School of Medicine, The University of Nottingham, Clinical Sciences Building, Hucknall Road, Nottingham NG5 1PB, United Kingdom (UK) Tel: +44-(115) 8231764 Fax: +44-(115) 8231767 E-mail: [email protected] 1 Abstract Stroke continues to be one of the leading causes of mortality and morbidity worldwide. Restoration of cerebral blood flow by recombinant plasminogen activator (rtPA) with or without mechanical thrombectomy is considered the most effective therapy for rescuing brain tissue from ischaemic damage, but this requires advanced facilities and highly skilled professionals, entailing high costs, thus in resource-limited contexts urokinase plasminogen activator (uPA) is commonly used as an alternative. This literature review summarises the existing studies relating to the potential clinical application of uPA in ischaemic stroke patients. In translational studies of ischaemic stroke, uPA has been shown to promote nerve regeneration and reduce infarct volume and neurological deficits. Clinical trials employing uPA as a thrombolytic agent have replicated these favourable outcomes and reported consistent increases in recanalisation, functional improvement, and cerebral haemorrhage rates, similar to those observed with rtPA. Single-chain zymogen pro-urokinase (pro-uPA) and rtPA appear to be complementary and synergistic in their action, suggesting that their co-administration may improve the efficacy of thrombolysis without affecting the overall risk of haemorrhage. Large clinical trials examining the efficacy of uPA or the combination of pro-uPA and rtPA are desperately required to unravel whether either therapeutic approach may be a safe first-line treatment option for patients with ischaemic stroke.
    [Show full text]
  • Biomechanical Thrombosis: the Dark Side of Force and Dawn of Mechano-­ Medicine
    Open access Review Stroke Vasc Neurol: first published as 10.1136/svn-2019-000302 on 15 December 2019. Downloaded from Biomechanical thrombosis: the dark side of force and dawn of mechano- medicine Yunfeng Chen ,1 Lining Arnold Ju 2 To cite: Chen Y, Ju LA. ABSTRACT P2Y12 receptor antagonists (clopidogrel, pras- Biomechanical thrombosis: the Arterial thrombosis is in part contributed by excessive ugrel, ticagrelor), inhibitors of thromboxane dark side of force and dawn platelet aggregation, which can lead to blood clotting and A2 (TxA2) generation (aspirin, triflusal) or of mechano- medicine. Stroke subsequent heart attack and stroke. Platelets are sensitive & Vascular Neurology 2019;0. protease- activated receptor 1 (PAR1) antag- to the haemodynamic environment. Rapid haemodynamcis 1 doi:10.1136/svn-2019-000302 onists (vorapaxar). Increasing the dose of and disturbed blood flow, which occur in vessels with these agents, especially aspirin and clopi- growing thrombi and atherosclerotic plaques or is caused YC and LAJ contributed equally. dogrel, has been employed to dampen the by medical device implantation and intervention, promotes Received 12 November 2019 platelet thrombotic functions. However, this platelet aggregation and thrombus formation. In such 4 Accepted 14 November 2019 situations, conventional antiplatelet drugs often have also increases the risk of excessive bleeding. suboptimal efficacy and a serious side effect of excessive It has long been recognized that arterial bleeding. Investigating the mechanisms of platelet thrombosis
    [Show full text]
  • Exploratory Aspirin Resistance Trial in Healthy Japanese Volunteers (J-ART) Using Platelet Aggregation As a Measure of Thrombogenicity
    The Pharmacogenomics Journal (2007) 7, 395–403 & 2007 Nature Publishing Group All rights reserved 1470-269X/07 $30.00 www.nature.com/tpj ORIGINAL ARTICLE Exploratory aspirin resistance trial in healthy Japanese volunteers (J-ART) using platelet aggregation as a measure of thrombogenicity T Fujiwara1, M Ikeda2, K Esumi3, Aspirin prevents the production of thromboxane A2 (TXA2) by irreversibly 4 5 inhibiting platelet cyclooxygenase, exhibiting antiplatelet actions. This agent TD Fujita , M Kono , has been reported to prevent relapse in patients with ischemic heart disease 6 4 H Tokushige , T Hatoyama , or cerebral infarction via this action mechanism. However, there are T Maeda7, T Asai4, T Ogawa6, individual differences in this action, and aspirin is not effective in some T Katsumata4, S Sasaki8, patients, which is referred to as ‘aspirin resistance’. In this study, we analyzed E Suzuki7, M Suzuki5, F Hino9, laboratory aspirin resistance by platelet aggregation in 110 healthy adult 10 10 Japanese males using 24 single-nucleotide polymorphisms (SNPs) of nine TK Fujita , H Zaima , genes involved in platelet aggregation/hemorrhage. Among SNPs involved M Shimada9, T Sugawara8, in platelet aggregation, aspirin was less effective for 924T homozygote of a 10 3 Y Tsuzuki , Y Hashimoto , TXA2 receptor, 924T4C, and 1018C homozygote of a platelet membrane H Hishigaki1, S Horimoto5, glycoprotein GPIba, 1018C4T, suggesting that 924T and 1018C alleles are 2 4 involved in aspirin resistance. N Miyajima , T Yamamoto , The Pharmacogenomics Journal (2007)
    [Show full text]
  • Platelet Collagen Receptor Glycoprotein VI‐Dimer Recognizes Fibrinogen and Fibrin Through Their D‐
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Journal of Thrombosis and Haemostasis, 16: 1–16 DOI: 10.1111/jth.13919 ORIGINAL ARTICLE Platelet collagen receptor Glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, contributing to platelet adhesion and activation during thrombus formation I. INDURUWA,* M. MOROI,† A. BONNA,† J.-D. MALCOR,† J.-M. HOWES,† E. A. WARBURTON,* R. W. FARNDALE† and S . M . J U N G † *Department of Clinical Neurosciences, University of Cambridge; and †Department of Biochemistry, University of Cambridge, Cambridge, UK To cite this article: Induruwa I, Moroi M, Bonna A, Malcor J-D, Howes J-M, Warburton EA, Farndale RW, Jung SM. Platelet collagen receptor Glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, contributing to platelet adhesion and activation during throm- bus formation. J Thromb Haemost 2018; https://doi.org/10.1111/jth.13919. was inhibited by mFab-F (anti-GPVI-dimer), but showed Essentials low binding to fibrinogen and fibrin under our conditions. GPVI-Fc binding to D-fragment or D-dimer was abro- • Glycoprotein VI (GPVI) binds collagen, starting throm- 2 gated by collagen type III, Horm collagen or CRP-XL bogenesis, and fibrin, stabilizing thrombi. (crosslinked collagen-related peptide), suggesting proxim- • GPVI-dimers, not monomers, recognize immobilized ity between the D-domain and collagen binding sites on fibrinogen and fibrin through their D-domains. GPVI-dimer. Under low shear, adhesion of normal plate- • Collagen, D-fragment and D-dimer may share a com- lets to D-fragment, D-dimer, fibrinogen and fibrin was mon or proximate binding site(s) on GPVI-dimer.
    [Show full text]
  • Megakaryocytes Compensate for Kit Insufficiency in Murine Arthritis
    RESEARCH ARTICLE The Journal of Clinical Investigation Megakaryocytes compensate for Kit insufficiency in murine arthritis Pierre Cunin,1 Loka R. Penke,1 Jonathan N. Thon,2 Paul A. Monach,3 Tatiana Jones,4 Margaret H. Chang,1,5 Mary M. Chen,1 Imene Melki,6 Steve Lacroix,7 Yoichiro Iwakura,8 Jerry Ware,9 Michael F. Gurish,1 Joseph E. Italiano,2,10 Eric Boilard,6 and Peter A. Nigrovic1,5 1Department of Medicine, Division of Rheumatology, Immunology and Allergy, 2Department of Medicine, Hematology Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 3Department of Medicine, Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA. 4Department of Clinical Laboratory and Nutritional Science, University of Massachusetts Lowell, Lowell, Massachusetts, USA. 5Department of Medicine, Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 6Centre de Recherche du Centre Hospitalier Universitaire de Québec (CHUL), and Département de Microbiologie et Infectiologie, Faculté de Médecine de l’Université Laval, Québec, Québec, Canada. 7CHUL and Département de Médecine Moléculaire–Université Laval, Faculté de Médecine de l’Université Laval, Québec, Quebec, Canada. 8Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Sciences, Chiba, Japan. 9Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. 10Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. The growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell–deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,119,137 B2 Nieswandt Et Al
    US008119137B2 (12) United States Patent (10) Patent No.: US 8,119,137 B2 NiesWandt et al. (45) Date of Patent: Feb. 21, 2012 (54) PREVENTION OF THROMBUS FORMATION W W 38: ES A. 33. AND/OR STABILIZATION WITH INHIBITORS OF FACTOR, XOR WO WO 2006/021744 A1 3, 2006 ACTIVATED FACTOR XII OTHER PUBLICATIONS (75) Inventors: Bernhard Nieswandt, Würzburg (DE): Laub et al., Chest. Nov. 1994; 106(5):1370-5.* Thomas Renné, Würzburg (DE) English language abstract of DE 19725014A1, published Jun. 13, 1997, entered by DERVENT as 1999-046858.* (73) Assignee: CSL Behring GmbH (DE) Ambrosetti et al. (Chest 2004 125:191-196).* Agostini, et al., “Inactivation of Factor XII Active Fragment in Nor mal Plasma, Predominant Role of C1-inhibitor', XP-002368 185, (*) Notice: Subject to any disclaimer, the term of this Journal of Clinical Investigation, vol. 73, No. 6, pp. 1542-1549, patent is extended or adjusted under 35 (1984). U.S.C. 154(b) by 326 days. Colman, "Overview of Hemostasis'', Hemostasis and Thrombosis, Basic Priciples and clinical practice, Lippincott Co., Philadelphia, (21) Appl. No.: 11/793,820 PA, p. 9, col. 1, paragraph 3 to col. 2, paragraph 1. (1987). Nuijens, et al., “Activation of the Contact System of Coagulation by (22) PCT Filed: Dec. 20, 2005 a Monoclonal Antibody Directed Against a Neodeterminant in the Heavy Chain Region of Human Coagulation Factor XII (Hageman (86). PCT No.: PCT/EP2005/O1371.4 Factor). The Journal of Biological Chemistry, XP 000045720, vol. 264, No. 22, pp. 12941-12949. (1989). S371 (c)(1), Pixley, et al., “The Contact System Contributes to Hypotension but (2), (4) Date: Nov.
    [Show full text]
  • Bleeding Disorders in Congenital Syndromes Susmita N
    Bleeding Disorders in Congenital Syndromes Susmita N. Sarangi, MD, Suchitra S. Acharya, MD Pediatricians provide a medical home for children with congenital abstract syndromes who often need complex multidisciplinary care. There are some syndromes associated with thrombocytopenia, inherited platelet disorders, factor deficiencies, connective tissue disorders, and vascular abnormalities, which pose a real risk of bleeding in affected children associated with trauma or surgeries. The risk of bleeding is not often an obvious feature of the syndrome and not well documented in the literature. This makes it especially hard for pediatricians who may care for a handful of children with these rare congenital syndromes in their lifetime. This review provides an overview of the etiology of bleeding in the different congenital syndromes along with a concise review of the hematologic and nonhematologic clinical manifestations. It also highlights the need and timing of diagnostic evaluation to uncover the bleeding risk in these syndromes emphasizing a primary care approach. Bleeding Disorders and Thrombosis Program, Cohen Children with congenital syndromes these patients as part of surveillance Children’s Medical Center of New York, New Hyde Park, with multiple anomalies need a or before scheduled procedures New York multidisciplinary approach to and recommends guidelines for Drs Sarangi and Acharya contributed to the their care, along with continued appropriate and timely referral to the conceptualization, content, and composition of the surveillance for rare manifestations hematologist. manuscript and approved the fi nal manuscript as such as a bleeding diathesis, which submitted. may not be evident at diagnosis. This Achieving hemostasis is a complex DOI: 10.1542/peds.2015-4360 accompanying bleeding diathesis process starting with endothelial Accepted for publication Aug 15, 2016 due to thrombocytopenia or other injury that results in platelet plug Address correspondence to Suchitra S.
    [Show full text]
  • Novel Ligands for Platelet Glycoprotein VI Meinrad Gawaz1
    Invited Editorial Focus 435 Invited Editorial Focus Novel Ligands for Platelet Glycoprotein VI Meinrad Gawaz1 1 Medizinische Klinik III, Eberhard Karls Universität Tübingen, Tübingen, Germany Thromb Haemost 2018;118:435–436. Platelet hyperreactivity is a major risk factor for thrombo- adiponectin, EMMPRIN and fibrin.10 A profound understand- ischaemic events such as myocardial infarction and stroke.1 ing of GPVI binding to ligands other than collagen is a Antiplatelet therapy has substantially improved morbidity prerequisite for development of specific drugs targeting and mortality in patients with acute and chronic cardiovas- GPVI. cular diseases. In patients with high risk for thrombo- At the site of atherosclerotic plaque rupture, tissue factor ischaemic events, dual-antiplatelet therapy (DAPT) consist- (TF) is generated and induces fibrin formation and promotion ing of acetyl salicylic acid and P2Y12 inhibitors has become of thrombus formation and consolidation. Recently, fibrin – the standard antithrombotic therapy for secondary preven- has been postulated as novel ligand for GPVI.11 13 tion.2 However, current antiplatelet therapy (especially with In the current issue of Thrombosis and Haemostasis, DAPT) is associated with increased bleeding complications, Ebrahim et al14 challenge recent findings implying fibrin which is associated with various clinical risk factors3,4 but as novel ligand of GPVI. Ebrahim et al made use of fusion also with enhanced mortality.5 proteins consisting of the external domain of GPVI and the Fc Especially in patients with acute ischaemic stroke, secondary part from IgG1 and IgG2, respectively. Both recombinant intracerebral bleeding is an imminent threat for patient recov- proteins are dimers of GPVI with high affinity for collagen.
    [Show full text]
  • Platelet Function Testing
    Platelet function testing Prof Christopher M Ward Northern Blood Research Centre Royal North ShoreHospital Royal North Shore Hospital, Sydney Sydney Medical ISTH Bangkok November 2017 School Are these platelets in working order?? Platelet roles in haemostasis and inflammation When should we suspect a platelet problem? Routine platelet assays – aggregometry Second-line platelet assays Point-of-care platelet assays Genotyping - ?the future of diagnostics resting Platelet Activation Shape change - pseudopodia Granule release Microparticles shed Receptor activation Phospholipid exposure activated Adhesion Platelet GPIb-V-IX binds matrix vWF at high shear Reversible adhesion to exposed extracellular matrix Activation Adhesion triggers GPIIb-IIIa activation Irreversible binding to matrix ligands, shape change and platelet activation Aggregation Activated GPIIb-IIIa mediates aggregation via fibrinogen, vWF Release of granule contents, microparticles recruits additional platelets and triggers coagulation Stabilisation Secreted ADP and thromboxane recruit new platelets to thrombus, and stabilise growing thrombus TxA2 ADP ADP TxA2 Haemostatic plug A plug of degranulated platelets, fibrin mesh plus leukocytes recruited via P-selectin and fibrinogen receptors, and entrapped RBC Practice point When should we suspect platelet function defects? Unexplained mucocutaneous bleeding, menorrhagia or postop bleeding Including patients with a diagnosis of ITP or von Willebrand disease! Inherited platelet defects are not as rare as we are taught… Bleeding/bruising
    [Show full text]
  • Dual Role of Collagen in Factor XII-Dependent Thrombus Formation
    From www.bloodjournal.org at UNIVERSITY OF BIRMINGHAM on May 27, 2009. For personal use only. Prepublished online Apr 16, 2009; doi:10.1182/blood-2008-07-171066 Dual role of collagen in factor XII-dependent thrombus formation Paola E.J. van der Meijden, Imke C.A. Munnix, Jocelyn M. Auger, Jose W.P. Govers-Riemslag, Judith M.E.M. Cosemans, Marijke J.E. Kuijpers, Henri M. Spronk, Steve P. Watson, Thomas Renne and Johan W.M. Heemskerk Information about reproducing this article in parts or in its entirety may be found online at: http://bloodjournal.hematologylibrary.org/misc/rights.dtl#repub_requests Information about ordering reprints may be found online at: http://bloodjournal.hematologylibrary.org/misc/rights.dtl#reprints Information about subscriptions and ASH membership may be found online at: http://bloodjournal.hematologylibrary.org/subscriptions/index.dtl Blood (print ISSN 0006-4971, online ISSN 1528-0020), is published semimonthly by the American Society of Hematology, 1900 M St, NW, Suite 200, Washington DC 20036. Copyright 2007 by The American Society of Hematology; all rights reserved. Blood First Edition Paper, prepublished online April 16, 2009; DOI 10.1182/blood-2008-07-171066 From www.bloodjournal.org at UNIVERSITY OF BIRMINGHAM on May 27, 2009. For personal use only. Dual role of collagen in factor XII-dependent thrombus formation Running title: collagen and factor XII in thrombus formation Paola E.J. van der Meijden1, Imke C.A. Munnix1, Jocelyn M. Auger2, José W.P. Govers- Riemslag1, Judith M.E.M. Cosemans1, Marijke J.E. Kuijpers1, Henri M. Spronk1, Steve P. Watson2, Thomas Renné3,4* and Johan W.M.
    [Show full text]