Bianca Viray
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Association for Women in Mathematics: How and Why It Was
Mathematical Communities t’s 2011 and the Association for Women in Mathematics The Association (AWM) is celebrating 40 years of supporting and II promoting female students, teachers, and researchers. It’s a joyous occasion filled with good food, warm for Women conversation, and great mathematics—four plenary lectures and eighteen special sessions. There’s even a song for the conference, titled ‘‘((3 + 1) 9 3 + 1) 9 3 + 1 Anniversary in Mathematics: How of the AWM’’ and sung (robustly!) to the tune of ‘‘This Land is Your Land’’ [ICERM 2011]. The spirit of community and and Why It Was the beautiful mathematics on display during ‘‘40 Years and Counting: AWM’s Celebration of Women in Mathematics’’ are truly a triumph for the organization and for women in Founded, and Why mathematics. It’s Still Needed in the 21st Century SARAH J. GREENWALD,ANNE M. LEGGETT, AND JILL E. THOMLEY This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of ‘‘mathematical community’’ is Participants from the Special Session in Number Theory at the broadest: ‘‘schools’’ of mathematics, circles of AWM’s 40th Anniversary Celebration. Back row: Cristina Ballantine, Melanie Matchett Wood, Jackie Anderson, Alina correspondence, mathematical societies, student Bucur, Ekin Ozman, Adriana Salerno, Laura Hall-Seelig, Li-Mei organizations, extra-curricular educational activities Lim, Michelle Manes, Kristin Lauter; Middle row: Brooke Feigon, Jessica Libertini-Mikhaylov, Jen Balakrishnan, Renate (math camps, math museums, math clubs), and more. Scheidler; Front row: Lola Thompson, Hatice Sahinoglu, Bianca Viray, Alice Silverberg, Nadia Heninger. (Photo Cour- What we say about the communities is just as tesy of Kiran Kedlaya.) unrestricted. -
07 26Microsoft 2022
PRESS RELEASE August 27, 2021 Jennifer Balakrishnan Awarded the 2022 AWM-Microsoft Research Prize The 2022 AWM-Microsoft Balakrishnan’s research exhibits Research Prize in Algebra and extraordinary depth as well as Number Theory will be presented breadth. In joint work with Besser, to Jennifer Balakrishnan in Çiperiani, Dogra, Müller, Stein recognition of outstanding and others, she has worked contributions to explicit methods extensively on computing p-adic in number theory, particularly her height pairings for hyperelliptic advances in computing rational curves. Applications of this points on algebraic curves over research include the formulation, number fields. along with numerical evidence, of a p-adic analogue of the Professor Balakrishnan is celebrated Birch and internationally recognized as a leader in Swinnerton-Dyer conjecture, some new explicit computational number theory. Her doctoral examples in Iwasawa theory, and more. With dissertation presents the first general technique Ho, Kaplan, Spicer, Stein and Weigandt, for computing iterated p-adic Coleman integrals Balakrishnan has assembled the most extensive on hyperelliptic curves. In the course of her computational evidence to date on the collaboration with Minhyong Kim at Oxford, distribution of ranks and Selmer groups of Balakrishnan helped realize the substantial elliptic curves over the rational numbers, thereby practical potential of Kim’s non-abelian providing the most convincing evidence thus far Chabauty method, and with her collaborators, in support of the widely believed conjecture that turned it into a powerful tool for identifying the average rank of a rational elliptic curve is ½. integral and rational points on curves that are entirely beyond reach using the traditional After receiving her doctorate from the Chabauty approach. -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
Quadratic Chabauty for Atkin-Lehner Quotients of Modular Curves
Quadratic Chabauty for Atkin-Lehner Quotients of Modular Curves of Prime Level and Genus 4, 5, 6 Nikola Adˇzaga1, Vishal Arul2, Lea Beneish3, Mingjie Chen4, Shiva Chidambaram5, Timo Keller6, and Boya Wen7 1Department of Mathematics, Faculty of Civil Engineering, University of Zagreb∗ 2Department of Mathematics, University College London† 3Department of Mathematics and Statistics, McGill University‡ 4Department of Mathematics, University of California at San Diego§ 5Department of Mathematics, University of Chicago¶ 6Department of Mathematics, Universit¨at Bayreuth‖ 7Department of Mathematics, Princeton University∗∗ May 12, 2021 Abstract + We use the method of quadratic Chabauty on the quotients X0 (N) of modular curves X0(N) by their Fricke involutions to provably compute all the rational points of these curves for prime levels N of genus four, five, and six. We find that the only such curves with exceptional rational points are of levels 137 and 311. In particular there are no exceptional rational points on those curves of genus five and six. More precisely, we determine the rational + points on the curves X0 (N) for N = 137, 173, 199, 251, 311, 157, 181, 227, 263, 163, 197, 211, 223, 269, 271, 359. Keywords: Rational points; Curves of arbitrary genus or genus =6 1 over global fields; arithmetic aspects of modular and Shimura varieties 2020 Mathematics subject classification: 14G05 (primary); 11G30; 11G18 1 Introduction + The curve X0 (N) is a quotient of the modular curve X0(N) by the Atkin-Lehner involution wN (also called the Fricke + involution). The non-cuspidal points of X0 (N) classify unordered pairs of elliptic curves together with a cyclic isogeny + of degree N between them, where the Atkin-Lehner involution wN sends an isogeny to its dual. -
Seattle, Washington Washington State Convention Center and Sheraton Seattle January 6–9, 2016 Wednesday–Saturday
Meetings & Conferences Seattle, Washington Washington State Convention Center and Sheraton Seattle January 6–9, 2016 Wednesday–Saturday Meeting #1116 Joint Mathematics Meetings, including the 122nd Annual Meeting of the AMS, 99th Annual Meeting of the Math- ematical Association of America (MAA), annual meetings of the Association for Women in Mathematics (AWM) and the National Association of Mathematicians (NAM), and the winter meeting of the Association of Symbolic Logic (ASL), with sessions contributed by the Society for Industrial and Applied Mathematics (SIAM). AMS Associate Secretary: Michel Lapidus Announcement issue of Notices: October 2015 Program first available on AMS website: To be announced Deadlines For organizers: Expired For abstracts: September 22, 2015 The scientific information listed below may be dated. For the latest information, see www.ams.org/meetings/ national.html. Joint Invited Addresses Jennifer Chayes, Microsoft Research, Network Sci- ence: From the online world to cancer genomics; Saturday, 3:00 pm (MAA-AMS-SIAM Gerald and Judith Porter Public Lecture) 1116 NOTICES OF THE AMS VOLUME 62, NUMBER 9 Meetings & Conferences Kristin Lauter, Microsoft Research, Title to be an- sible via the abstract submission form found at nounced ; Friday, 11:10 am (AMS-MAA). jointmathematicsmeetings.org/meetings/ Xiao-Li Meng, Harvard University, Statistical paradises abstracts/abstract.pl?type=jmm. and paradoxes in big data; Friday, 11:10 am (AMS-MAA). Karen E Smith, University of Michigan, Title to be an- Some sessions are co-sponsored with other organiza- nounced. Thursday, 10:05 am (AWM-AMS Noether Lecture). tions. These are noted within the parentheses at the end of each listing, where applicable. -
Mathematics People
NEWS Mathematics People “In 1972, Rainer Weiss wrote down in an MIT report his Weiss, Barish, and ideas for building a laser interferometer that could detect Thorne Awarded gravitational waves. He had thought this through carefully and described in detail the physics and design of such an Nobel Prize in Physics instrument. This is typically called the ‘birth of LIGO.’ Rai Weiss’s vision, his incredible insights into the science and The Royal Swedish Academy of Sci- challenges of building such an instrument were absolutely ences has awarded the 2017 Nobel crucial to make out of his original idea the successful Prize in Physics to Rainer Weiss, experiment that LIGO has become. Barry C. Barish, and Kip S. Thorne, “Kip Thorne has done a wealth of theoretical work in all of the LIGO/Virgo Collaboration, general relativity and astrophysics, in particular connected for their “decisive contributions to with gravitational waves. In 1975, a meeting between the LIGO detector and the observa- Rainer Weiss and Kip Thorne from Caltech marked the tion of gravitational waves.” Weiss beginning of the complicated endeavors to build a gravi- receives one-half of the prize; Barish tational wave detector. Rai Weiss’s incredible insights into and Thorne share one-half. the science and challenges of building such an instrument Rainer Weiss combined with Kip Thorne’s theoretical expertise with According to the prize citation, gravitational waves, as well as his broad connectedness “LIGO, the Laser Interferometer with several areas of physics and funding agencies, set Gravitational-Wave Observatory, is the path toward a larger collaboration. -
Computational Number Theory, Geometry and Physics (Sage Days 53) September 23-29, 2013 Clay Mathematics Institute University of Oxford
Computational Number Theory, Geometry and Physics (Sage Days 53) September 23-29, 2013 Clay Mathematics Institute University of Oxford Abstracts Speaker: Jennifer Balakrishnan Introduction to number theory and Sage This talk will give some applications of Sage to number theory. No previous knowledge of Sage as a computer algebra system is assumed. Speaker: Volker Braun Introduction to mathematical physics and Sage This is the continuation of the first talk, giving some applications in geometry and physics. Speaker: tbc Scientific computing with Python and Cython We will give a quick review of Python and Cython, and how they are used in Sage to tie together scientific codes from various fields. Speaker: Simon King Implementing arithmetic operations in Sage (Coercions and Actions) Sage provides a framework for multiplication between objects of the same type (for example, ring operations) and between different types (for example, group actions). This talk will cover how to take advantage of it in your own code, especially if there is coercion involved. Speaker: Volker Braun Git and the new development workflow Git is a system to collaboratively edit a set of files, and is being used for anything from writing scientific articles to the Linux source code (~16 million lines of source code). I’ll start with a basic introduction to using git for distributed development that is of general interest. The second half will be about the new development workflow in Sage using Git. Speaker: Jean-Pierre Flori p-adics in Sage In this talk, I'll give a quick overview of the current and future implementations of p-adic numbers and related objects in Sage, with a special emphasis on their performance and the different ways offered to deal with inexact elements. -
Lola Thompson
Lola Thompson BASIC INFORMATION: Citizenship: United States Address: Schillerstrasse 18, 37083 G¨ottingen,Germany Phone: +49 1522 2325151 E-mail: [email protected] Website: www.lolathompson.com Languages: English, Spanish APPOINTMENTS HELD: Utrecht University Associate Professor July 2020 - present Max-Planck-Institut f¨urMathematik Guest/Research Visitor September 2019 - June 2020 Guest/Research Visitor August 2016 - December 2016 Oberlin College Associate Professor July 2019 - April 2020 Assistant Professor July 2013 - June 2019 Mathematical Sciences Research Institute Research Member January 2017 - May 2017 The University of Georgia VIGRE Postdoctoral Fellow August 2012 - July 2013 Research Mentor: Paul Pollack EDUCATION: Ph.D. in Mathematics, Dartmouth College June 2012 Adviser: Carl Pomerance Thesis: Products of distinct cyclotomic polynomials M.A. in Mathematics, Dartmouth College June 2009 B.S. in Mathematics, University of Chicago June 2007 B.A. in Economics, University of Chicago June 2007 RESEARCH PUBLICATIONS: 21. Counting Salem numbers of arithmetic hyperbolic 3-orbifolds. Submitted for publication. Joint with Mikhail Belolipetsky, Matilde Lal´ın,and Plinio G. P. Murillo. 20. The Fourier coefficients of Eisenstein series newforms. Contemporary Mathematics, 732 (2019), 169 { 176. Joint with Benjamin Linowitz. 19. Counting and effective rigidity in algebra and geometry. Inventiones Mathematicae, 213, no. 2 (2018), 697 { 758. Joint with Benjamin Linowitz, D. B. McReynolds, Paul Pollack. 18. Divisor-sum fibers. Mathematika, 64, no. 2 (2018), 330{342. Joint with Paul Pollack and Carl Pomerance. 17. Lower bounds for heights in relative Galois extensions. Contributions to Number Theory and Arithmetic Geometry, Springer AWMS 11 (2018), 1{17. Joint with Kevser Akta¸s,Shabnam Akhtari, Kirsti Biggs, Alia Hamieh, and Kathleen Petersen. -
Association for Women in Mathematics
Association for Women in Mathematics AWM Research Symposium 2015 April 11-12, 2015 at University of Maryland, College Park College Park, MD Organizers Ruth Charney (Brandeis University) Shelly Harvey (Rice University) Kristin Lauter (Microsoft Research) Gail Letzter (National Security Agency) Magnhild Lien (California State University, Northridge) Konstantina Trivisa (University of Maryland) Talitha Washington (Howard University) 2015 AWM Research Symposium Sponsors 2015 AWM Research Symposium Exhibitors April 11, 2015 Dear Colleagues, It is our great pleasure to welcome you to AWM Research Symposium 2015 on the campus of the University of Maryland, College Park. This research conference highlights the accomplishments of women in mathematics and showcases the research of female mathematicians at all stages of their careers. We are grateful to the University of Maryland for hosting this symposium and to our sponsors and exhibitors Microsoft Research, NSF, NSA, NIST, Springer, Elsevier, Google, Wolfram and INTECH for their generous support. In 2011, the Association for Women in Mathematics celebrated its fortieth anniversary with a research conference, “40 Years and Counting, AWM’s Celebration of Women in Mathematics.” Participation at the anniversary conference greatly exceeded all expectations and motivated AWM to launch a series of biennial research symposia. The second AWM Symposium was held at Santa Clara University in 2013, and this symposium is the third event in the series. These symposia are designed to help support and nurture networks of female researchers in many areas of mathematics, to provide networking opportunities for junior and senior women to enhance career prospects and recognition. AWM was founded in 1971 during a period when relatively few women in the U.S. -
Explorations in Complex and Riemannian Geometry a Volume Dedicated to Robert E
CONTEMPORARY MATHEMATICS 332 Explorations in Complex and Riemannian Geometry A Volume Dedicated to Robert E. Greene John Bland Kong-Toe Kim Steven G. Krantz Editors http://dx.doi.org/10.1090/conm/332 Explorations in Complex and Riemannian Geometry A Volume Dedicated to Robert E. Greene Professor Robert E. Greene CoNTEMPORARY MATHEMATICS 332 Explorations in Complex and Riemannian Geometry A Volume Dedicated to Robert E. Greene John Bland Kong-Toe Kim Steven G. Krantz Editors American Mathematical Society Providence. Rhode Island Editorial Board Dennis DeTurck, managing editor Andreas Blass Andy R. Magid Michael Vogelius 2000 Mathematics Subject Classification. Primary 32H02, 32M05, 32H40, 32M10, 53C20, 53C24, 53C22, 53C55, 53C56, 53C60. Library of Congress Cataloging-in-Publication Data Explorations in complex and Riemannian geometry : a volume dedicated to Robert E. Greene / John Bland, Kang-Tae Kim, Steven G. Krantz. p. em. -(Contemporary mathematics, ISSN 0271-4132 ; 332) Includes bibliographical references. ISBN 0-8218-3273-5 (alk. paper) 1. Differential geometry. 2. Functions of several complex variables. 3. Geometry, Riemann- ian. I. Greene, Robert Everist, 1943- II. Bland, John, 1952- III. Kim, Kang-Tae, 1957- IV. Krantz, Steven G. (Steven George), 1951- V. Contemporary mathematics (American Math- ematical Society) ; v. 332. QA64l.E97 2003 516.3'6-dc21 2003052196 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. -
2021 September-October Newsletter
Newsletter VOLUME 51, NO. 5 • SEPTEMBER–OCTOBER 2021 PRESIDENT’S REPORT This is a fun report to write, where I can share news of AWM’s recent award recognitions. Sometimes hearing about the accomplishments of others can make The purpose of the Association for Women in Mathematics is us feel like we are not good enough. I hope that we can instead feel inspired by the work these people have produced and energized to continue the good work we • to encourage women and girls to ourselves are doing. study and to have active careers in the mathematical sciences, and We’ve honored exemplary Student Chapters. Virginia Tech received the • to promote equal opportunity and award for Scientific Achievement for offering three different research-focused the equal treatment of women and programs during a pandemic year. UC San Diego received the award for Professional girls in the mathematical sciences. Development for offering multiple events related to recruitment and success in the mathematical sciences. Kutztown University received the award for Com- munity Engagement for a series of events making math accessible to a broad community. Finally, Rutgers University received the Fundraising award for their creative fundraising ideas. Congratulations to all your members! AWM is grateful for your work to support our mission. The AWM Research Awards honor excellence in specific research areas. Yaiza Canzani was selected for the AWM-Sadosky Research Prize in Analysis for her work in spectral geometry. Jennifer Balakrishnan was selected for the AWM- Microsoft Research Prize in Algebra and Number Theory for her work in computa- tional number theory. -
President's Report
Newsletter Volume 48, No. 3 • mAY–JuNe 2018 PRESIDENT’S REPORT Dear AWM Friends, In the past few months, as the AWM has been transitioning to a new management company under our new Executive Director, I have had the oppor- The purpose of the Association tunity to appreciate all that we do as an organization. We have over 150 volunteers for Women in Mathematics is working on 47 committees to support our many programs and activities. It has • to encourage women and girls to led me to reflect on the value of belonging. study and to have active careers Ages ago, when I was about to get my PhD, I received a call that I had in the mathematical sciences, and • to promote equal opportunity and been awarded a university-wide teaching award, which would be recognized at the the equal treatment of women and commencement ceremony. The caller wanted to make sure that I would be there girls in the mathematical sciences. with the appropriate attire (a valid concern). I was elated, of course, and I was very grateful to the people who had nominated me and fought for me to win that award. But it wasn’t until years later that I fully realized how much that effort costs, and how easy it is to assume that the system will recognize those who deserve recognition. In fact, being recognized did make me feel that I belonged to the community: I had something to offer, and that was noticed. The AWM currently administers 21 groups of awards: grants, prizes, special lectures, and other recognitions.