Ion Temperatures in Earth's Inner Magnetosphere: Ring Current Dynamics, Transient Effects, and Data-Model Comparisons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Geomagnetic Storms in South Atlantic Magnetic Anomaly (SAMA)
Analysis of geomagnetic storms in South Atlantic Magnetic Anomaly (SAMA) Júlia Maria Soja Sampaio, Elder Yokoyama, Luciana Figueiredo Prado Copyright 2019, SBGf - Sociedade Brasileira de Geofísica Moreover, Dst and AE indices may vary according to the This paper was prepared for presentation during the 16th International Congress of the geomagnetic field geometry, such as polar to intermediate Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 19-22 August 2019. latitudinal field variations. In this framework, fluctuations Contents of this paper were reviewed by the Technical Committee of the 16th in the geomagnetic field can occur under the influence of International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or the South Atlantic Magnetic Anomaly (SAMA). The SAMA storage of any part of this paper for commercial purposes without the written consent is a region of minimum geomagnetic field intensity values of the Brazilian Geophysical Society is prohibited. ____________________________________________________________________ at the Earth’s surface (Figure 1), and its dipole intensity is decreasing along the past 1000 years (Terra-Nova et. al., Abstract 2017). Geomagnetic storm is a major disturbance of Earth’s In this study we will compare the behavior of the types of magnetosphere resulted from the interaction of solar wind geomagnetic storms basis on AE and Dst indices. and the Earth’s magnetic field. This disturbance depends of the Earth magnetic field geometry, and varies in terms of intensity from the Poles to the Equator. This disturbance is quantified through geomagnetic indices, such as the Dst and the AE indices. -
Sources and Losses of Ring Current Ions: an Update
Ade. Space Res. Vol.9. No. 12. pp. (12)171—112)152. 1989 0273—1177i89 50.00 + .50 Printed in Great Britain. All rights reser~ed. Copyright © 1989 COSPAR SOURCES AND LOSSES OF RING CURRENT IONS: AN UPDATE J. U. Kozyra Space Physics Research Laboratory, Departmentof Atmospheric, Oceanic and Space Sciences, The University of Michigan, Ann Arbor, Ml 48109—2143, U.S.A. INTRODUCTION Majorprogress has been made in thelast threeanda halfyears.inourunderstandingof the roleof ionospheric plasma as asource for theplasma sheet and ring current. Observations by the Dynamics Explorer 1 satelliteover thepolar ionosphere and concurrent modelling efforts havetraced thepath of heated ionospheric ions from a localized source associatedwith the polar cusp along trajectories that energize theions anddeposit them in thenear-earth plasma sheet AMPTE ion composition measurements in the ring current havebegunto clarify the relativecontributions of theionospheric and solarwind ions in the plasma sheet and ring current andcharacterize differences inthe energization processes whicheach population undergoes. The role of charge exchange as amajorloss process for the ring current has beenconfirmed by all sky observationsonboard the ISEE Isatellite of energeticneutral atoms resulting from this interaction and associatedmodeling efforts. The oxygen ion component of the ring current has beenfound to be asource ofheating via Coulomb collisions for the thermal plasmas in theouter plasmaspherewith associatedloss of energy from thering current. The roleof wave-particle interactions -
THEMIS Observations of Penetration of the Plasma Sheet Into the Ring Current Region During a Magnetic Storm Chih-Ping Wang,1 Larry R
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L17S14, doi:10.1029/2008GL033375, 2008 Click Here for Full Article THEMIS observations of penetration of the plasma sheet into the ring current region during a magnetic storm Chih-Ping Wang,1 Larry R. Lyons,1 Vassilis Angelopoulos,2 Davin Larson,3 J. P. McFadden,3 Sabine Frey,3 Hans-Ulrich Auster,4 and Werner Magnes5 Received 23 January 2008; revised 6 March 2008; accepted 13 March 2008; published 18 April 2008. [1] Observations from the THEMIS spacecraft during a ticles can be further energized by radial and energy weak magnetic storm clearly show that the inner edge of the diffusion, but it is the earthward movement and adiabatic ion plasma sheet near dusk moved from r 6 RE during the energization of plasma sheet particles that is critical to ring pre-storm quiet time to r 3.5 R during the main phase, current enhancement within the models. The CRRES E and then moved outward during the recovery phase. The Observations in the region of r < 5.3 RE [Korth et al., plasma sheet particles from the tail reached the inner 2000] have supported the above hypothesis, but didn’t magnetosphere during the main phase through open drift directly identify the ring current population as plasma paths, which extended earthward with increasing sheet particles. convection, and were energized to ring current energies, [3]TheinboundpassesoftheTHEMISspacecraftfrom resulting in an increase in ring current population. During r 15 to 2 RE at the same near-dusk local times during the recovery phase, the plasma sheet region retreated to different phases of a weak storm in May, 2007 (minimum outside the inner magnetosphere as the region of open drift Dst = 60 nT on May 23, which is the strongest storm in paths moved outward with decreasing convection, leaving 2007 sinceÀ the THEMIS spacecraft began operations in the ring current particles within the expended closed drift March 2007) provide unprecedented end to end measure- path region. -
On Magnetic Storms and Substorms
ILWS WORKSHOP 2006, GOA, FEBRUARY 19-24, 2006 On magnetic storms and substorms G. S. Lakhina, S. Alex, S. Mukherjee and G. Vichare Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218, India Abstract. Magnetospheric substorms and storms are indicators of geomagnetic activity. Whereas the geomagnetic index AE (auroral electrojet) is used to study substorms, it is common to characterize the magnetic storms by the Dst (disturbance storm time) index of geomagnetic activity. This talk discusses briefly the storm-substorms relationship, and highlights some of the characteristics of intense magnetic storms, including the events of 29-31 October and 20-21 November 2003. The adverse effects of these intense geomagnetic storms on telecommunication, navigation, and on spacecraft functioning will be discussed. Index Terms. Geomagnetic activity, geomagnetic storms, space weather, substorms. _____________________________________________________________________________________________________ 1. Introduction latitude magnetic fields are significantly depressed over a Magnetospheric storms and substorms are indicators of time span of one to a few hours followed by its recovery geomagnetic activity. Where as the magnetic storms are which may extend over several days (Rostoker, 1997). driven directly by solar drivers like Coronal mass ejections, solar flares, fast streams etc., the substorms, in simplest terms, are the disturbances occurring within the magnetosphere that are ultimately caused by the solar wind. The magnetic storms are characterized by the Dst (disturbance storm time) index of geomagnetic activity. The substorms, on the other hand, are characterized by geomagnetic AE (auroral electrojet) index. Magnetic reconnection plays an important role in energy transfer from solar wind to the magnetosphere. Magnetic reconnection is very effective when the interplanetary magnetic field is directed southwards leading to strong plasma injection from the tail towards the inner magnetosphere causing intense auroras at high-latitude nightside regions. -
Planetary Magnetospheres
CLBE001-ESS2E November 9, 2006 17:4 100-C 25-C 50-C 75-C C+M 50-C+M C+Y 50-C+Y M+Y 50-M+Y 100-M 25-M 50-M 75-M 100-Y 25-Y 50-Y 75-Y 100-K 25-K 25-19-19 50-K 50-40-40 75-K 75-64-64 Planetary Magnetospheres Margaret Galland Kivelson University of California Los Angeles, California Fran Bagenal University of Colorado, Boulder Boulder, Colorado CHAPTER 28 1. What is a Magnetosphere? 5. Dynamics 2. Types of Magnetospheres 6. Interaction with Moons 3. Planetary Magnetic Fields 7. Conclusions 4. Magnetospheric Plasmas 1. What is a Magnetosphere? planet’s magnetic field. Moreover, unmagnetized planets in the flowing solar wind carve out cavities whose properties The term magnetosphere was coined by T. Gold in 1959 are sufficiently similar to those of true magnetospheres to al- to describe the region above the ionosphere in which the low us to include them in this discussion. Moons embedded magnetic field of the Earth controls the motions of charged in the flowing plasma of a planetary magnetosphere create particles. The magnetic field traps low-energy plasma and interaction regions resembling those that surround unmag- forms the Van Allen belts, torus-shaped regions in which netized planets. If a moon is sufficiently strongly magne- high-energy ions and electrons (tens of keV and higher) tized, it may carve out a true magnetosphere completely drift around the Earth. The control of charged particles by contained within the magnetosphere of the planet. -