Sushi Domain-Containing Protein 4 Controls Synaptic Plasticity And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protein Interaction Network of Alternatively Spliced Isoforms from Brain Links Genetic Risk Factors for Autism
ARTICLE Received 24 Aug 2013 | Accepted 14 Mar 2014 | Published 11 Apr 2014 DOI: 10.1038/ncomms4650 OPEN Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism Roser Corominas1,*, Xinping Yang2,3,*, Guan Ning Lin1,*, Shuli Kang1,*, Yun Shen2,3, Lila Ghamsari2,3,w, Martin Broly2,3, Maria Rodriguez2,3, Stanley Tam2,3, Shelly A. Trigg2,3,w, Changyu Fan2,3, Song Yi2,3, Murat Tasan4, Irma Lemmens5, Xingyan Kuang6, Nan Zhao6, Dheeraj Malhotra7, Jacob J. Michaelson7,w, Vladimir Vacic8, Michael A. Calderwood2,3, Frederick P. Roth2,3,4, Jan Tavernier5, Steve Horvath9, Kourosh Salehi-Ashtiani2,3,w, Dmitry Korkin6, Jonathan Sebat7, David E. Hill2,3, Tong Hao2,3, Marc Vidal2,3 & Lilia M. Iakoucheva1 Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases. -
Cell Surface Mobility of GABAB Receptors Saad Bin
Cell surface mobility of GABAB receptors Saad Bin Hannan September 2011 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy of the University College London Department of Neuroscience, Physiology, and Pharmacology University College London Gower Street London WC1E 6BT UK Declaration ii ‘I, Saad Hannan confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.' ____________________ Saad Hannan September 2011 To Ammu, Abbu, Polu Abstract ivi Abstract Type-B γ-aminobutyric acid receptors (GABABRs) are important for mediating slow inhibition in the central nervous system and the kinetics of their internalisation and lateral mobility will be a major determinant of their signalling efficacy. Functional GABABRs require R1 and R2 subunit co-assembly, but how heterodimerisation affects the trafficking kinetics of GABABRs is unknown. Here, an α- bungarotoxin binding site (BBS) was inserted into the N-terminus of R2 to monitor receptor mobility in live cells. GABABRs are internalised via clathrin- and dynamin- dependent pathways and recruited to endosomes. By mutating the BBS, a new technique was developed to differentially track R1a and R2 simultaneously, revealing the subunits internalise as heteromers and that R2 dominantly-affects constitutive internalisation of GABABRs. Notably, the internalisation profile of R1aR2 heteromers, but not R1a homomers devoid of their ER retention motif (R1ASA), is similar to R2 homomers in heterologous systems. The internalisation of R1aASA was slowed to that of R2 by mutating a di-leucine motif in the R1 C-terminus, indicating a new role for heterodimerisation, whereby R2 subunits slow the internalization of surface GABABRs. -
Mice Carrying a Human GLUD2 Gene Recapitulate Aspects of Human Transcriptome and Metabolome Development
Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development Qian Lia,b,1, Song Guoa,1, Xi Jianga, Jaroslaw Brykc,2, Ronald Naumannd, Wolfgang Enardc,3, Masaru Tomitae, Masahiro Sugimotoe, Philipp Khaitovicha,c,f,4, and Svante Pääboc,4 aChinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; bUniversity of Chinese Academy of Sciences, 100049 Beijing, China; cMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; dMax Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany; eInstitute for Advanced Biosciences, Keio University, 997-0035 Tsuruoka, Yamagata, Japan; and fSkolkovo Institute for Science and Technology, 143025 Skolkovo, Russia Edited by Joshua M. Akey, University of Washington, Seattle, WA, and accepted by the Editorial Board April 1, 2016 (received for review September 28, 2015) Whereas all mammals have one glutamate dehydrogenase gene metabolic flux from glucose and glutamine to lipids by way of the (GLUD1), humans and apes carry an additional gene (GLUD2), TCA cycle (12). which encodes an enzyme with distinct biochemical properties. To investigate the physiological role the GLUD2 gene may We inserted a bacterial artificial chromosome containing the human play in human and ape brains, we generated mice transgenic for GLUD2. GLUD2 gene into mice and analyzed the resulting changes in the a genomic region containing human We compared effects transcriptome and metabolome during postnatal brain development. on gene expression and metabolism during postnatal development Effects were most pronounced early postnatally, and predominantly of the frontal cortex of the brain in these mice and their wild-type genes involved in neuronal development were affected. -
Large Sex Differences in Chicken Behavior and Brain Gene Expression Coincide with Few Differences in Promoter DNA-Methylation
Large Sex Differences in Chicken Behavior and Brain Gene Expression Coincide with Few Differences in Promoter DNA-Methylation Daniel Na¨tt1,2*, Beatrix Agnvall1, Per Jensen1 1 IFM Biology, AVIAN Behaviour and Genomics group, Linko¨ping University, Linko¨ping, Sweden, 2 Department of Clinical and Experimental Medicine, Laboratory of Integrative and Behavioral Neuroscience, Linko¨ping University, Linko¨ping, Sweden Abstract While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. -
Identification of Transcriptomic Differences Between Lower
International Journal of Molecular Sciences Article Identification of Transcriptomic Differences between Lower Extremities Arterial Disease, Abdominal Aortic Aneurysm and Chronic Venous Disease in Peripheral Blood Mononuclear Cells Specimens Daniel P. Zalewski 1,*,† , Karol P. Ruszel 2,†, Andrzej St˛epniewski 3, Dariusz Gałkowski 4, Jacek Bogucki 5 , Przemysław Kołodziej 6 , Jolanta Szyma ´nska 7 , Bartosz J. Płachno 8 , Tomasz Zubilewicz 9 , Marcin Feldo 9,‡ , Janusz Kocki 2,‡ and Anna Bogucka-Kocka 1,‡ 1 Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chod´zkiSt., 20-093 Lublin, Poland; [email protected] 2 Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; [email protected] (K.P.R.); [email protected] (J.K.) 3 Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Gł˛ebokaSt., 20-612 Lublin, Poland; [email protected] 4 Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA; [email protected] 5 Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chod´zkiSt., Citation: Zalewski, D.P.; Ruszel, K.P.; 20-093 Lublin, Poland; [email protected] St˛epniewski,A.; Gałkowski, D.; 6 Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Bogucki, J.; Kołodziej, P.; Szyma´nska, Lublin, 4a Chod´zkiSt., 20-093 Lublin, Poland; [email protected] J.; Płachno, B.J.; Zubilewicz, T.; Feldo, 7 Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, M.; et al. -
Regulation of Hematopoietic Activity Involving New Interacting Partners (RRAGC & PSMC2, CKAP4 & MANF and CTR9 & CNTNAP2)
CellBio, 2020, 9, 123-141 https://www.scirp.org/journal/cellbio ISSN Online: 2325-7792 ISSN Print: 2325-7776 Regulation of Hematopoietic Activity Involving New Interacting Partners (RRAGC & PSMC2, CKAP4 & MANF and CTR9 & CNTNAP2) Swati Sharma1, Gurudutta U. Gangenahalli2*, Upma Singh3 1Department of Pharmacology, All India Institute of Medical Science (AIIMS), New Delhi, India 2Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, New Delhi, India 3Department of Applied Chemistry, School of Vocational Studies & Applied Sciences, Gautam Buddha University, Greater Noida, India How to cite this paper: Sharma, S., Gan- Abstract genahalli, G.U. and Singh, U. (2020) Regu- lation of Hematopoietic Activity Involving Hematopoietic stem cells (HSCs) are tissue-specific cells giving rise to all New Interacting Partners (RRAGC & PSMC2, mature blood cell types regulated by a diverse group of hematopoietic cyto- CKAP4 & MANF and CTR9 & CNTNAP2). kines and growth factors that influences the survival & proliferation of early CellBio, 9, 123-141. https://doi.org/10.4236/cellbio.2020.93007 progenitors and differentiation mechanisms by modulating the functional ac- tivities of HSCs. In this study, the functional yet distinctive role of three novel Received: August 13, 2020 combinations of gene pairs RRAGC & PSMC2; CKAP4 & MANF; and CTR9 Accepted: September 27, 2020 & CNTNAP2 have been newly identified. These novel combinations of genes Published: September 30, 2020 were confirmed and expressed in K562 human leukemic cell line in the pres- Copyright © 2020 by author(s) and ence of cytokine combination (IL-3, FLT-3 and SCF) using RT-PCR and Scientific Research Publishing Inc. siRNA-mediated gene knock down strategy. -
Title Flap Loop of Glud2 Binds to Cbln1 and Induces Presynaptic
Flap loop of GluD2 binds to Cbln1 and induces presynaptic Title differentiation Author(s) Kuroyanagi, Tomoaki; Hirano, Tomoo Biochemical and biophysical research communications (2010), Citation 398(3): 537-541 Issue Date 2010-07-30 URL http://hdl.handle.net/2433/128851 © 2010 Elsevier Inc.; This is not the published version. Please cite only the published version.; この論文は出版社版であり Right ません。引用の際には出版社版をご確認ご利用ください 。 Type Journal Article Textversion author Kyoto University Flap loop of GluD2 binds to Cbln1 and induces presynaptic differentiation Tomoaki Kuroyanagi and Tomoo Hirano Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan Correspondence should be addressed to: T. Hirano Tel, 81-75-753-4237 Fax, 81-75-753-4227 E-mail, [email protected] (Tomoaki Kuroyanagi); [email protected] (Tomoo Hirano) 1 Abstract Glutamate receptor δ2 (GluD2) is selectively expressed on the postsynaptic spines at parallel-fiber (PF)-Purkinje neuron (PN) synapses. GluD2 knockout mice show a reduced number of PF-PN synapses, suggesting that GluD2 is involved in synapse formation. Recent studies revealed that GluD2 induces presynaptic differentiation in a manner dependent on its N-terminal domain (NTD) through binding of Cbln1 secreted from cerebellar granule neurons. However, the underlying mechanism of the specific binding of the NTD to Cbln1 remains elusive. Here, we have identified the flap loop (Arg321-Trp339) in the NTD of GluD2 (GluD2-NTD) as a crucial region for the binding to Cbln1 and the induction of presynaptic differentiation. -
Cytoskeleton-Associated Protein 4: Functions Beyond the Endoplasmic Reticulum in Physiology and Disease
International Scholarly Research Network ISRN Cell Biology Volume 2012, Article ID 142313, 11 pages doi:10.5402/2012/142313 Review Article Cytoskeleton-Associated Protein 4: Functions Beyond the Endoplasmic Reticulum in Physiology and Disease Kevin M. Tuffy and Sonia Lobo Planey Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA 18509, USA Correspondence should be addressed to Sonia Lobo Planey, [email protected] Received 21 August 2012; Accepted 19 September 2012 Academic Editors: A. Hergovich and C. M. Wells Copyright © 2012 K. M. Tuffy and S. L. Planey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cytoskeleton-associated protein 4 (CKAP4; also known as p63, CLIMP-63, or ERGIC-63) is a 63 kDa, reversibly palmitoylated and phosphorylated, type II transmembrane (TM) protein, originally identified as a resident of the endoplasmic reticulum (ER)/Golgi intermediate compartment (ERGIC). When localized to the ER, a major function of CKAP4 is to anchor rough ER to microtubules, organizing the overall structure of ER with respect to the microtubule network. There is also steadily accumulating evidence for diverse roles for CKAP4 localized outside the ER, including data demonstrating functionality of cell surface forms of CKAP4 in various cell types and of CKAP4 in the nucleus. We will review the recent studies that provide evidence for the existence of CKAP4 in multiple cellular compartments (i.e., ER, plasma membrane, and the nucleus) and discuss CKAP4’s role in the regulation of various physiological and pathological processes, such as interstitial cystitis, drug-induced cytotoxicity, pericullar proteolytic activity, and lung lipid homeostasis. -
The Roles of Zdhhcs in Cancer and As Potential Targets
S3181561: William Suelmann 1-7-2019 Supervisor:Lotteke Ziel-Swier The roles of zDHHCs in cancer and as potential targets Abstract: zDHHCs are proteins that are involved in multiple pathways in the cell. Palmitoylation of proteins happens when forming a thioester bond of palmitoyl-CoA and cysteine residue in DHHC-CR domain. There are multiple zDHHCs that are involved in multiple cancers, both as oncogenic and tumor suppressor. However, for targeting zDHHCs as potential targets in cancer there is more research needed. Introduction: Discovery and mechanism of zDHHCs The process of palmitoylation was first described in 1951[10], however the enzymes that catalyze palmitoylation are a more recent discovery. The first major breakthrough in finding this enzyme came through an experiment on yeast, also known as Saccharomyces cerevisiae. An Erf2p-Erf4p complex had been identified to be involved in localising and palmitoylation of Ras2 protein towards the plasma membrane. This complex had shown to increase Ras2 palmitoylation[1], where deletion of Erf2 or Erf4 would lead to either mislocalization of the Ras protein or a decrease in palmitoylation[2]. Another protein, identified as Akr1p(ankyrin-repeat-containing protein 1) was also identified in yeast, as it was shown that Akr1p mediated the palmitoylation of Yck2 (yeast casein kinase 2)[3]. Interestingly, Erf2 and Akr1p both were integral membrane proteins that contained the aspartate-histidine-histidine-cysteine (DHHC) cysteine-rich (CR) conserved domain and multiple transmembrane domains, where the DHHC domain was located between the second and third transmembrane domains[4][5]. zDHHC protein was acknowledged as a palmitoyltransferase through these studies in yeast, which showed how important the DHHC-CR domain is for activity within the cell. -
Multi-Transcriptomic Analysis Points to Early Organelle Dysfunction in 2 Human Astrocytes in Alzheimer’S Disease 3 4 5 Elena Galea1,2,3*, Laura D
medRxiv preprint doi: https://doi.org/10.1101/2021.02.25.21252422; this version posted March 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Multi-transcriptomic analysis points to early organelle dysfunction in 2 human astrocytes in Alzheimer’s disease 3 4 5 Elena Galea1,2,3*, Laura D. Weinstock5, Raquel Larramona1,2,4, Alyssa F. Pybus5, Lydia Giménez- 6 Llort1,6, Carole Escartin7, Levi B. Wood5,8* 7 8 9 1. Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, 10 Spain. 11 2. Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, 12 08193 Barcelona, Spain. 13 3. ICREA, 08010 Barcelona, Spain. 14 4. Current address: Celltec-UB, Departament de Biologia Cel.lular, Fisiologia i Immunologia, 15 Universitat de Barcelona, 08028; Institut de Neurociències, Universitat de Barcelona, 08035, 16 Barcelona, Spain. 17 5. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 18 Atlanta, 30332 USA. 19 6. Departament de Psiquiatria i Medicina Forense, Universitat Autònoma de Barcelona, 20 Bellaterra, 08193 Barcelona, Spain. 21 7. Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 22 92265, Fontenay-aux-Roses, France. 23 8. George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for 24 Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332 USA. 25 26 27 28 29 30 31 *Corresponding authors 32 [email protected]; +1 (617) 388 9950 33 [email protected]; +34 935 868 143. -
Disease-Related Cellular Protein Networks Differentially Affected
www.nature.com/scientificreports OPEN Disease‑related cellular protein networks diferentially afected under diferent EGFR mutations in lung adenocarcinoma Toshihide Nishimura1,8*, Haruhiko Nakamura1,2,8, Ayako Yachie3,8, Takeshi Hase3,8, Kiyonaga Fujii1,8, Hirotaka Koizumi4, Saeko Naruki4, Masayuki Takagi4, Yukiko Matsuoka3, Naoki Furuya5, Harubumi Kato6,7 & Hisashi Saji2 It is unclear how epidermal growth factor receptor EGFR major driver mutations (L858R or Ex19del) afect downstream molecular networks and pathways. This study aimed to provide information on the infuences of these mutations. The study assessed 36 protein expression profles of lung adenocarcinoma (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Weighted gene co-expression network analysis together with analysis of variance-based screening identifed 13 co-expressed modules and their eigen proteins. Pathway enrichment analysis for the Ex19del mutation demonstrated involvement of SUMOylation, epithelial and mesenchymal transition, ERK/mitogen- activated protein kinase signalling via phosphorylation and Hippo signalling. Additionally, analysis for the L858R mutation identifed various pathways related to cancer cell survival and death. With regard to the Ex19del mutation, ROCK, RPS6KA1, ARF1, IL2RA and several ErbB pathways were upregulated, whereas AURK and GSKIP were downregulated. With regard to the L858R mutation, RB1, TSC22D3 and DOCK1 were downregulated, whereas various networks, including VEGFA, were moderately upregulated. In all mutation types, CD80/CD86 (B7), MHC, CIITA and IFGN were activated, whereas CD37 and SAFB were inhibited. Costimulatory immune-checkpoint pathways by B7/CD28 were mainly activated, whereas those by PD-1/PD-L1 were inhibited. Our fndings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes. -
IBENS - Institut De Biologie De L’École Normale Supérieure Rapport Hcéres
IBENS - Institut de biologie de l’école Normale Supérieure Rapport Hcéres To cite this version: Rapport d’évaluation d’une entité de recherche. IBENS - Institut de biologie de l’école Normale Supérieure. 2013, École normale supérieure - ENS, Centre national de la recherche scientifique - CNRS, Institut national de la santé et de la recherche médicale - INSERM. hceres-02031420 HAL Id: hceres-02031420 https://hal-hceres.archives-ouvertes.fr/hceres-02031420 Submitted on 20 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Department for the evaluation of research units AERES report on unit: Institut de Biologie de l’Ecole Normale Supérieure IBENS Under the supervision of the following institutions and research bodies: Ecole Normale Supérieure Institut national de la santé et de la recherche médicale Centre National de la Recherche Scientifique January 2013 Research Units Department The president of AERES "signs[...], the evaluation reports, [...]countersigned for each evaluation department by the relevant head of department (Article 9, paragraph 3, of french decree n°2006-1334 dated 3 november 2006, revised). Institut de Biologie de l’ENS, IBENS, INSERM, CNRS and ENS, Mr Antoine TRILLER Grading Once the visits for the 2012-2013 evaluation campaign had been completed, the chairpersons of the expert committees, who met per disciplinary group, proceeded to attribute a score to the research units in their group (and, when necessary, for these units’ in-house teams).