From Newton to Hawking: a History of Cambridge University’S Lucasian Professors of Mathematics Edited by Kevin C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Duncan F. Gregory, William Walton and the Development of British Algebra: ‘Algebraical Geometry’, ‘Geometrical Algebra’, Abstraction
UvA-DARE (Digital Academic Repository) "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic Verburgt, L.M. Publication date 2015 Document Version Final published version Link to publication Citation for published version (APA): Verburgt, L. M. (2015). "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:29 Sep 2021 chapter 9 Duncan F. Gregory, William Walton and the development of British algebra: ‘algebraical geometry’, ‘geometrical algebra’, abstraction 1. The complex history of nineteenth-century British algebra: algebra, geometry and abstractness It is now well established that there were two major factors that contributed to the revitalization and reorientation of British mathematics in the early- and mid-nineteenth-century.1 Firstly, there was the external influence consisting of the dedication of the members of the anti-establishment Analytical Society to the ‘Principle of pure D-ism in opposition to the Dot-age of the University’. -
The Cambridge Mathematical Journal and Its Descendants: the Linchpin of a Research Community in the Early and Mid-Victorian Age ✩
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 455–497 www.elsevier.com/locate/hm The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian Age ✩ Tony Crilly ∗ Middlesex University Business School, Hendon, London NW4 4BT, UK Received 29 October 2002; revised 12 November 2003; accepted 8 March 2004 Abstract The Cambridge Mathematical Journal and its successors, the Cambridge and Dublin Mathematical Journal,and the Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. 2004 Elsevier Inc. All rights reserved. Résumé Dans la période 1837–1870, le Cambridge Mathematical Journal et les revues qui lui ont succédé, le Cambridge and Dublin Mathematical Journal et le Quarterly Journal of Pure and Applied Mathematics, ont joué un rôle essentiel pour promouvoir une culture de recherche dans les mathématiques britanniques. Dès le début, la tension entre les objectifs intellectuels et la rentabilité économique marqua l’existence, souvent précaire, de ce moyen de communication entre professionnels. Sur la base de documents d’archives, cet article présente les épisodes importants dans la création et l’existence de ces revues. 2004 Elsevier Inc. -
Address: University of St Andrews, School of Mathematics and Statistics, Mathematical Institute, North Haugh, St Andrews, Scotland, United Kingdom
DAVID REES JONES Address: University of St Andrews, School of Mathematics and Statistics, Mathematical Institute, North Haugh, St Andrews, Scotland, United Kingdom. Website: https://www.st-andrews.ac.uk/profile/dwrj1 Email: [email protected] ORCID: orcid.org/0000-0001-8698-401X POSITIONS 2019–: Lecturer in Applied Mathematics, School of Mathematics and Statistics, University of St Andrews. 2016–2019: Postdoctoral researcher in subduction-zone geodynamics, Department of Earth Sciences, University of Oxford (2016–2018). Department of Earth Sciences, University of Cambridge (2019). Advised by Professor Richard Katz and Dr John Rudge (Department of Earth Sciences, University of Cambridge). 2014–2016: Postdoctoral researcher on the fluid dynamics of frazil-ice crystals, Department of Physics, University of Oxford. Advised by Dr Andrew Wells. 2014–2019: College tutor, Department of Physics, University of Oxford St Anne’s College (2014–2019) and Hertford College (2015–2016). EDUCATION 2010–2013: PhD, Applied Mathematics, University of Cambridge Supervised by Professor Grae Worster. Thesis: The Convective Desalination of Sea Ice (accepted April 2014) Institute of Theoretical Geophysics. Department of Applied Mathematics and Theoretical Physics (DAMTP). NERC studentship. 2009–2010: MMath (‘Part III’), Distinction, University of Cambridge Essay ‘Global Modes in Shear Flows’ supervised by Professor Nigel Peake. Courses: Geophysical and Environmental Fluid Dynamics, Solidification of Fluids, Slow Viscous Flow, Fluid Dynamics of Energy, and Perturbation and Stability Methods. Not-examined: Polar Oceans and Climate Change, Biological Physics. 2006–2009: BA, First Class Hons., Mathematics, University of Cambridge First class in examinations in each year. PRIZES AND AWARDS 2015: Lighthill-Thwaites Prize finalist. Awarded by the Institute of Mathematics and its Applications (IMA) for a paper in Applied Mathematics within 5 years of first degree. -
Brief Biographies of Candidates 2004
BRIEF BIOGRAPHIES OF CANDIDATES 2014 Candidate for election as President (1 vacancy) Terry Lyons, Wallis Professor of Mathematics, and Director, Oxford-Man Institute for Quantitative Finance, University of Oxford Email: [email protected], [email protected] Home page: http://www.maths.ox.ac.uk/people/profiles/terry.lyons PhD: DPhil: University of Oxford 1980 Previous appointments: jr res fell Jesus Coll Oxford 1979-81, Hedrick visiting asst prof UCLA 1981-82, lectr in mathematics Imperial Coll of Sci and Technol London 1981-85; Univ of Edinburgh: Colin MacLaurin prof of mathematics 1985-93, head Dept of Mathematics and Statistics 1988-91; prof of mathematics Imperial Coll of Sci Technol and Med 1993-2000, Wallis prof of mathematics Univ of Oxford 2000-, dir Wales Inst of Mathematical and Computational Sciences 2007-11, dir Oxford-Man Inst Univ of Oxford 2011- Research interests: Stochastic Analysis, Rough Paths, Rough Differential Equations, and the particularly the development of the algebraic, analytic, and stochastic methodologies appropriate to describing the interactions within high dimensional and highly oscillatory systems. Applications of this mathematics (for example – in finance). LMS service: President, President Designate 2012-2014; Vice-President 2000-2002; Prizes Committee 1998, 2001 and 2002; Publications Committee 2002; Programme Committee 2002; LMS editorial advisor (10 years). Additional Information: sr fell EPSRC 1993-98, fell Univ of Aberystwyth 2010, fell Univ of Cardiff 2012; Rollo Davidson Prize 1985, Whitehead Prize London Mathematical Soc 1986, Polya Prize London Mathematical Soc 2000, European Research Cncl Advanced Grant 2011; Docteur (hc) Université Paul Sabatier Toulouse 2007; FRSE 1987, FRSA 1990, FIMA 1991, FRS 2002, FIMS 2004, FLSW 2011. -
Mathematics in the Modern Age - the 18Th Century: Crossing Bridges Transcript
Mathematics in the modern age - The 18th century: Crossing bridges Transcript Date: Wednesday, 4 October 2006 - 12:00AM Location: Barnard's Inn Hall MATHEMATICS IN THE MODERN AGE - THE 18TH CENTURY: CROSSING BRIDGES Professor Robin Wilson Introduction After Isaac Newton had published his celebrated PrincipiaMathematicain 1687 – the book that explained gravitation and how the planets move – his life changed for ever, and in a way that would also affect the nature of British mathematics for the next 150 years or so. His book was highly praised in Britain, even though few people could understand it, and the reclusive Newton was now a public figure. After spending a year as an ineffective Member of Parliament for Cambridge University – apparently he spoke only once, and that was to ask an official to open a window – Newton became Warden, and later Master, of the Royal Mint, living in the Tower of London, supervising the minting of coins, and punishing counterfeiters. He had now left Cambridge for good. In 1703 Newton’s arch-rival Robert Hooke died, with repercussions for both Gresham College where he was Gresham Professor of Geometry, and the Royal Society which still held its meetings in Sir Thomas Gresham’s former house. The rebuilding of the Royal Exchange after the Great Fire of 1666 had been costly, and attendances at Gresham lectures were then sparse, so proposals were made to save money by rebuilding the College on a smaller scale. Parliament was petitioned for approval, with only Robert Hooke, now frail and the only professor resident in the College, holding out against the plans. -
“A Valuable Monument of Mathematical Genius”\Thanksmark T1: the Ladies' Diary (1704–1840)
Historia Mathematica 36 (2009) 10–47 www.elsevier.com/locate/yhmat “A valuable monument of mathematical genius” ✩: The Ladies’ Diary (1704–1840) Joe Albree ∗, Scott H. Brown Auburn University, Montgomery, USA Available online 24 December 2008 Abstract Our purpose is to view the mathematical contribution of The Ladies’ Diary as a whole. We shall range from the state of mathe- matics in England at the beginning of the 18th century to the transformations of the mathematics that was published in The Diary over 134 years, including the leading role The Ladies’ Diary played in the early development of British mathematics periodicals, to finally an account of how progress in mathematics and its journals began to overtake The Diary in Victorian Britain. © 2008 Published by Elsevier Inc. Résumé Notre but est de voir la contribution mathématique du Journal de Lady en masse. Nous varierons de l’état de mathématiques en Angleterre au début du dix-huitième siècle aux transformations des mathématiques qui a été publié dans le Journal plus de 134 ans, en incluant le principal rôle le Journal de Lady joué dans le premier développement de périodiques de mathématiques britanniques, à finalement un compte de comment le progrès dans les mathématiques et ses journaux a commencé à dépasser le Journal dans l’Homme de l’époque victorienne la Grande-Bretagne. © 2008 Published by Elsevier Inc. Keywords: 18th century; 19th century; Other institutions and academies; Bibliographic studies 1. Introduction Arithmetical Questions are as entertaining and delightful as any other Subject whatever, they are no other than Enigmas, to be solved by Numbers; . -
Academic Genealogy of the Oakland University Department Of
Basilios Bessarion Mystras 1436 Guarino da Verona Johannes Argyropoulos 1408 Università di Padova 1444 Academic Genealogy of the Oakland University Vittorino da Feltre Marsilio Ficino Cristoforo Landino Università di Padova 1416 Università di Firenze 1462 Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote Università di Mantova 1433 Università di Mantova Università di Firenze 1477 Constantinople 1433 DepartmentThe Mathematics Genealogy Project of is a serviceMathematics of North Dakota State University and and the American Statistics Mathematical Society. Demetrios Chalcocondyles http://www.mathgenealogy.org/ Heinrich von Langenstein Gaetano da Thiene Sigismondo Polcastro Leo Outers Moses Perez Scipione Fortiguerra Rudolf Agricola Thomas von Kempen à Kempis Jacob ben Jehiel Loans Accademia Romana 1452 Université de Paris 1363, 1375 Université Catholique de Louvain 1485 Università di Firenze 1493 Università degli Studi di Ferrara 1478 Mystras 1452 Jan Standonck Johann (Johannes Kapnion) Reuchlin Johannes von Gmunden Nicoletto Vernia Pietro Roccabonella Pelope Maarten (Martinus Dorpius) van Dorp Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Matthaeus Adrianus Alexander Hegius Johannes Stöffler Collège Sainte-Barbe 1474 Universität Basel 1477 Universität Wien 1406 Università di Padova Università di Padova Université Catholique de Louvain 1504, 1515 Université de Paris 1516 Università di Padova 1472 Università -
Cavendish the Experimental Life
Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory. -
Cotton Mather's Relationship to Science
Georgia State University ScholarWorks @ Georgia State University English Theses Department of English 4-16-2008 Cotton Mather's Relationship to Science James Daniel Hudson Follow this and additional works at: https://scholarworks.gsu.edu/english_theses Part of the English Language and Literature Commons Recommended Citation Hudson, James Daniel, "Cotton Mather's Relationship to Science." Thesis, Georgia State University, 2008. https://scholarworks.gsu.edu/english_theses/33 This Thesis is brought to you for free and open access by the Department of English at ScholarWorks @ Georgia State University. It has been accepted for inclusion in English Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. COTTON MATHER’S RELATIONSHIP TO SCIENCE by JAMES DANIEL HUDSON Under the Direction of Dr. Reiner Smolinski ABSTRACT The subject of this project is Cotton Mather’s relationship to science. As a minister, Mather’s desire to harmonize science with religion is an excellent medium for understanding the effects of the early Enlightenment upon traditional views of Scripture. Through “Biblia Americana” and The Christian Philosopher, I evaluate Mather’s effort to relate Newtonian science to the six creative days as recorded in Genesis 1. Chapter One evaluates Mather’s support for the scientific theories of Isaac Newton and his reception to natural philosophers who advocate Newton’s theories. Chapter Two highlights Mather’s treatment of the dominant cosmogonies preceding Isaac Newton. The Conclusion returns the reader to Mather’s principal occupation as a minister and the limits of science as informed by his theological mind. Through an exploration of Cotton Mather’s views on science, a more comprehensive understanding of this significant early American and the ideological assumptions shaping his place in American history is realized. -
Nominalism and Constructivism in Seventeenth-Century Mathematical Philosophy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 32 (2005) 33–59 www.elsevier.com/locate/hm Nominalism and constructivism in seventeenth-century mathematical philosophy David Sepkoski Department of History, Oberlin College, Oberlin, OH 44074, USA Available online 27 November 2003 Abstract This paper argues that the philosophical tradition of nominalism, as evident in the works of Pierre Gassendi, Thomas Hobbes, Isaac Barrow, and Isaac Newton, played an important role in the history of mathematics during the 17th century. I will argue that nominalist philosophy of mathematics offers new clarification of the development of a “constructivist” tradition in mathematical philosophy. This nominalist and constructivist tradition offered a way for contemporary mathematicians to discuss mathematical objects and magnitudes that did not assume these entities were real in a Platonic sense, and helped lay the groundwork for formalist and instrumentalist approaches in modern mathematics. 2003 Elsevier Inc. All rights reserved. Résumé Cet article soutient que la tradition philosophique du nominalisme, évidente dans les travaux de Pierre Gassendi, Thomas Hobbes, Isaac Barrow et Isaac Newton, a joué un rôle important dans l’histoire des mathématiques pendant le dix-septième siècle. L’argument princicipal est que la philosophie nominaliste des mathématiques est à la base du développement d’une tradition « constructiviste » en philosophie mathématique. Cette tradition nominaliste et constructiviste a permis aux mathématiciens contemporains de pouvoir discuter d’objets et quantités mathématiques sans présupposer leur réalité au sens Platonique du terme, et a contribué au developpement desétudes formalistes et instrumentalistes des mathématiques modernes. -
Commemoration of Benefactors 1823
A FORM FOR TH E COMMEMORATION OF BENEFACTORS, TO BE USED IN THE CHAPEL OF TH E College of S t. Margaret and St. Bernard, COMMONLY CALLED Queens’ College, Cambridge. CAMBRIDGE: PRINTED AT THE UNIVERSITY PRESS, BY J. SMITH. M.DCCC.XX.III. THE SOCIETY OF QUEENS’ COLLEGE. 1823. President. H enry G odfrey, D. D. ( Vice-Chancellor). Foundation Fellows. J ohn L odge H ubbersty, M. D. G eorge H ew itt, B. D. Charles F arish, B. D. W illiam M andell, B. D. T homas Beevor, B. D. G eorge Cornelius G orham, B. D. John T oplis, B. D. J oseph J ee, M. A. Samuel Carr, M. A. J ohn Baines G raham, M. A. H enry V enn, M. A. J oseph D ewe, M. A. J oshua K ing, M. A. T homas T attershall, M. A. Samuel F ennell, B. A. Edwards’ By-Fellow. John V incent T hompson, M.A., F.A.S. A FORM FOR TH E COMMEMORATION OF BENEFACTORS, TO BE USED IN THE CHAPEL OF TH E College of St. Margaret and St. Bernard, COMMONLY CALLED Queens’ College, Cambridge. LET the whole Society assemble in the College Chapel, on the day after the end of each Term; and let the Commemoration Service be conducted in the following manner; as required by the Statutes, (Chapter 25. ‘ De celebranda memoria Benefactorum’ — ¶ First, the Lesson, E cclesiasticus X L IV , shall be read.—¶ Then, the Sermon shall be preached, by some person a appointed by the President; at the conclusion o f which, the names o f the Foundresses, and of other Benefactors, shall be recited: — I. -
University of Pennsylvania Press
University of Pennsylvania Press Newtonian Science, Miracles, and the Laws of Nature Author(s): Peter Harrison Source: Journal of the History of Ideas, Vol. 56, No. 4 (Oct., 1995), pp. 531-553 Published by: University of Pennsylvania Press Stable URL: http://www.jstor.org/stable/2709991 Accessed: 30-10-2015 01:34 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. University of Pennsylvania Press is collaborating with JSTOR to digitize, preserve and extend access to Journal of the History of Ideas. http://www.jstor.org This content downloaded from 130.102.42.98 on Fri, 30 Oct 2015 01:34:15 UTC All use subject to JSTOR Terms and Conditions NewtonianScience, Miracles, andthe Laws ofNature PeterHarrison Introduction "Newton,"writes Richard Westfall, "both believed in and did not believe in miracles."It can onlybe concluded,Westfall continues, that the greatscientist, unwilling to relinquishhis beliefin a providentialand inter- posingDeity, "abandoned himself to ambiguitiesand inconsistencies,which gave theappearance of divine participation in nature,but not the substance."' Newton'sapparent ambivalence