Anatomical Observations on Floating Leaves Robert B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Red Names=Invasive Species Green Names=Native Species
CURLY-LEAF PONDWEED EURASIAN WATERMIL- FANWORT CHARA (Potamogeton crispus) FOIL (Cabomba caroliniana) (Chara spp.) This undesirable exotic, also known (Myriophyllum spicatum) This submerged exotic Chara is typically found growing in species is not common as Crisp Pondweed, bears a waxy An aggressive plant, this exotic clear, hard water. Lacking true but management tools are cuticle on its upper leaves making milfoil can grow nearly 10 feet stems and leaves, Chara is actually a limited. Very similar to them stiff and somewhat brittle. in length forming dense mats form of algae. It’s stems are hollow aquarium species. Leaves The leaves have been described as at the waters surface. Grow- with leaf-like structures in a whorled are divided into fine resembling lasagna noodles, but ing in muck, sand, or rock, it pattern. It may be found growing branches in a fan-like ap- upon close inspection a row of has become a nuisance plant with tiny, orange fruiting bodies on pearance, opposite struc- “teeth” can be seen to line the mar- in many lakes and ponds by the branches called akinetes. Thick ture, spanning 2 inches. gins. Growing in dense mats near quickly outcompeting native masses of Chara can form in some Floating leaves are small, the water’s surface, it outcompetes species. Identifying features areas. Often confused with Starry diamond shape with a native plants for sun and space very include a pattern of 4 leaves stonewort, Coontail or Milfoils, it emergent white/pinkish early in spring. By midsummer, whorled around a hollow can be identified by a gritty texture flower. -
Natural Heritage Program List of Rare Plant Species of North Carolina 2016
Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate. -
Pond Plants PAGE 1
Pond Plants PAGE 1 Please check for seasonality and availability by giving us a call, e-mailing or visiting the Nursery. Ponds create peaceful and relaxing environments that help cool the air on a hot summer’s day. A place to relax, be inspired, or to entertain family and friends. A range of plants will give you the right balance for crystal clear water, creating a habitat for a variety of creatures such as fish, frogs and even dragonflies. Your own mini ecosystem in the backyard. Water gardens can be large or small. They can be a real feature in a beautiful glazed pot, on a balcony or a versatile way of bringing inspiration and tranquility into the renter’s garden. No need to weed, mulch or compost. Apart from some seasonal maintenance and the occasional water top up, all you need to do is sit back, relax, and enjoy the peace of your own backyard water feature. N - Denotes Native Plant E - Denotes Evergreen D - Denotes Deciduous SD - Denotes Semi Deciduous Waterlilies nymphaea - Hardy – not available in winter Prefers to grow in 45cm of water or up to 1.8m deep. Will tolerate some shade for part of the day, but requires 5 hours of sun for best flowering results. Comes in apricot, pink, red, white and yellow. Dies down in winter. Lotus – Nelumbo nucifera (N) – pink - available from October to March Submerged Aquatic plants Aponogeton distachyos - Water Hawthorn – avail winter An attractive plant with white perfumed flowers and dark green strap-like floating leaves. It loves the cold & is good for winter coverage. -
An Updated Checklist of Aquatic Plants of Myanmar and Thailand
Biodiversity Data Journal 2: e1019 doi: 10.3897/BDJ.2.e1019 Taxonomic paper An updated checklist of aquatic plants of Myanmar and Thailand Yu Ito†, Anders S. Barfod‡ † University of Canterbury, Christchurch, New Zealand ‡ Aarhus University, Aarhus, Denmark Corresponding author: Yu Ito ([email protected]) Academic editor: Quentin Groom Received: 04 Nov 2013 | Accepted: 29 Dec 2013 | Published: 06 Jan 2014 Citation: Ito Y, Barfod A (2014) An updated checklist of aquatic plants of Myanmar and Thailand. Biodiversity Data Journal 2: e1019. doi: 10.3897/BDJ.2.e1019 Abstract The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa) were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras. Keywords Aquatic plants, flora, Myanmar, Thailand © Ito Y, Barfod A. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Vascular Plants of Williamson County Potamogeton Nodosus − LONGLEAF PONDWEED [Potamogetonaceae]
Vascular Plants of Williamson County Potamogeton nodosus − LONGLEAF PONDWEED [Potamogetonaceae] Potamogeton nodosus Poiret, LONGLEAF PONDWEED. Aquatic perennial herb, clonal, rhizomatous, fibrous-rooted, not rosetted, mostly submersed with floating leaves; shoots with only cauline leaves with long petioles and stems and rhizomes with long internodes, glabrous; rhizomes cylindric, internodes to 190 × 3 mm, white; adventitious roots nodal, slender. Stems: ± cylindric, to 210 × 3 mm, white to green lacking purple spots; with elongate air canals in “cortex” (aerenchyma). Leaves: alternate distichous, simple, petiolate, with stipules; stipule 1, attached across node, V-folded along midvein, 35−65 mm long, translucent with many parallel veins; of submersed leaf petiole ± hemicylindric with rounded edges, 40−105 mm long, with aerenchyma, blade linear-oblanceolate to narrowly elliptic to narrowly oblanceolate, 18−53 × 6−9 mm, long-tapered at base, entire, blunt acute at tip lacking fine point at tip, midrib giving rise to 8 ascending, parallel lateral veins, midrib slightly raised on both surfaces; of floating leaf petiole ± hemicylindric with rounded edges, 20−210 mm long, with aerenchyma, blade elliptic, 28−95 × 20−37 mm, tapered at base, entire, broadly acute to obtuse or rounded at tip, midrib giving rise to 20 ascending, parallel lateral veins with veins slightly raised on lower surface, upper surface flat, water repellent, and many stomates, lower surface wettable and lacking stomates. Inflorescence: spike, axillary, emergent at anthesis, -
WETLAND PLANTS – Full Species List (English) RECORDING FORM
WETLAND PLANTS – full species list (English) RECORDING FORM Surveyor Name(s) Pond name Date e.g. John Smith (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 (see your map) e.g. SP 1235 4325 (see your map) METHOD: wetland plants (full species list) survey Survey a single Focal Pond in each 1km square Aim: To assess pond quality and conservation value using plants, by recording all wetland plant species present within the pond’s outer boundary. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from the extent of wetland vegetation (for example a ring of rushes growing at the pond’s outer edge), or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put’?’ by the species name. If you are really unsure put ‘??’. After your survey please enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ Aquatic plants (submerged-leaved species) Stonewort, Bristly (Chara hispida) Bistort, Amphibious (Persicaria amphibia) Arrowhead (Sagittaria sagittifolia) Stonewort, Clustered (Tolypella glomerata) Crystalwort, Channelled (Riccia canaliculata) Arrowhead, Canadian (Sagittaria rigida) Stonewort, Common (Chara vulgaris) Crystalwort, Lizard (Riccia bifurca) Arrowhead, Narrow-leaved (Sagittaria subulata) Stonewort, Convergent (Chara connivens) Duckweed , non-native sp. -
Aponogeton Pollen from the Cretaceous and Paleogene of North America and West Greenland: Implications for the Origin and Palaeobiogeography of the Genus☆
Review of Palaeobotany and Palynology 200 (2014) 161–187 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Research paper Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: Implications for the origin and palaeobiogeography of the genus☆ Friðgeir Grímsson a,⁎, Reinhard Zetter a, Heidemarie Halbritter b, Guido W. Grimm c a University of Vienna, Department of Palaeontology, Althanstraße 14 (UZA II), Vienna, Austria b University of Vienna, Department of Structural and Functional Botany, Rennweg 14, Vienna, Austria c Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 Stockholm, Sweden article info abstract Article history: The fossil record of Aponogeton (Aponogetonaceae) is scarce and the few reported macrofossil findings are in Received 15 January 2013 need of taxonomic revision. Aponogeton pollen is highly diagnostic and when studied with light microscopy Received in revised form 4 September 2013 (LM) and scanning electron microscopy (SEM) it cannot be confused with any other pollen types. The fossil Accepted 22 September 2013 Aponogeton pollen described here represent the first reliable Cretaceous and Eocene records of this genus world- Available online 3 October 2013 wide. Today, Aponogeton is confined to the tropics and subtropics of the Old World, but the new fossil records show that during the late Cretaceous and early Cenozoic it was thriving in North America and Greenland. The Keywords: Alismatales late Cretaceous pollen record provides important data for future phylogenetic and phylogeographic studies Aponogetonaceae focusing on basal monocots, especially the Alismatales. The Eocene pollen morphotypes from North America aquatic plant and Greenland differ in morphology from each other and also from the older Late Cretaceous North American early angiosperm pollen morphotype, indicating evolutionary trends and diversification within the genus over that time period. -
Unwise Plant Choices
Don’t Be Fooled by Unwise Water-Wise Plant Choices California’s drought is popularizing low-water landscaping: lawns are coming out, xeriscaping is going in. Fortunately, water agencies, nurseries, and garden media are all promoting drought-tolerant plant lists to guide purchasing decisions and reduce water usage. Unfortunately, in this rush for water conservation, invasive plants are creeping onto some of these lists! Maybe you’ve already noticed… There is little surprise that many invasive plants are drought-resistant. By definition, invasive plants can spread into new regions and take over without extra fertilizers or irrigation. Water-wise lists that include drought-tolerant plants are missing the point, however. Why? An invasive plants’ damaging impacts are numerous. For example, in Southern California green fountain grass (Pennisetum setaceum) plants do not provide habitat or forage for wildlife and add considerable fuel-load to wildfires. Other plants can alter soil composition, influence erosion, or even affect our waterways. Giant reed (Arundo donax), was previously a common ornamental that now grows densely in stream banks, increasing flood impacts and clogging water passages. Lastly, the use of herbicides on invasive plants, while in many cases the best available option, poses risk to water quality in our streams, aquifers and oceans. With this in mind, gardeners and landscape professionals can be truly “water-wise” by: 1. Insisting on non-invasive plants when designing drought-tolerant landscapes. Plants that we’ve seen (in order of prevalence) on drought- tolerant plant lists include: Mexican feathergrass (Nassella or Stipa tenuissima) – emerging invasive, Green fountain grass (Pennisetum setaceum), Highway iceplant, (Carpobrotus edulis), Pampas grass (Cortaderia selloana), Capeweed (Arctotheca calendula) and Big leaf periwinkle (Vinca major). -
Pondnet RECORDING FORM (PAGE 1 of 5)
WETLAND PLANTS PondNet RECORDING FORM (PAGE 1 of 5) Your Name Date Pond name (if known) Square: 4 fig grid reference Pond: 8 fig grid ref e.g. SP1243 e.g. SP 1235 4325 Determiner name (optional) Voucher material (optional) METHOD (complete one survey form per pond) Aim: To assess pond quality and conservation value, by recording wetland plants. How: Identify the outer boundary of the pond. This is the ‘line’ marking the pond’s highest yearly water levels (usually in early spring). It will probably not be the current water level of the pond, but should be evident from wetland vegetation like rushes at the pond’s outer edge, or other clues such as water-line marks on tree trunks or stones. Within the outer boundary, search all the dry and shallow areas of the pond that are accessible. Survey deeper areas with a net or grapnel hook. Record wetland plants found by crossing through the names on this sheet. You don’t need to record terrestrial species. For each species record its approximate abundance as a percentage of the pond’s surface area. Where few plants are present, record as ‘<1%’. If you are not completely confident in your species identification put ’?’ by the species name. If you are really unsure put ‘??’. Enter the results online: www.freshwaterhabitats.org.uk/projects/waternet/ or send your results to Freshwater Habitats Trust. Aquatic plants (submerged-leaved species) Nitella hyalina (Many-branched Stonewort) Floating-leaved species Apium inundatum (Lesser Marshwort) Nitella mucronata (Pointed Stonewort) Azolla filiculoides (Water Fern) Aponogeton distachyos (Cape-pondweed) Nitella opaca (Dark Stonewort) Hydrocharis morsus-ranae (Frogbit) Cabomba caroliniana (Fanwort) Nitella spanioclema (Few-branched Stonewort) Hydrocotyle ranunculoides (Floating Pennywort) Callitriche sp. -
Threatened and Endangered Species List
Effective April 15, 2009 - List is subject to revision For a complete list of Tennessee's Rare and Endangered Species, visit the Natural Areas website at http://tennessee.gov/environment/na/ Aquatic and Semi-aquatic Plants and Aquatic Animals with Protected Status State Federal Type Class Order Scientific Name Common Name Status Status Habit Amphibian Amphibia Anura Gyrinophilus gulolineatus Berry Cave Salamander T Amphibian Amphibia Anura Gyrinophilus palleucus Tennessee Cave Salamander T Crustacean Malacostraca Decapoda Cambarus bouchardi Big South Fork Crayfish E Crustacean Malacostraca Decapoda Cambarus cymatilis A Crayfish E Crustacean Malacostraca Decapoda Cambarus deweesae Valley Flame Crayfish E Crustacean Malacostraca Decapoda Cambarus extraneus Chickamauga Crayfish T Crustacean Malacostraca Decapoda Cambarus obeyensis Obey Crayfish T Crustacean Malacostraca Decapoda Cambarus pristinus A Crayfish E Crustacean Malacostraca Decapoda Cambarus williami "Brawley's Fork Crayfish" E Crustacean Malacostraca Decapoda Fallicambarus hortoni Hatchie Burrowing Crayfish E Crustacean Malocostraca Decapoda Orconectes incomptus Tennessee Cave Crayfish E Crustacean Malocostraca Decapoda Orconectes shoupi Nashville Crayfish E LE Crustacean Malocostraca Decapoda Orconectes wrighti A Crayfish E Fern and Fern Ally Filicopsida Polypodiales Dryopteris carthusiana Spinulose Shield Fern T Bogs Fern and Fern Ally Filicopsida Polypodiales Dryopteris cristata Crested Shield-Fern T FACW, OBL, Bogs Fern and Fern Ally Filicopsida Polypodiales Trichomanes boschianum -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
Literature Review
Aquatic and riparian plant management: controls for vegetation in watercourses Literature review Project: SC120008/R4 The Environment Agency is the leading public body protecting and improving the environment in England. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. This report is the result of research commissioned by the Environment Agency’s Evidence Directorate and funded by the joint Environment Agency/Defra Flood and Coastal Erosion Risk Management Research and Development Programme. Published by: Author(s): Environment Agency, Horizon House, Deanery Road, Sebastian Bentley, Rachael Brady, Matthew Bristol, BS1 9AH Hemsworth and Laura Thomas www.environment-agency.gov.uk Dissemination Status: ISBN: 978-1-84911-328-1 Publicly available © Environment Agency – July 2014 Keywords: Aquatic vegetation, riparian, management, control, All rights reserved. This document may be reproduced flood risk management, physical, chemical, with prior permission of the Environment Agency. environmental, biological, biosecurity The views and statements expressed in this report are Research Contractor: those of the author alone. The views or statements JBA Consulting, Epsom House, Chase Park, expressed in this publication do not necessarily Redhouse Interchange, South Yorkshire, DN6 7FE represent the views of the Environment Agency and the Tel: 01302 337798 Environment Agency cannot accept any responsibility for such views or statements. Environment Agency’s Project Manager: Lydia Burgess-Gamble, Evidence Directorate Email: [email protected].