Tsunami and Coastal Disaster Risk Management in Indonesia

Total Page:16

File Type:pdf, Size:1020Kb

Tsunami and Coastal Disaster Risk Management in Indonesia Taming the Impossible?! Tsunami and Coastal Disaster Risk Management in Indonesia - Training Module - by Eberhard Krain, Dewi Yanurita and Anne-Katrin Link Purwokerto 8th – 17th August 2006 Joint International Workshop cum Training Course “Coastal Ecosystems: Hazards Management and Rehabilitation” General Soedirman University (UNSOED), Purwokerto Centre for Science & Technology of the Non-Aligned and Other Development Countries (NAM-Centre), New Delhi, India Center for Tropical Marine Ecology (ZMT), Bremen List of Contents 1. INTRODUCTION ...................................................................................................... 4 2. CAUSES OF TSUNAMIS ......................................................................................... 4 3. PHYSICAL PROPERTIES OF TSUNAMI WAVES ................................................. 7 3.1 What is a Wave? ........................................................................................................................... 7 3.2 Tsunami Waves vs. Wind-generated Waves ............................................................................. 10 3.3 Energy Transformation .............................................................................................................. 12 3.4 Deep-water vs. Shallow-water Waves ....................................................................................... 12 3.5 Definition of Shore Face Border ................................................................................................ 15 3.6 Wave Refraction .......................................................................................................................... 16 4. CHARACTERISTICS AND DIMENSIONS OF TSUNAMIS .................................. 18 4.1 Tsunami Trough and Crest ........................................................................................................ 18 4.2 How Many Tsunami Waves Are Common? ............................................................................... 19 4.3 Size of Tsunamis......................................................................................................................... 20 4.4 Where do Tsunamis Occur? ...................................................................................................... 20 5. THE TSUNAMI EARLY WARNING SYSTEMS (TEWS) ....................................... 22 5.1 Pacific Tsunami Warning Center (PTWC) ................................................................................. 22 5.2 Deep-ocean Tsunami Detection ................................................................................................. 23 5.3 The German-Indian Ocean Tsunami Early Warning System (GITEWS) .................................. 24 6. WHAT TO DO IF A TSUNAMI IS APPROACHING (SOURCE: NASA OBSERVATORIUM (1999)) ....................................................................................... 26 7. NATURAL BUFFERS FOR COASTLINES ........................................................... 26 1 7.1 Coral Reefs .................................................................................................................................. 26 7.2 Mangroves ................................................................................................................................... 27 7.3 Coastal Terrestrial Vegetation ................................................................................................... 27 8. DISASTER MANAGEMENT IN INDONESIA ........................................................ 27 8.2 Institutional Framework for Natural Disaster Management in Indonesia ............................... 28 8.2.1 Decentralization Laws and Handling of Disasters .................................................................. 28 8.2.2 Disaster Risk Management on National Level ....................................................................... 28 8.2.3 Disaster Risk Management on Regional and Local Level ...................................................... 29 8.2.4 Problems in Disaster Risk Management ................................................................................ 29 8.3 The Relationship Between Coastal Disaster Risk Management and Integrated Coastal Zone Management ...................................................................................................................................... 29 8.4 People‘s Attitude......................................................................................................................... 31 9. CONCLUSIONS ..................................................................................................... 32 10. GLOSSARY (SOURCE: NOAA/PMEL (2006)) ................................................... 34 11. SELECTED READINGS AND REFERENCES .................................................... 38 12. ANNEX: ANSWERS TO QUESTIONS ................................................................ 41 2 List of Figures FIGURE 1A -1C) TSUNAMI GENERATION ......................................................................................................... 5 FIGURE 2A) WAVE PROPERTIES: WAVE PARAMETERS. ............................................................................. 7 FIGURE 3) THE FAMOUS KRAKATAU ERUPTION IN 1883: WAVE HEIGHT IN METERS AND RUN TIME OF THE TSUNAMI IN MINUTES. SOURCE: NIEDEK AND FRATER (2004:22). ...................... 9 FIGURE 4) MAP VIEW AND WAVE PROFILE OF WIND-GENERATED WAVES. SOURCE: PINET (1998:239) ....................................................................................................................................................... 10 FIGURE 5A) WAVE TRAINS: MERGING OF 2 WAVE TRAINS. SOURCE: SCHWARZER (2006) ........... 11 FIGURE 6) WAVE ENERGY TRANSFORMATION AT THE SHORELINE, SOURCE SCHWARZER (2006). ......................................................................................................................................................................... 12 FIGURE 7A) THE MOTION OF WATER PARTICLES BENEATH WAVES. WAVE MOTION WITH DEPTH ............................................................................................................................................................ 13 FIGURE 8A) THE DISTORTION OF WATER-PARTICLES ORBITS IN SHALLOW WATER. DEEP- WATER WAVE ............................................................................................................................................. 14 FIGURE 9) THE SHORE FACE DEFINITION ..................................................................................................... 15 FIGURE 10A) WAVE REFRACTION IN SHALLOW WATER. CHANGE IN WAVE DIRECTION IN SHALLOW WATER. SOURCE: SCHWARZER (2006) ............................................................................ 16 FIGURE 11A) WAVE REFRACTION AT THE SHORELINE. WAVE REFRACTION IN BAYS. SOURCE: SCHWARZER (2006) .................................................................................................................................... 17 FIGURE 12) MODEL OF WAVE CREST (RED) AND THROUGH (BLUE) OF THE INDIAN OCEAN TSUNAMI. SOURCE: RESEARCH CENTER FOR DISASTER REDUCTION SYSTEMS (2005) ....... 19 FIGURE 13) TSUNAMI THREATENED COASTLINES OF THE WORLD. SOURCE NIEDEK AND FRATER (2004:20). ....................................................................................................................................... 21 FIGURE 14) TSUNAMI HAZARD MAP OF THE WORLD. SOURCE:OAK RIDGE NATIONAL LABORATORY IN NATIONAL GEOGRAPHIC (APRIL 2005) [INDONESIAN VERSION OF THE NATIONAL GEOGRAPHIC]. ...................................................................................................................... 22 FIGURE 15) THE PACIFIC TSUNAMI WARNING CENTER (PTWC). SOURCE NIEDEK AND FRATER (2004:25) ......................................................................................................................................................... 23 FIGURE 16) THE DEEP-OCEAN ASSESSMENT AND REPORTING OF TSUNAMIS (DART) SYSTEM. SOURCE: NOAA (N.P.) ................................................................................................................................ 24 FIGURE 17) THE GERMAN INDIAN OCEAN TSUNAMI EARLY WARNING SYSTEM (GITEWS) AS PLANNED BY THE GFZ, SHOWING THE LOCATION OF THE PLANNED BUOY SYSTEMS, TERRESTRIAL AND COASTAL TIDE STATIONS. SOURCE: GEOFORSCHUNGSZENTRUM POTSDAM, WESER KURIER (2006). ......................................................................................................... 25 FIGURE 18) ACTIVE AND POTENTIALLY ACTIVE VOLCANOES IN INDONESIA. SOURCE: EFFENDI ET.AL. (2004:7).............................................................................................................................................. 27 FIGURE 19) CONEPTUAL VIEW OF THE GEOHAZARD SYSTEM. SOURCE: EFFENDI ET.AL. (2004:9) ......................................................................................................................................................................... 28 List of Tables TABLE 1: DIFFERENT MANAGEMENT STYLES BY DISASTER PHASES 31 3 1. Introduction Natural extreme events, such as floods, earthquakes or storms, can cause much damage to people, property, and nature. During the 26th December 2004 Tsunami off the coast of northern Sumatra, Indonesia, many coastal communities along the shores of the Indian Ocean were affected. In Indonesia more than 230,000 people died or remained missing and hundred thousands lost their homes. This reader will explain and summarize the physical characteristics of tsunamis and reflect the current
Recommended publications
  • Transport Due to Transient Progressive Waves of Small As Well As of Large Amplitude
    This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1 Transport due to Transient Progressive Waves Juan M. Restrepo1,2 , Jorge M. Ram´ırez 3 † 1Department of Mathematics, Oregon State University, Corvallis OR 97330 USA 2Kavli Institute of Theoretical Physics, University of California at Santa Barbara, Santa Barbara CA 93106 USA. 3Departamento de Matem´aticas, Universidad Nacional de Colombia Sede Medell´ın, Medell´ın Colombia (Received xx; revised xx; accepted xx) We describe and analyze the mean transport due to numerically-generated transient progressive waves, including breaking waves. The waves are packets and are generated with a boundary-forced air-water two-phase Navier Stokes solver. The analysis is done in the Lagrangian frame. The primary aim of this study is to explain how, and in what sense, the transport generated by transient waves is larger than the transport generated by steady waves. Focusing on a Lagrangian framework kinematic description of the parcel paths it is clear that the mean transport is well approximated by an irrotational approximation of the velocity. For large amplitude waves the parcel paths in the neighborhood of the free surface exhibit increased dispersion and lingering transport due to the generation of vorticity. Armed with this understanding it is possible to formulate a simple Lagrangian model which captures the transport qualitatively for a large range of wave amplitudes. The effect of wave breaking on the mean transport is accounted for by parametrizing dispersion via a simple stochastic model of the parcel path. The stochastic model is too simple to capture dispersion, however, it offers a good starting point for a more comprehensive model for mean transport and dispersion.
    [Show full text]
  • Arxiv:2002.03434V3 [Physics.Flu-Dyn] 25 Jul 2020
    APS/123-QED Modified Stokes drift due to surface waves and corrugated sea-floor interactions with and without a mean current Akanksha Gupta Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India.∗ Anirban Guhay School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK. (Dated: July 28, 2020) arXiv:2002.03434v3 [physics.flu-dyn] 25 Jul 2020 1 Abstract In this paper, we show that Stokes drift may be significantly affected when an incident inter- mediate or shallow water surface wave travels over a corrugated sea-floor. The underlying mech- anism is Bragg resonance { reflected waves generated via nonlinear resonant interactions between an incident wave and a rippled bottom. We theoretically explain the fundamental effect of two counter-propagating Stokes waves on Stokes drift and then perform numerical simulations of Bragg resonance using High-order Spectral method. A monochromatic incident wave on interaction with a patch of bottom ripple yields a complex interference between the incident and reflected waves. When the velocity induced by the reflected waves exceeds that of the incident, particle trajectories reverse, leading to a backward drift. Lagrangian and Lagrangian-mean trajectories reveal that surface particles near the up-wave side of the patch are either trapped or reflected, implying that the rippled patch acts as a non-surface-invasive particle trap or reflector. On increasing the length and amplitude of the rippled patch; reflection, and thus the effectiveness of the patch, increases. The inclusion of realistic constant current shows noticeable differences between Lagrangian-mean trajectories with and without the rippled patch.
    [Show full text]
  • Geology of Hawaii Reefs
    11 Geology of Hawaii Reefs Charles H. Fletcher, Chris Bochicchio, Chris L. Conger, Mary S. Engels, Eden J. Feirstein, Neil Frazer, Craig R. Glenn, Richard W. Grigg, Eric E. Grossman, Jodi N. Harney, Ebitari Isoun, Colin V. Murray-Wallace, John J. Rooney, Ken H. Rubin, Clark E. Sherman, and Sean Vitousek 11.1 Geologic Framework The eight main islands in the state: Hawaii, Maui, Kahoolawe , Lanai , Molokai , Oahu , Kauai , of the Hawaii Islands and Niihau , make up 99% of the land area of the Hawaii Archipelago. The remainder comprises 11.1.1 Introduction 124 small volcanic and carbonate islets offshore The Hawaii hot spot lies in the mantle under, or of the main islands, and to the northwest. Each just to the south of, the Big Island of Hawaii. Two main island is the top of one or more massive active subaerial volcanoes and one active submarine shield volcanoes (named after their long low pro- volcano reveal its productivity. Centrally located on file like a warriors shield) extending thousands of the Pacific Plate, the hot spot is the source of the meters to the seafloor below. Mauna Kea , on the Hawaii Island Archipelago and its northern arm, the island of Hawaii, stands 4,200 m above sea level Emperor Seamount Chain (Fig. 11.1). and 9,450 m from seafloor to summit, taller than This system of high volcanic islands and asso- any other mountain on Earth from base to peak. ciated reefs, banks, atolls, sandy shoals, and Mauna Loa , the “long” mountain, is the most seamounts spans over 30° of latitude across the massive single topographic feature on the planet.
    [Show full text]
  • The Stokes Drift in Ocean Surface Drift Prediction
    EGU2020-9752 https://doi.org/10.5194/egusphere-egu2020-9752 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The Stokes drift in ocean surface drift prediction Michel Tamkpanka Tamtare, Dany Dumont, and Cédric Chavanne Université du Québec à Rimouski, Institut des Sciences de la mer de Rimouski, Océanographie Physique, Canada ([email protected]) Ocean surface drift forecasts are essential for numerous applications. It is a central asset in search and rescue and oil spill response operations, but it is also used for predicting the transport of pelagic eggs, larvae and detritus or other organisms and solutes, for evaluating ecological isolation of marine species, for tracking plastic debris, and for environmental planning and management. The accuracy of surface drift forecasts depends to a large extent on the quality of ocean current, wind and waves forecasts, but also on the drift model used. The standard Eulerian leeway drift model used in most operational systems considers near-surface currents provided by the top grid cell of the ocean circulation model and a correction term proportional to the near-surface wind. Such formulation assumes that the 'wind correction term' accounts for many processes including windage, unresolved ocean current vertical shear, and wave-induced drift. However, the latter two processes are not necessarily linearly related to the local wind velocity. We propose three other drift models that attempt to account for the unresolved near-surface current shear by extrapolating the near-surface currents to the surface assuming Ekman dynamics. Among them two models consider explicitly the Stokes drift, one without and the other with a wind correction term.
    [Show full text]
  • Part II-1 Water Wave Mechanics
    Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32
    [Show full text]
  • The Emergence of Magnetic Skyrmions
    The emergence of magnetic skyrmions During the past decade, axisymmetric two-dimensional solitons (so-called magnetic skyrmions) have been discovered in several materials. These nanometer-scale chiral objects are being proposed as candidates for novel technological applications, including high-density memory, logic circuits and neuro-inspired computing. Alexei N. Bogdanov and Christos Panagopoulos Research on magnetic skyrmions benefited from a cascade of breakthroughs in magnetism and nonlinear physics. These magnetic objects are believed to be nanometers-size whirling cylinders, embedded into a magnetically saturated state and magnetized antiparallel along their axis (Fig. 1). They are topologically stable, in the sense that they can’t be continuously transformed into homogeneous state. Being highly mobile and the smallest magnetic configurations, skyrmions are promising for applications in the emerging field of spintronics, wherein information is carried by the electron spin further to, or instead of the electron charge. Expectedly, their scientific and technological relevance is fueling inventive research in novel classes of bulk magnetic materials and synthetic architectures [1, 2]. The unconventional and useful features of magnetic skyrmions have become focus of attention in the science and technology Figure 1. Magnetic skyrmions are nanoscale spinning magnetic circles, sometimes teasingly called “magic knots” or “mysterious cylinders (a), embedded into the saturated state of ferromagnets (b). particles”. Interestingly, for a long time it remained widely In the skyrmion core, magnetization gradually rotates along radial unknown that the key “mystery” surrounding skyrmions is in the directions with a fixed rotation sense namely, from antiparallel very fact of their existence. Indeed, mathematically the majority of direction at the axis to a parallel direction at large distances from the physical systems with localized structures similar to skyrmions are center.
    [Show full text]
  • This Content Is Prepared from Various Sources and Has Used the Study Material from Various Books, Internet Articles Etc
    This content is prepared from various sources and has used the study material from various books, internet articles etc. The teacher doesn’t claim any right over the content, it’s originality and any copyright. It is given only to the students of PG course in Geology to study as a part of their curriculum. WAVES Waves and their properties. (a) Regular, symmetrical waves can be described by their height, wavelength, and period (the time one wavelength takes to pass a fixed point). (b) Waves can be classified according to their wave period. The scales of wave height and wave period are not linear, but logarithmic, being based on powers of 10. The variety and size of wind-generated waves are controlled by four principal factors: (1) wind velocity, (2) wind duration, (3) fetch, (4) original sea state. Significant Wave Height? What is the average height and what is the significant height? Wind-generated waves are progressive waves, because they travel (progress) across the sea surface. If you focus on the crest of a progressive wave, you can follow its path over time. But what actually is moving? The wave form obviously is moving, but what about the water just below the sea surface? Actually, two basic kinds of motions are associated with ocean waves: the forward movement of the wave form itself and the orbital motion of water particles beneath the wave. The motion of water particles beneath waves. (a) The arrows at the sea surface denote the motion of water particles beneath waves. With the passage of one wavelength, a water particle at the sea surface describes a circular orbit with a diameter equal to the wave’s height.
    [Show full text]
  • Stokes Drift and Net Transport for Two-Dimensional Wave Groups in Deep Water
    Stokes drift and net transport for two-dimensional wave groups in deep water T.S. van den Bremer & P.H. Taylor Department of Engineering Science, University of Oxford [email protected], [email protected] Introduction This paper explores Stokes drift and net subsurface transport by non-linear two-dimensional wave groups with realistic underlying frequency spectra in deep wa- ter. It combines analytical expressions from second- order random wave theory with higher order approxi- mate solutions from Creamer et al (1989) to give accu- rate subsurface kinematics using the H-operator of Bate- man, Swan & Taylor (2003). This class of Fourier series based numerical methods is extended by proposing an M-operator, which enables direct evaluation of the net transport underneath a wave group, and a new conformal Figure 1: Illustration of the localized irrotational mass mapping primer with remarkable properties that removes circulation moving with the passing wave group. The the persistent problem of high-frequency contamination four fluxes, the Stokes transport in the near surface re- for such calculations. gion and in the direction of wave propagation (left to Although the literature has examined Stokes drift in right); the return flow in the direction opposite to that regular waves in great detail since its first systematic of wave propagation (right to left); the downflow to the study by Stokes (1847), the motion of fluid particles right of the wave group; and the upflow to the left of the transported by a (focussed) wave group has received con- wave group, are equal. siderably less attention.
    [Show full text]
  • Optimal Transient Growth in Thin-Interface Internal Solitary Waves
    Under consideration for publication in J. Fluid Mech. 1 Optimal transient growth in thin-interface internal solitary waves PIERRE-YVESPASSAGGIA1, K A R L R. H E L F R I C H2y, AND B R I A N L. W H I T E1 1Department of Marine Sciences, University of North Carolina, Chapel Hill, NC 27599, USA 2Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA (Received 10 January 2018) The dynamics of perturbations to large-amplitude Internal Solitary Waves (ISW) in two-layered flows with thin interfaces is analyzed by means of linear optimal transient growth methods. Optimal perturbations are computed through direct-adjoint iterations of the Navier-Stokes equations linearized around inviscid, steady ISWs obtained from the Dubreil-Jacotin-Long (DJL) equation. Optimal perturbations are found as a func- tion of the ISW phase velocity c (alternatively amplitude) for one representative strat- ification. These disturbances are found to be localized wave-like packets that originate just upstream of the ISW self-induced zone (for large enough c) of potentially unsta- ble Richardson number, Ri < 0:25. They propagate through the base wave as coherent packets whose total energy gain increases rapidly with c. The optimal disturbances are also shown to be relevant to DJL solitary waves that have been modified by viscosity representative of laboratory experiments. The optimal disturbances are compared to the local WKB approximation for spatially growing Kelvin-Helmholtz (K-H) waves through the Ri < 0:25 zone. The WKB approach is able to capture properties (e.g., carrier fre- quency, wavenumber and energy gain) of the optimal disturbances except for an initial phase of non-normal growth due to the Orr mechanism.
    [Show full text]
  • Tidal Effect Compensation System for Wave Energy Converters
    TVE 11 036 Examensarbete 30 hp September 2011 Tidal Effect Compensation System for Wave Energy Converters Valeria Castellucci Institutionen för teknikvetenskaper Department of Engineering Sciences Abstract Tidal Effect Compensation System for Wave Energy Converters Valeria Castellucci Teknisk- naturvetenskaplig fakultet UTH-enheten Recent studies show that there is a correlation between water level and energy absorption values for wave energy converters: the absorption decreases when the Besöksadress: water levels deviate from average. The effect for the studied WEC version is evident Ångströmlaboratoriet Lägerhyddsvägen 1 for deviations greater then 25 cm, approximately. The real problem appears during Hus 4, Plan 0 tides when the water level changes significantly. Tides can compromise the proper functioning of the generator since the wire, which connects the buoy to the energy Postadress: converter, loses tension during a low tide and hinders the full movement of the Box 536 751 21 Uppsala translator into the stator during high tides. This thesis presents a first attempt to solve this problem by designing and realizing a small-scale model of a point absorber Telefon: equipped with a device that is able to adjust the length of the rope connected to the 018 – 471 30 03 generator. The adjustment is achieved through a screw that moves upwards in Telefax: presence of low tides and downwards in presence of high tides. The device is sized 018 – 471 30 00 to one-tenth of the full-scale model, while the small-scaled point absorber is dimensioned based on buoyancy's analysis and CAD simulations. Calculations of Hemsida: buoyancy show that the sensitive components will not be immersed during normal http://www.teknat.uu.se/student operation, while the CAD simulations confirm a sufficient mechanical strength of the model.
    [Show full text]
  • Final Program
    Final Program 1st International Workshop on Waves, Storm Surges and Coastal Hazards Hilton Hotel Liverpool Sunday September 10 6:00 - 8:00 p.m. Workshop Registration Desk Open at Hilton Hotel Monday September 11 7:30 - 8:30 a.m. Workshop Registration Desk Open 8:30 a.m. Welcome and Introduction Session A: Wave Measurement -1 Chair: Val Swail A1 Quantifying Wave Measurement Differences in Historical and Present Wave Buoy Systems 8:50 a.m. R.E. Jensen, V. Swail, R.H. Bouchard, B. Bradshaw and T.J. Hesser Presenter: Jensen Field Evaluation of the Wave Module for NDBC’s New Self-Contained Ocean Observing A2 Payload (SCOOP 9:10 a.m. Richard Bouchard Presenter: Bouchard A3 Correcting for Changes in the NDBC Wave Records of the United States 9:30 a.m. Elizabeth Livermont Presenter: Livermont 9:50 a.m. Break Session B: Wave Measurement - 2 Chair: Robert Jensen B1 Spectral shape parameters in storm events from different data sources 10:30 a.m. Anne Karin Magnusson Presenter: Magnusson B2 Open Ocean Storm Waves in the Arctic 10:50 a.m. Takuji Waseda Presenter: Waseda B3 A project of concrete stabilized spar buoy for monitoring near-shore environement Sergei I. Badulin, Vladislav V. Vershinin, Andrey G. Zatsepin, Dmitry V. Ivonin, Dmitry G. 11:10 a.m. Levchenko and Alexander G. Ostrovskii Presenter: Badulin B4 Measuring the ‘First Five’ with HF radar Final Program 11:30 a.m. Lucy R Wyatt Presenter: Wyatt The use and limitations of satellite remote sensing for the measurement of wind speed and B5 wave height 11:50 a.m.
    [Show full text]
  • Stokes' Drift of Linear Defects
    STOKES’ DRIFT OF LINEAR DEFECTS F. Marchesoni Istituto Nazionale di Fisica della Materia, Universit´adi Camerino I-62032 Camerino (Italy) M. Borromeo Dipartimento di Fisica, and Istituto Nazionale di Fisica Nucleare, Universit´adi Perugia, I-06123 Perugia (Italy) (Received:November 3, 2018) Abstract A linear defect, viz. an elastic string, diffusing on a planar substrate tra- versed by a travelling wave experiences a drag known as Stokes’ drift. In the limit of an infinitely long string, such a mechanism is shown to be character- ized by a sharp threshold that depends on the wave parameters, the string damping constant and the substrate temperature. Moreover, the onset of the Stokes’ drift is signaled by an excess diffusion of the string center of mass, while the dispersion of the drifting string around its center of mass may grow anomalous. PCAS numbers: 05.60.-k, 66.30.Lw, 11.27.+d arXiv:cond-mat/0203131v1 [cond-mat.stat-mech] 6 Mar 2002 1 I. INTRODUCTION Particles suspended in a viscous medium traversed by a longitudinal wave f(kx Ωt) − with velocity v = Ω/k are dragged along in the x-direction according to a deterministic mechanism known as Stokes’ drift [1]. As a matter of fact, the particles spend slightly more time in regions where the force acts parallel to the direction of propagation than in regions where it acts in the opposite direction. Suppose [2] that f(kx Ωt) represents a symmetric − square wave with wavelength λ = 2π/k and period TΩ = 2π/Ω, capable of entraining the particles with velocity bv (with 0 b(v) 1 and the signs denoting the orientation ± ≤ ≤ ± of the force).
    [Show full text]