Moment of Inertia & Newton's Laws for Translation & Rotation

Total Page:16

File Type:pdf, Size:1020Kb

Moment of Inertia & Newton's Laws for Translation & Rotation Physics 1A Training Set Cycle 5 #2 © UCSD Physics Moment of Inertia & Newton’s Laws for Translation & Rotation In this training set, you will apply Newton’s 2nd Law for rotational motion: Στ = Σri×Fi = Iα I is the moment of inertia of an object: 2 2 2 I = Σmiri = ∫ r dm= ∫ r ρdV where r is distance perpendicular from the rotation axis, ρ is density and dV volume element. The first expression applies to a system of masses, the second and third for a whole body. Moments of inertia for common shapes about their centers of mass: point mass ring or hoop solid disk hollow sphere solid sphere stick MR2 MR2 ½ MR2 2/3 MR2 2/5 MR2 1/12 ML2 When the pivot point is offset from the center of mass, you can use the parallel axis theorem to calculate the offset moment of inertia: 2 I = ICOM + Md where d is again the distance measured perpendicular to the rotation axis. Newton’s Laws can be solved separately for the translational motion of the center of mass and the rotational motion about the center of mass: Στ = ICOMα ΣF = ma with additional constraint equations as needed. Remember that the direction for rotation is along the axis of rotation and determined by the right hand rule. Part 1: Calculating Moments of Inertia Use the center of mass moments of inertia and parallel axis theorem to calculate the moments of inertia of the following objects about the labeled pivot point (⊗). Your values should be in SI units. The first one has been done for you. (a) A stick of length 1.5 m and mass 300 g pivoted about one end. 2 2 2 ICOM = 1/12 ML = 1/12 (0.30 kg)(1.5m) = 0.05625 kg m Offset axis distance d = 0.75 m 2 2 2 2 => I = ICOM + Md = 0.05625 kg m + (0.30 kg)(0.75 m) = 0.23 kg m 1 Physics 1A Training Set Cycle 5 #2 © UCSD Physics (b) A stick of length 2.00 m and mass 300 g with a solid disk of mass 250 g and radius 0.500 m attached to one end, pivoted about the opposite end. (c) A stick of length 2.00 m and mass 300 g with a solid disk of mass 250 g and radius 0.500 m attached to one end, and a ring of mass 150 g and radius 0.500 m attached to the other, pivoted about the center of the stick. (d) A pendant of mass 120 g designed as a 4.0 cm diameter disk with a 2.0 cm diameter hole cut out of its edge, suspended on a 8.0 cm string of negligible mass, pivoted about the end of the string. 2 Physics 1A Training Set Cycle 5 #2 © UCSD Physics Part 2: Applying Newton’s Laws of Translation and Rotation We can apply our Newtonian framework to solve for both translational and rotational motion by following a similar procedure as in Cycle 2, but with consideration of where forces act on an object and including torque and angular acceleration. Follow these steps for each of the following problems: (1) Make a prediction for both the translational and rotational motion; (2) Draw a force diagram, labeling the center of mass of an object and where the forces act; and a coordinate system, including the direction of positive rotation; nd (3) Write down Newton’s 2 Law: ΣF = ma and Στ = ICOMα; (4) If necessary, add constraint equations and make sure # unknowns = # equations; (5) Solve for the unknowns, carrying through your units; you may need to use kinematic relations for constant acceleration to solve for your target quantity The first example has been done for you. (a) A 6.5 kg bowling ball (solid sphere) is placed near the top of an inclined ramp with incline angle θ = 25º. Released from rest, the ball rolls down the ramp without slipping. What is the translational acceleration of the ball down the ramp? Prediction of motion: The ball will accelerate down the incline; at the same time it will increase its spin rate clockwise (⊗); its acceleration will be less than g. Force diagram and coordinate system: Newton’s 2nd Law: 1 x: mgsinθ – Ff = max 2 y: FN – mgcosθ = may 2 3 rot: τ = RFf = ICOMα = 2/5 mR α Constraint Equations: 4 ay = 0 (no movement off ramp) Equations: 5 5 Rα = ax (rolling without slipping) Unknowns: 5 Solve for Unknowns: 3+5: Ff = 2/5 mRα = 2/5 max +1: Ff = mgsinθ - max = 2/5 max => 7/5max = mgsinθ 2 2 => ax = 5/7(9.81 m/s )(sin 25º) = 3.0 m/s 3 Physics 1A Training Set Cycle 5 #2 © UCSD Physics (b) A ribbon is wrapped around a solid disk of mass 0.55 kg and radius 10 cm. The disk is allowed to fall from rest while holding on to one of the ends of the ribbon, and the ribbon unwinds as the disk falls. What is the vertical acceleration of the disk, and how fast is it moving after 5.0 m of ribbon has unraveled? Prediction of motion: Force diagram and coordinate system: Newton’s 2nd Law: Constraint Equations: Equations: Unknowns: Solve for Unknowns: 4 Physics 1A Training Set Cycle 5 #2 © UCSD Physics (c) A hollow soccer ball of mass 430 grams and diameter 22 cm is set rolling with a speed of 15 m/s toward a ramp inclined by 50º. How much time does it spend going up and down the ramp before it rolls off in the other direction? Assume the ball rolls without slipping the entire time. Prediction of motion: Force diagram and coordinate system: Newton’s 2nd Law: Constraint Equations: Equations: Unknowns: Solve for Unknowns: 5 .
Recommended publications
  • The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected]
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Fall 2017 The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Aerospace Engineering Commons, Aviation Commons, Civil and Environmental Engineering Commons, Mechanical Engineering Commons, and the Physics Commons Recommended Citation Koken, Michael, "The Experimental Determination of the Moment of Inertia of a Model Airplane" (2017). Honors Research Projects. 585. http://ideaexchange.uakron.edu/honors_research_projects/585 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. 2017 THE EXPERIMENTAL DETERMINATION OF A MODEL AIRPLANE KOKEN, MICHAEL THE UNIVERSITY OF AKRON Honors Project TABLE OF CONTENTS List of Tables ................................................................................................................................................
    [Show full text]
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • Pierre Simon Laplace - Biography Paper
    Pierre Simon Laplace - Biography Paper MATH 4010 Melissa R. Moore University of Colorado- Denver April 1, 2008 2 Many people contributed to the scientific fields of mathematics, physics, chemistry and astronomy. According to Gillispie (1997), Pierre Simon Laplace was the most influential scientist in all history, (p.vii). Laplace helped form the modern scientific disciplines. His techniques are used diligently by engineers, mathematicians and physicists. His diverse collection of work ranged in all fields but began in mathematics. Laplace was born in Normandy in 1749. His father, Pierre, was a syndic of a parish and his mother, Marie-Anne, was from a family of farmers. Many accounts refer to Laplace as a peasant. While it was not exactly known the profession of his Uncle Louis, priest, mathematician or teacher, speculations implied he was an educated man. In 1756, Laplace enrolled at the Beaumont-en-Auge, a secondary school run the Benedictine order. He studied there until the age of sixteen. The nest step of education led to either the army or the church. His father intended him for ecclesiastical vocation, according to Gillispie (1997 p.3). In 1766, Laplace went to the University of Caen to begin preparation for a career in the church, according to Katz (1998 p.609). Cristophe Gadbled and Pierre Le Canu taught Laplace mathematics, which in turn showed him his talents. In 1768, Laplace left for Paris to pursue mathematics further. Le Canu gave Laplace a letter of recommendation to d’Alembert, according to Gillispie (1997 p.3). Allegedly d’Alembert gave Laplace a problem which he solved immediately.
    [Show full text]
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • Magnetism, Angular Momentum, and Spin
    Chapter 19 Magnetism, Angular Momentum, and Spin P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin In 1820 Hans Christian Ørsted discovered that electric current produces a magnetic field that deflects compass needle from magnetic north, establishing first direct connection between fields of electricity and magnetism. P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Biot-Savart Law Jean-Baptiste Biot and Félix Savart worked out that magnetic field, B⃗, produced at distance r away from section of wire of length dl carrying steady current I is 휇 I d⃗l × ⃗r dB⃗ = 0 Biot-Savart law 4휋 r3 Direction of magnetic field vector is given by “right-hand” rule: if you point thumb of your right hand along direction of current then your fingers will curl in direction of magnetic field. current P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Microscopic Origins of Magnetism Shortly after Biot and Savart, Ampére suggested that magnetism in matter arises from a multitude of ring currents circulating at atomic and molecular scale. André-Marie Ampére 1775 - 1836 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Magnetic dipole moment from current loop Current flowing in flat loop of wire with area A will generate magnetic field magnetic which, at distance much larger than radius, r, appears identical to field dipole produced by point magnetic dipole with strength of radius 휇 = | ⃗휇| = I ⋅ A current Example What is magnetic dipole moment induced by e* in circular orbit of radius r with linear velocity v? * 휋 Solution: For e with linear velocity of v the time for one orbit is torbit = 2 r_v.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Solving the Geodesic Equation
    Solving the Geodesic Equation Jeremy Atkins December 12, 2018 Abstract We find the general form of the geodesic equation and discuss the closed form relation to find Christoffel symbols. We then show how to use metric independence to find Killing vector fields, which allow us to solve the geodesic equation when there are helpful symmetries. We also discuss a more general way to find Killing vector fields, and some of their properties as a Lie algebra. 1 The Variational Method We will exploit the following variational principle to characterize motion in general relativity: The world line of a free test particle between two timelike separated points extremizes the proper time between them. where a test particle is one that is not a significant source of spacetime cur- vature, and a free particles is one that is only under the influence of curved spacetime. Similarly to classical Lagrangian mechanics, we can use this to de- duce the equations of motion for a metric. The proper time along a timeline worldline between point A and point B for the metric gµν is given by Z B Z B µ ν 1=2 τAB = dτ = (−gµν (x)dx dx ) (1) A A using the Einstein summation notation, and µ, ν = 0; 1; 2; 3. We can parame- terize the four coordinates with the parameter σ where σ = 0 at A and σ = 1 at B. This gives us the following equation for the proper time: Z 1 dxµ dxν 1=2 τAB = dσ −gµν (x) (2) 0 dσ dσ We can treat the integrand as a Lagrangian, dxµ dxν 1=2 L = −gµν (x) (3) dσ dσ and it's clear that the world lines extremizing proper time are those that satisfy the Euler-Lagrange equation: @L d @L − = 0 (4) @xµ dσ @(dxµ/dσ) 1 These four equations together give the equation for the worldline extremizing the proper time.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • Finite Element Model Calibration of an Instrumented Thirteen-Story Steel Moment Frame Building in South San Fernando Valley, California
    Finite Element Model Calibration of An Instrumented Thirteen-story Steel Moment Frame Building in South San Fernando Valley, California By Erol Kalkan Disclamer The finite element model incuding its executable file are provided by the copyright holder "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. Acknowledgments Ground motions were recorded at a station owned and maintained by the California Geological Survey (CGS). Data can be downloaded from CESMD Virtual Data Center at: http://www.strongmotioncenter.org/cgi-bin/CESMD/StaEvent.pl?stacode=CE24567. Contents Introduction ..................................................................................................................................................... 1 OpenSEES Model ........................................................................................................................................... 3 Calibration of OpenSEES Model to Observed Response
    [Show full text]
  • Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
    Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation
    [Show full text]
  • Coordinate Transformation
    Coordinate Transformation Coordinate Transformations In this chapter, we explore mappings – where a mapping is a function that "maps" one set to another, usually in a way that preserves at least some of the underlyign geometry of the sets. For example, a 2-dimensional coordinate transformation is a mapping of the form T (u; v) = x (u; v) ; y (u; v) h i The functions x (u; v) and y (u; v) are called the components of the transforma- tion. Moreover, the transformation T maps a set S in the uv-plane to a set T (S) in the xy-plane: If S is a region, then we use the components x = f (u; v) and y = g (u; v) to …nd the image of S under T (u; v) : EXAMPLE 1 Find T (S) when T (u; v) = uv; u2 v2 and S is the unit square in the uv-plane (i.e., S = [0; 1] [0; 1]). Solution: To do so, let’s determine the boundary of T (S) in the xy-plane. We use x = uv and y = u2 v2 to …nd the image of the lines bounding the unit square: Side of Square Result of T (u; v) Image in xy-plane v = 0; u in [0; 1] x = 0; y = u2; u in [0; 1] y-axis for 0 y 1 u = 1; v in [0; 1] x = v; y = 1 v2; v in [0; 1] y = 1 x2; x in[0; 1] v = 1; u in [0; 1] x = u; y = u2 1; u in [0; 1] y = x2 1; x in [0; 1] u = 0; u in [0; 1] x = 0; y = v2; v in [0; 1] y-axis for 1 y 0 1 As a result, T (S) is the region in the xy-plane bounded by x = 0; y = x2 1; and y = 1 x2: Linear transformations are coordinate transformations of the form T (u; v) = au + bv; cu + dv h i where a; b; c; and d are constants.
    [Show full text]
  • Moment of Inertia
    MOMENT OF INERTIA The moment of inertia, also known as the mass moment of inertia, angular mass or rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis; similar to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rotation rate. It is an extensive (additive) property: for a point mass the moment of inertia is simply the mass times the square of the perpendicular distance to the rotation axis. The moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). Its simplest definition is the second moment of mass with respect to distance from an axis. For bodies constrained to rotate in a plane, only their moment of inertia about an axis perpendicular to the plane, a scalar value, and matters. For bodies free to rotate in three dimensions, their moments can be described by a symmetric 3 × 3 matrix, with a set of mutually perpendicular principal axes for which this matrix is diagonal and torques around the axes act independently of each other. When a body is free to rotate around an axis, torque must be applied to change its angular momentum. The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body.
    [Show full text]