Loliginidae LOLIGINIDAE Inshore Squids, Pencil Squids by M.C

Total Page:16

File Type:pdf, Size:1020Kb

Loliginidae LOLIGINIDAE Inshore Squids, Pencil Squids by M.C click for previous page 764 Cephalopods Loliginidae LOLIGINIDAE Inshore squids, pencil squids by M.C. Dunning iagnostic characters: Shape variable from short and stout to long and slender. Fins terminal or Dmarginal, but always reaching posterior end of body (present in Uroteuthis as very thin membranes around the “tail”). Funnel locking apparatus a simple, straight groove. Eyes covered with transparent membrane (cornea). Buccal connectives attached to ventral borders of arms (IV); 7 buccal lappets supplied with small suckers (can be readily lost after capture). Mouth surrounded by 10 appendages (8 arms, 2 tentacles). Two longitudinal rows of suckers on arms and 4 rows on tentacular clubs; hooks never present. Usually, left ventral arm (IV) hectocotylized in males; hectocotylus with suckers reduced in size or number, and/or modified into fleshy papillae or flaps, or lost completely. Colour: translucent to dense colour, bright scarlet (in some species with yellow and pink chromatophores) to dark brown (nearly black), darker dorsally, but highly variable depending on the behavioural situation and degree of expansion of chromatophores. ventral eye covered by funnel groove row of membrane suckers funnel dorsal row of suckers funnel pedicels locking cartilage modified mantle portion locking with cartilage reduced ventral (4th) suckers pair of arms hectocotylized corneal arm of males membrane gladius (internal skeletal mantle support) feather-shaped 4 longitudinal rows of suckers arms I beak (jaws) arm II buccal membrane tentacular club arm III buccal lappets often with suckers tentacle buccal connectives ventrally attached arms IV fin angle (left arm hectocotylized in males) ventral view diagram of oral surface of brachial crown and buccal area Loliginidae 765 Habitat, biology,and fisheries: Demersal or semipelagic inhabitants of coastal and continental shelf areas to a maximum depth of about 400 m. Several species are restricted to extremely shallow waters and some of these penetrate into brackish waters (Loliolus). Typically, they undertake diel movements, aggregating near the bottom during the day, but dispersing into the water column at night. Many species are positively phototactic, and hence often are captured with fishing techniques using light attraction. Some species undergo seasonal onshore-offshore migrations in response to temperature changes. The eggs (which range from about 2 mm diameter in Photololigo to about 10 mm diameter in Sepioteuthis) are encapsulated in gelatinous, finger-like strings and attached in clusters to various substrates. Hatchlings resemble the adults. Recent studies of growth using direct measurements from statoliths reveal that some tropical loliginids may live only for a few months. Inshore squids are predators on crustaceans and small fishes. Loliginids are the dominant component of the Western Central Pacific cephalopod catch, but separate statistics on total catches are not reported for this family. They are a significant component of major trawl fisheries in the Gulf of Thailand and South China Sea areas; they also are taken as bycatch in many nearshore trawl fisheries for crustaceans and demersal finfish. Numerous artisanal and subsistance fisheries take inshore squids either in multispecies catches or as prime target species; gear used includes purse seines, dip nets, lift nets, cast nets, encircling nets including fixed or tunnel nets in intertidal areas, baited and unbaited jigs sometimes trolled rather than used vertically, often used at night in association with light attraction. Loliginids are highly valued for human consumption. They are marketed either fresh, frozen, dried or processed into cleaned mantles (whole hoods, rings). Small squid are also used as bait for both commercial and recreational fisheries. Remarks: A recent study using modern biochemical genetic techniques has highlighted the incomplete state of knowledge of the taxonomy of the Indo-West Pacific loliginids. This is especially true for members of the genus Photololigo which includes the majority of the large commercially important species. The present set of diagnostic morphological characters (fin shape, sucker dentition, hectocotylus structure) does not always ensure a reliable identification of species. They do not take into account variability with growth and sex in some of these characters, particularly when these have been poorly and inadequately defined in the type descriptions (many from the mid 1800s). In many cases, type reference material is poorly preserved and had poor geographic locality information (e.g. Yokohama market for Loligo edulis, “Australian Seas (?S.E.)” for Loligo etheridgei. Generic level revisions have recently been undertaken for Sepioteuthis, Loliolus, and “Loligo”. However, additional studies at the species level over broad geographic areas are required to clarify the “species complexes” represented by what are currently known as “Photololigo edulis”, “P. c h i n e n s i s “ and ”Sepioteuthis lessoniana“. Several poorly known and new unnamed species are referred to in the literature and ”seasonal forms" with different life history characteristics and of questionable taxonomic status and distribution are known (e.g. Sepioteuthis lessoniana around Okinawa). This poor state of taxonomic knowledge has been highlighted previously in workshops and published papers but little progress has been made.Current and future fisheries assessments of the loliginid resource and subsequent decisions concerning the management of the stocks are dependent on accurate identification of species. Therefore, there is an urgent need for a substantial coopera- tive region-wide taxonomic study of the genus Photololigo using classical morphology supported by modern techniques including allozyme electrophoresis and DNA analysis. Similar families occurring in the area Sepiidae (cuttlefishes): the loliginid genus Sepioteuthis shows some external similarities to cuttlefish but can be easily distinguished from them by the presence of a gladius in the dorsal mantle rather than a chalky cuttlebone with a posterior calcareous spine; the presence of the midline con- nection of the fin lobes posteriorly in Sepioteuthis and the possession of contractile rather than retractile tentacles only without pockets. Identification note The key and descriptions provided below are based on the calcareous existing, inadequate adult character sets and users should spine recognize that in some cases, they may not readily assist Sepiidae Loliginidae (Sepioteuthis) with identifying the animals at hand. It should also be noted that in some cases, known or suspected species complexes are referred to rather than single species (“Photololigo chinensis”, “Photololigo edulis” and “Sepioteuthis lessoniana“). Some nominal species described in the literature and listed below are not included in the key because detailed descriptions have yet to be published, they remain poorly characterized from the type descriptions or are described from limited material and their status as valid species remains questionable. These include: 766 Cephalopods Loligo reesi (Voss, 1962), a form that matures at a small size (less than 80 mm mantle length) known only from the Philippines which has long square-tipped arm sucker teeth, both ventral arms hectocotylized in males (left with papillae along more than 50% arm length and right with much reduced suckers on the distal half) and the the tips of both ventral arms in males devoid of suckers and papillae. The existing descriptions do not mention the presence of light organs; Loligo vossi Nesis, 1982 [= species A of Voss (1963)], reaching 140 mm mantle length and reported from around the Philippines and northern Indian Ocean perifery, with 15 to 20 triangular teeth on the large tentacular suckers, 2 to 4 on the distal edge much larger, sharp and hook-like in Philippine specimens. Only the left ventral arm is hectocotylized in males by the development of long fleshy papillae along 40 to 50% of the arm. The existing descriptions do not mention the presence of light organs; Loligo n.sp. of Chotiyaputta (1993), a form that matures at a small size (less than 60 mm mantle length) known only from the Gulf of Thailand which has long square-tipped arm sucker teeth and sharp conical widely spaced subequal teeth on the large tentacular sucker rings. The existing incomplete description does not mention the presence of light organs; Photololigo spp. 1, 2, 3 of Yeatman and Benzie, 1994, are “species” which have been distinguished using allozyme electrophoresis. Morphological characteristics of species 1 and 2 from northern Australia (which mature at less than 120 mm mantle length) fall within the range of the “Photololigo edulis” complex with square tipped teeth on the arm sucker rings, sharp conical teeth on the large tentacular sucker rings and hectocotylization by development of long fleshy papillae along more than 50% of the left ventral arm in males. Species 3 is a larger maturing form (more than 150 mm mantle length) which falls within the “Photololigo chinensis” complex with a broad, robust mantle and large head and arms; sharp conical toothed sucker rings on the arms and large sharp conical teeth interspersed with smaller ones on the large tentacular sucker rings. All species have paired light organs adjacent to the rectum on the ink sac. It is recommended that samples of animals (including mature males and females where available) which cannot be identified readily from the key should be preserved in formalin or alcohol,
Recommended publications
  • Caribbean Reef Squid)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Sepioteuthis sepioidea (Caribbean Reef Squid) Order: Teuthida (Squid) Class: Cephalopoda (Octopuses, Squid and Cuttlefish) Phylum: Mollusca (Molluscs) Fig. 1. Caribbean reef squid, Sepioteuthis sepioidea. [http://www.arkive.org/caribbean-reef-squid/sepioteuthis-sepioidea/image-G76785.html, downloaded 10 March 2016] TRAITS. The mantle (body mass) is wide and relatively flattened, with a length of 114mm in adult males and 120 mm in adult females (Moynihan and Rodaniche, 1982). A skeleton is absent but a cartilaginous layer is normally found beneath the surface of the mantle which enables movement (Mather et al., 2010).Two fins span the length of the lateral mantle margins (Fig. 1). The head is slightly pointed to its anterior end, with eight arms and two tentacles which encircle the mouth (Mather et al., 2010). Suckers are positioned along the inner region of arms and tentacle clubs. The mantle is fleshy when relaxed and the skin is very fragile (Moynihan and Rodaniche, 1982). The colour patterns of the skin can change periodically, due to the existence of light-reflective and iridescence-inducing cells (Mather, 2010). DISTRIBUTION. Distributed throughout the West Indian islands, including Trinidad and Tobago; widespread along the Central and South American coasts adjacent to the Caribbean Sea and also found in Bermuda and Florida (Moynihan and Rodaniche, 1982). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Found in highly saline, clear waters of marine habitats at varying depths and distances from shoreline (Wood et al., 2008). The depth and habitat they are observed at depends on their growth stage (Mather et al., 2010).
    [Show full text]
  • Molecular Evidence for Co-Occurring Cryptic Lineages Within the Sepioteuthis Cf
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/259326231 Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans ARTICLE in HYDROBIOLOGIA · DECEMBER 2013 Impact Factor: 2.28 · DOI: 10.1007/s10750-013-1778-0 CITATIONS READS 5 86 11 AUTHORS, INCLUDING: Frank E. Anderson Gusti Ngurah Mahardika Southern Illinois University Carbondale Udayana University 33 PUBLICATIONS 635 CITATIONS 42 PUBLICATIONS 110 CITATIONS SEE PROFILE SEE PROFILE Z.A. Muchlisin, Ph.D Kolliyil Sunilkumar Mohamed Syiah Kuala University Central Marine Fisheries Research Insti… 97 PUBLICATIONS 210 CITATIONS 88 PUBLICATIONS 198 CITATIONS SEE PROFILE SEE PROFILE Available from: Samantha H. Cheng Retrieved on: 20 October 2015 Hydrobiologia DOI 10.1007/s10750-013-1778-0 CEPHALOPOD BIOLOGY AND EVOLUTION Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans S. H. Cheng • F. E. Anderson • A. Bergman • G. N. Mahardika • Z. A. Muchlisin • B. T. Dang • H. P. Calumpong • K. S. Mohamed • G. Sasikumar • V. Venkatesan • P. H. Barber Received: 18 December 2012 / Accepted: 30 November 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract The big-fin reef squid, Sepioteuthis cf. from nearly 400 individuals sampled from throughout lessoniana (Lesson 1930), is an important commodity the Indian, Indo-Pacific, and Pacific Ocean portions of species within artisanal and near-shore fisheries in the the range of this species. Phylogenetic analyses using Indian and Indo-Pacific regions. While there has been maximum likelihood methods and Bayesian inference some genetic and physical evidence that supports the identified three distinct lineages with no clear geo- existence of a species complex within S.
    [Show full text]
  • Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1
    Pacific Science (1995), vol. 49, no. 2: 143-155 © 1995 by University of Hawai'i Press. All rights reserved Aspects of the Natural History of Pelagic Cephalopods of the Hawaiian Mesopelagic-Boundary Region 1 RICHARD EDWARD YOUNG 2 ABSTRACT: Pelagic cephalopods of the mesopelagic-boundary region in Hawai'i have proven difficult to sample but seem to occupy a variety ofhabitats within this zone. Abralia trigonura Berry inhabits the zone only as adults; A. astrosticta Berry may inhabit the inner boundary zone, and Pterygioteuthis giardi Fischer appears to be a facultative inhabitant. Three other mesopelagic species, Liocranchia reinhardti (Steenstrup), Chiroteuthis imperator Chun, and Iridoteuthis iris (Berry), are probable inhabitants; the latter two are suspected to be nonvertical migrants. The mesopelagic-boundary region also contains a variety of other pelagic cephalopods. Some are transients, common species of the mesopelagic zone in offshore waters such as Abraliopsis spp., neritic species such as Euprymna scolopes Berry, and oceanic epipelagic species such as Tremoctopus violaceus Chiaie and Argonauta argo Linnaeus. Others are appar­ ently permanent but either epipelagic (Onychoteuthis sp. C) or demersal (No­ totodarus hawaiiensis [Berry] and Haliphron atlanticus Steenstrup). Submersible observations show that Nototodarus hawaiiensis commonly "sits" on the bot­ tom and Haliphron atlanticus broods its young in the manner of some pelagic octopods. THE CONCEPT OF the mesopelagic-boundary over bottom depths of the same range. The region (m-b region) was first introduced by designation of an inner zone is based on Reid et al. (1991), although a general asso­ Reid'sfinding mesopelagic fishes resident there ciation of various mesopelagic animals with during both the day and night; mesopelagic land masses has been known for some time.
    [Show full text]
  • Diet of the Striped Dolphin, Stenella Coeruleoalba, in the Eastern Tropical Pacific Ocean
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 3-2008 Diet of the Striped Dolphin, Stenella coeruleoalba, in the Eastern Tropical Pacific Ocean William F. Perrin Kelly M. Robertson William A. Walker Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Part of the Environmental Sciences Commons Perrin, William F.; Robertson, Kelly M.; and Walker, William A., "Diet of the Striped Dolphin, Stenella coeruleoalba, in the Eastern Tropical Pacific Ocean" (2008). Publications, Agencies and Staff of the U.S. Department of Commerce. 23. https://digitalcommons.unl.edu/usdeptcommercepub/23 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NOAA Technical Memorandum NMFS T O F C E N O M M T M R E A R P C E E D MARCH 2008 U N A I C T I E R D E M ST A AT E S OF DIET OF THE STRIPED DOLPHIN, Stenella coeruleoalba, IN THE EASTERN TROPICAL PACIFIC OCEAN William F. Perrin Kelly M. Robertson William A. Walker NOAA-TM-NMFS-SWFSC-418 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southwest Fisheries Science Center The National Oceanic and Atmospheric Administration (NOAA), organized in 1970, has evolved into an agency which establishes national policies and manages and conserves our oceanic, coastal, and atmospheric resources.
    [Show full text]
  • Longfin Squid 2018 Data Update
    Report to the Mid-Atlantic Fishery Management Council Regarding Fishery and Survey Data Updates, through 2017, for the Longfin Inshore Squid (Doryteuthis (Amerigo) pealeii) Stock by Lisa C. Hendrickson Population Dynamics Branch National Marine Fisheries Service Northeast Fisheries Science Center Woods Hole, MA 02543 April 9, 2018 1.0 Background This report contains updates of the landings and survey relative abundance and biomass indices of longfin inshore squid (Doryteuthis (Amerigo) pealeii) through 2017. The report also contains updates of the additional information requested by members of the Mid-Atlantic Fishery Management Council’s (MAFMC) Scientific and Statistical Committee (SSC) to aid them in recommending an Acceptable Biological Catch (ABC) for the D. pealeii stock in 2019. The additional information includes maps of the recent spatial distributions of the landings for the directed bottom trawl fishery and stratified mean body weights from the Northeast Fisheries Science Center’s (NEFSC) fall bottom trawl surveys. D. pealeii has a lifespan of less than one year (Macy and Brodziak 2001). The species inhabits the continental shelf and upper slope and ranges between southern Newfoundland and the Gulf of Venezuela, including the Gulf of Mexico and the Caribbean Sea (Jereb et al. 2010). The species is most abundant between Georges Bank and Cape Hatteras, North Carolina where a small-mesh bottom trawl fishery occurs throughout the year; offshore during late fall through early spring and inshore during the remainder of the year. The U.S. East Coast longfin squid population that inhabits the region between the Gulf of Maine and Cape Hatteras, NC (Northwest Atlantic Fisheries Organization (NAFO) Subareas 5 and 6, Figure 1) is managed as a single stock based on evidence from genetic studies (Arkhipkin et al.
    [Show full text]
  • In the Loliginid Squid Alloteuthis Subulata and Loligo Vulgaris
    The Journal of Experimental Biology 204, 2103–2118 (2001) 2103 Printed in Great Britain © The Company of Biologists Limited 2001 JEB3380 REFLECTIVE PROPERTIES OF IRIDOPHORES AND FLUORESCENT ‘EYESPOTS’ IN THE LOLIGINID SQUID ALLOTEUTHIS SUBULATA AND LOLIGO VULGARIS L. M. MÄTHGER1,2,* AND E. J. DENTON1 1The Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK and 2Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK *e-mail: [email protected] Accepted 27 March 2001 Summary Observations were made of the reflective properties of parts of the spectrum and all reflections in other the iridophore stripes of the squid Alloteuthis subulata and wavebands, such as those in the red and near ultraviolet, Loligo vulgaris, and the likely functions of these stripes are will be weak. The functions of the iridophores reflecting red considered in terms of concealment and signalling. at normal incidence must be sought in their reflections of In both species, the mantle muscle is almost transparent. blue-green at oblique angles of incidence. These squid rely Stripes of iridophores run along the length of each side of for their camouflage mainly on their transparency, and the the mantle, some of which, when viewed at normal ventral iridophores and the red, green and blue reflective incidence in white light, reflect red, others green or blue. stripes must be used mainly for signalling. The reflectivities When viewed obliquely, the wavebands best reflected move of some of these stripes are relatively low, allowing a large towards the blue/ultraviolet end of the spectrum and fraction of the incident light to be transmitted into the their reflections are almost 100 % polarised.
    [Show full text]
  • Intercapsular Embryonic Development of the Big Fin Squid Sepioteuthis Lessoniana (Loliginidae)
    Indian Journal of Marine Sciences Vol. 31(2), June 2002, pp. 150-152 Short Communication Intercapsular embryonic development of the big fin squid Sepioteuthis lessoniana (Loliginidae) V. Deepak Samuel & Jamila Patterson* Suganthi Devadason Marine Research Institute, 44, Beach Road, Tuticorin – 628 001, Tamil Nadu, India ( E.mail : [email protected] ) Received 18 June 2001, revised 22 January 2002 The egg masses of big fin squid, Sepioteuthis lessoniana were collected from the wild and their intercapsular embryonic development was studied. The average incubation period of the egg varied between 18-20 days. The cleavage started on the first day and the mantle developed between third and fifth day. The yolk started decreasing eighth day onwards. The tentacles with the sucker primordia on the tip were prominent from tenth day. The yolk totally reduced between thirteenth and seventeenth day and the paralarvae hatched out on eighteenth day.The developmental stages of the embryo inside the capsules during the incubation period is understood. [ Key words: Sepioteuthis lessoniana , intercapsular development ] There are about 660 species of cephalopods in the the death of the embryo. Egg capsules were taken world oceans, of which less than hundred species are everyday to study the developmental stages of the of commercial importance. In the Indian seas, about growing embryos. Size of the egg capsules, eggs and 80 species of cephalopods exist but the main fishery is the embryos inside the eggs were recorded everyday contributed by only a dozen or so. Though they play till hatching. Various stages of development were ob- an important role in the economy of our country, their served and recorded as line drawings and photographs early life cycle and reproductive biology are not yet with the help of a light microscope.
    [Show full text]
  • Temporal Variation in Growth Rates and Reproductive Parameters in the Small Near-Shore Tropical Squid Loliolus Noctiluca; Is Cooler Better?
    MARINE ECOLOGY PROGRESS SERIES Vol. 218: 167–177, 2001 Published August 20 Mar Ecol Prog Ser Temporal variation in growth rates and reproductive parameters in the small near-shore tropical squid Loliolus noctiluca; is cooler better? George D. Jackson1,*, Natalie A. Moltschaniwskyj2 1Institute of Antarctic and Southern Ocean Studies, University of Tasmania, PO Box 252-77, Hobart, Tasmania 7001, Australia 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Locked Bag 1-370, Launceston, Tasmania, 7250, Australia ABSTRACT: Seasonal growth rates and size- and age-at-maturity were analysed for the small near- shore tropical loliginid squid Loliolus noctiluca off North Queensland, Australia, over a period of 2 yr. Age of individuals was determined using daily statolith increments. The life cycle of L. noctiluca off North Queensland was just over 4 mo. Analysis of growth found that growth was non-asymptotic, and the form of the curve; exponential, linear or log-linear, depended on sex and season that individuals were caught. Winter-caught individuals were the fastest growing and achieved the largest size com- pared with summer or autumn-caught individuals. Furthermore, females grew faster than males dur- ing the winter. The patterns of growth of L. noctiluca were compared between tropical North Queensland and temperate New South Wales. The temperate individuals lived longer and had slower growth rates. There was also a marked seasonal influence on the onset of sexual maturity among the North Queensland population, with the fastest growing winter-caught individuals matur- ing later than the autumn or summer individuals. L. noctiluca has a large latitudinal range from New Guinea to Tasmania, this study, and published work, suggests a trend towards increased lifespan and decreased growth rate with increasing latitude.
    [Show full text]
  • Defensive Behaviors of Deep-Sea Squids: Ink Release, Body Patterning, and Arm Autotomy
    Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Roy L. Caldwell, Chair Professor David R. Lindberg Professor George K. Roderick Dr. Bruce H. Robison Fall, 2009 Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy © 2009 by Stephanie Lynn Bush ABSTRACT Defensive Behaviors of Deep-sea Squids: Ink Release, Body Patterning, and Arm Autotomy by Stephanie Lynn Bush Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair The deep sea is the largest habitat on Earth and holds the majority of its’ animal biomass. Due to the limitations of observing, capturing and studying these diverse and numerous organisms, little is known about them. The majority of deep-sea species are known only from net-caught specimens, therefore behavioral ecology and functional morphology were assumed. The advent of human operated vehicles (HOVs) and remotely operated vehicles (ROVs) have allowed scientists to make one-of-a-kind observations and test hypotheses about deep-sea organismal biology. Cephalopods are large, soft-bodied molluscs whose defenses center on crypsis. Individuals can rapidly change coloration (for background matching, mimicry, and disruptive coloration), skin texture, body postures, locomotion, and release ink to avoid recognition as prey or escape when camouflage fails. Squids, octopuses, and cuttlefishes rely on these visual defenses in shallow-water environments, but deep-sea cephalopods were thought to perform only a limited number of these behaviors because of their extremely low light surroundings.
    [Show full text]
  • Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries
    Advances in Cephalopod Science:Biology, Ecology, Cultivation and Fisheries,Vol 67 (2014) Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Marine Biology, Vol. 67 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Paul G.K. Rodhouse, Graham J. Pierce, Owen C. Nichols, Warwick H.H. Sauer, Alexander I. Arkhipkin, Vladimir V. Laptikhovsky, Marek R. Lipiński, Jorge E. Ramos, Michaël Gras, Hideaki Kidokoro, Kazuhiro Sadayasu, João Pereira, Evgenia Lefkaditou, Cristina Pita, Maria Gasalla, Manuel Haimovici, Mitsuo Sakai and Nicola Downey. Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries. In Erica A.G. Vidal, editor: Advances in Marine Biology, Vol. 67, Oxford: United Kingdom, 2014, pp. 99-233. ISBN: 978-0-12-800287-2 © Copyright 2014 Elsevier Ltd. Academic Press Advances in CephalopodAuthor's Science:Biology, personal Ecology, copy Cultivation and Fisheries,Vol 67 (2014) CHAPTER TWO Environmental Effects on Cephalopod Population Dynamics: Implications for Management of Fisheries Paul G.K.
    [Show full text]
  • Uroteuthis Chinensis Mitre Squid
    FACTSHEET: MITRE SQUID SEAFDEC/UNEP/GEF/FR-RSTC.3_WP4.1K Uroteuthis chinensis Mitre squid A. Environment/Ecology: Demersal; non-migratory (Ref. 75930); depth range 15 - 170 m (Ref. 275), usually 40 - 150 m (Ref. 75930). Tropical; 21°C - 29°C (Ref. 75934); 34°N - 30°S, 99°E - 154°E (Ref. 275) Page 1 of 9 FACTSHEET: MITRE SQUID SEAFDEC/UNEP/GEF/FR-RSTC.3_WP4.1K B. Distribution: Note: Distribution range colours indicate degree of suitability of habitat which can be interpreted as probabilities of occurrence. Indo-West Pacific. C. Length at first maturity / Size / Weight / Age: Maturity: Lm ?, range 6 - 8 cm Max length : 30.0 cm ML male/unsexed; (Ref. 275) D. Short description Uroteuthis is a genus of 14 species of common inshore squids of the Indo-West Pacific and is further subdivided into 3 subgenera. The members of the genus Uroteuthis are the only squids of the family Loliginidae that possess photophores (light-emitting organs) and all species in the genus have a pair of photophore organs on the ventral surface of their ink sac either side of their intestine. Uroteuthis species range in size between 3 cm to 100 cm (mantle length). As with all other members of the family Loliginidae, they have a cornea that covers the lens of each eye, and have a gladius that extends the full length of the mantle and a gill that has a branchial canal. E. Biology Also caught by scoop nets and bamboo stake nets. Members of the class Cephalopoda are gonochoric. Male and female adults usually die shortly after spawning and brooding, respectively.
    [Show full text]
  • Geographic and Temporal Patterns in Size and Maturity of the Longfin Inshore Squid (Loligo Pealeii) Off the Northeastern United States
    Geographic and temporal patterns in size and maturity of the longfin inshore squid (Loligo pealeii) off the northeastern United States Item Type article Authors Hatfield, Emma M.C.; Cadrin, Steven X. Download date 04/10/2021 18:55:59 Link to Item http://hdl.handle.net/1834/31057 200 Abstract–Analysis of 32 years of stan­ Geographic and temporal patterns dardized survey catches (1967–98) indi­ cated differential distribution patterns in size and maturity of the longfin inshore squid for the longfin inshore squid (Loligo pealeii) over the northwest Atlantic (Loligo pealeii) off the northeastern United States U.S. continental shelf, by geographic region, depth, season, and time of day. Emma M.C. Hatfield Catches were greatest in the Mid- Atlantic Bight, where there were sig­ Steven X. Cadrin nificantly greater catches in deep water Northeast Fisheries Science Center during winter and spring, and in National Marine Fisheries Service, NOAA shallow water during autumn. Body 166 Water Street size generally increased with depth Woods Hole, Massachusetts 02543 in all seasons. Large catches of juve­ Present address (for E.M.C. Hatfield): FRS Marine Laboratory niles in shallow waters off southern Victoria Road New England during autumn resulted Aberdeen AB11 9DB from inshore spawning observed during Scotland, United Kingdom late spring and summer; large propor­ E-mail address (for E. M. C. Hatfield): e.hatfi[email protected] tions of juveniles in the Mid-Atlantic Bight during spring suggest that sub­ stantial winter spawning also occurs. Few mature squid were caught in sur­ vey samples in any season; the major­ ity of these mature squid were cap­ tured south of Cape Hatteras during The longfin inshore squid, Loligo pea- mers, 1967; 1969; Serchuk and Rathjen, spring.
    [Show full text]