Hibonite Properties and Terrestrial Occurrence Griffin, W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coulsonite Fev2o4—A Rare Vanadium Spinel Group Mineral in Metamorphosed Massive Sulfide Ores of the Kola Region, Russia
minerals Article Coulsonite FeV2O4—A Rare Vanadium Spinel Group Mineral in Metamorphosed Massive Sulfide Ores of the Kola Region, Russia Alena A. Kompanchenko Geological Institute of the Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, 14 Fersman Street, 184209 Apatity, Russia; [email protected]; Tel.: +7-921-048-8782 Received: 24 August 2020; Accepted: 21 September 2020; Published: 24 September 2020 Abstract: This work presents new data on a rare vanadium spinel group mineral, i.e., coulsonite FeV2O4 established in massive sulfide ores of the Bragino occurrence in the Kola region, Russia. Coulsonite in massive sulfide ores of the Bragino occurrence is one of the most common vanadium minerals. Three varieties of coulsonite were established based on its chemical composition, some physical properties, and mineral association: coulsonite-I, coulsonite-II, and coulsonite-III. Coulsonite-I forms octahedral crystal clusters of up to 500 µm, and has a uniformly high content of 2 Cr2O3 (20–30 wt.%), ZnO (up to 4.5 wt.%), and MnO (2.8 wt.%), high microhardness (743 kg/mm ) and coefficient of reflection. Coulsonite-II was found in relics of quartz–albite veins in association with other vanadium minerals. Its features are a thin tabular shape and enrichment in TiO2 of up to 18 wt.%. Coulsonite-III is the most common variety in massive sulfide ores of the Bragino occurrence. Coulsonite-III forms octahedral crystals of up to 150 µm, crystal clusters, and intergrowths with V-bearing ilmenite, W-V-bearing rutile, Sc-V-bearing senaite, etc. Chemical composition of coulsonite-III is characterized by wide variation of the major compounds—Fe, V, Cr. -
A Multielement Isotopic Study of Refractory FUN and F Cais: 2 Mass-Dependent and Mass-Independent Isotope Effects 3 Levke Kööp1,2,3,*, Daisuke Nakashima4,5, Philipp R
1 A multielement isotopic study of refractory FUN and F CAIs: 2 Mass-dependent and mass-independent isotope effects 3 Levke Kööp1,2,3,*, Daisuke Nakashima4,5, Philipp R. Heck1,2,3, Noriko T. Kita4, Travis J. Ten- 4 ner4,6, Alexander N. Krot7, Kazuhide Nagashima7, Changkun Park7,8, Andrew M. Davis1,2,3,9 5 1Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637, 6 USA ([email protected]) 7 2Chicago Center for Cosmochemistry, The University of Chicago, Chicago, IL 60637, USA 8 3Robert A. Pritzker Center for Meteoritics and Polar Studies, Field Museum of Natural His- 9 tory, Chicago, IL, USA 10 4Department of Geoscience, University of Wisconsin, Madison, WI 53706, USA 11 5Division of Earth and Planetary Material Sciences, Faculty of Science, Tohoku University, 12 Aoba, Sendai, Miyagi 980-8578 Japan 13 6 Chemistry Division, Nuclear and Radiochemistry, Los Alamos National Laboratory, 14 MSJ514, Los Alamos, NM 87545, USA 15 7Hawai‘i Institute of Geophysics and Planetology, School of Ocean and Earth Science and 16 Technology, University of Hawai‘i at M!noa, Honolulu, HI 17 8Korea Polar Research Institute, Incheon 21990, Korea 18 9Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA. 19 20 *E-mail address of the corresponding author: [email protected] 21 ABSTRACT 22 Calcium-aluminum-rich inclusions (CAIs) are the oldest dated objects that formed inside the 23 Solar System. Among these are rare, enigmatic objects with large mass-dependent fractionation 24 effects (F CAIs), which sometimes also have large nucleosynthetic anomalies and a low initial 25 abundance of the short-lived radionuclide 26Al (FUN CAIs). -
Addibischoffite, Ca2al6al6o20, a New Calcium Aluminate Mineral from The
1 Revision 3 2 Addibischoffite, Ca2Al6Al6O20, a new calcium aluminate mineral from 3 the Acfer 214 CH carbonaceous chondrite: A new refractory phase from 4 the solar nebula 5 Chi Ma1,*, Alexander N. Krot2, Kazuhide Nagashima2 6 1Division of Geological and Planetary Sciences, California Institute of Technology, 7 Pasadena, California 91125, USA 8 2Hawai‘i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, 9 Honolulu, Hawai‘i 96822, USA 10 11 ABSTRACT 12 Addibischoffite (IMA 2015-006), Ca2Al6Al6O20, is a new calcium aluminate mineral 13 that occurs with hibonite, perovskite, kushiroite, Ti-kushiroite, spinel, melilite, 14 anorthite and FeNi-metal in the core of a Ca-Al-rich inclusion (CAI) in the Acfer 15 214 CH3 carbonaceous chondrite. The mean chemical composition of type 16 addibischoffite by electron probe microanalysis is (wt%) Al2O3 44.63, CaO 15.36, 17 SiO2 14.62, V2O3 10.64, MgO 9.13, Ti2O3 4.70, FeO 0.46, total 99.55, giving rise to 18 an empirical formula of 3+ 3+ 2+ 19 (Ca2.00)(Al2.55Mg1.73V 1.08Ti 0.50Ca0.09Fe 0.05)Σ6.01(Al4.14Si1.86)O20. The general 20 formula is Ca2(Al,Mg,V,Ti)6(Al,Si)6O20. The end-member formula is Ca2Al6Al6O20. 21 Addibischoffite has the P1 aenigmatite structure with a = 10.367 Å, b = 10.756 Å, c 22 = 8.895 Å, α = 106.0°, β = 96.0°, γ = 124.7°, V = 739.7 Å3, and Z = 2, as revealed by 23 electron back-scatter diffraction. The calculated density using the measured 24 composition is 3.41 g/cm3. -
POSTER SESSION 5:30 P.M
Monday, July 27, 1998 POSTER SESSION 5:30 p.m. Edmund Burke Theatre Concourse MARTIAN AND SNC METEORITES Head J. W. III Smith D. Zuber M. MOLA Science Team Mars: Assessing Evidence for an Ancient Northern Ocean with MOLA Data Varela M. E. Clocchiatti R. Kurat G. Massare D. Glass-bearing Inclusions in Chassigny Olivine: Heating Experiments Suggest Nonigneous Origin Boctor N. Z. Fei Y. Bertka C. M. Alexander C. M. O’D. Hauri E. Shock Metamorphic Features in Lithologies A, B, and C of Martian Meteorite Elephant Moraine 79001 Flynn G. J. Keller L. P. Jacobsen C. Wirick S. Carbon in Allan Hills 84001 Carbonate and Rims Terho M. Magnetic Properties and Paleointensity Studies of Two SNC Meteorites Britt D. T. Geological Results of the Mars Pathfinder Mission Wright I. P. Grady M. M. Pillinger C. T. Further Carbon-Isotopic Measurements of Carbonates in Allan Hills 84001 Burckle L. H. Delaney J. S. Microfossils in Chondritic Meteorites from Antarctica? Stay Tuned CHONDRULES Srinivasan G. Bischoff A. Magnesium-Aluminum Study of Hibonites Within a Chondrulelike Object from Sharps (H3) Mikouchi T. Fujita K. Miyamoto M. Preferred-oriented Olivines in a Porphyritic Olivine Chondrule from the Semarkona (LL3.0) Chondrite Tachibana S. Tsuchiyama A. Measurements of Evaporation Rates of Sulfur from Iron-Iron Sulfide Melt Maruyama S. Yurimoto H. Sueno S. Spinel-bearing Chondrules in the Allende Meteorite Semenenko V. P. Perron C. Girich A. L. Carbon-rich Fine-grained Clasts in the Krymka (LL3) Chondrite Bukovanská M. Nemec I. Šolc M. Study of Some Achondrites and Chondrites by Fourier Transform Infrared Microspectroscopy and Diffuse Reflectance Spectroscopy Semenenko V. -
Petrography and Mineral Chemistry of the Anhydrous Component of the Tagish Lake Carbonaceous Chondrite
Meteoritics & Planetary Science 38, Nr 5, 813–825 (2003) Abstract available online at http://meteoritics.org Petrography and mineral chemistry of the anhydrous component of the Tagish Lake carbonaceous chondrite S. B. SIMON1* and L. GROSSMAN1, 2 1Department of the Geophysical Sciences, 5734 South Ellis Avenue, The University of Chicago, Chicago, Illinois 60637, USA 2The Enrico Fermi Institute, 5640 South Ellis Avenue, The University of Chicago, Chicago, Illinois 60637, USA *Corresponding author. E-mail: [email protected] (Received 30 August 2002; revision accepted 16 January 2003) Abstract–Most studies of Tagish Lake have considered features that were either strongly affected by or formed during the extensive hydrous alteration experienced by this meteorite. This has led to some ambiguity as to whether Tagish Lake should be classified a CI, a CM, or something else. Unlike previous workers, we have focused upon the primary, anhydrous component of Tagish Lake, recovered through freeze-thaw disaggregation and density separation and located by thin section mapping. We found many features in common with CMs that are not observed in CIs. In addition to the presence of chondrules and refractory forsterite (which distinguish Tagish Lake from the CIs), we found hibonite-bearing refractory inclusions, spinel-rich inclusions, forsterite aggregates, Cr-, Al-rich spinel, and accretionary mantles on many clasts, which clearly establishes a strong link between Tagish Lake and the CM chondrites. The compositions of isolated olivine crystals in Tagish Lake are also like those found in CMs. We conclude that the anhydrous inclusion population of Tagish Lake was, originally, very much like that of the known CM chondrites and that the inclusions in Tagish Lake are heavily altered, more so than even those in Mighei, which are more heavily altered than those in Murchison. -
Nomenclature of the Garnet Supergroup
American Mineralogist, Volume 98, pages 785–811, 2013 IMA REPORT Nomenclature of the garnet supergroup EDWARD S. GREW,1,* ANDREW J. LOCOCK,2 STUART J. MILLS,3,† IRINA O. GALUSKINA,4 EVGENY V. GALUSKIN,4 AND ULF HÅLENIUS5 1School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada 3Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia 4Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland 5Swedish Museum of Natural History, Department of Mineralogy, P.O. Box 50 007, 104 05 Stockholm, Sweden ABSTRACT The garnet supergroup includes all minerals isostructural with garnet regardless of what elements occupy the four atomic sites, i.e., the supergroup includes several chemical classes. There are pres- ently 32 approved species, with an additional 5 possible species needing further study to be approved. The general formula for the garnet supergroup minerals is {X3}[Y2](Z3)ϕ12, where X, Y, and Z refer to dodecahedral, octahedral, and tetrahedral sites, respectively, and ϕ is O, OH, or F. Most garnets are cubic, space group Ia3d (no. 230), but two OH-bearing species (henritermierite and holtstamite) have tetragonal symmetry, space group, I41/acd (no. 142), and their X, Z, and ϕ sites are split into more symmetrically unique atomic positions. Total charge at the Z site and symmetry are criteria for distinguishing groups, whereas the dominant-constituent and dominant-valency rules are critical in identifying species. Twenty-nine species belong to one of five groups: the tetragonal henritermierite group and the isometric bitikleite, schorlomite, garnet, and berzeliite groups with a total charge at Z of 8 (silicate), 9 (oxide), 10 (silicate), 12 (silicate), and 15 (vanadate, arsenate), respectively. -
Invited Review
INVITED REVIEW Presolar grains from meteorites: Remnants from the early times of the solar system Katharina Lodders a,* and Sachiko Amari b a Planetary Chemistry Laboratory, Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, Campus Box 1169, One Brookings Drive, St. Louis, MO 63130, USA b Department of Physics and McDonnell Center for the Space Sciences, Washington University, Campus Box 1105, One Brookings Drive, St. Louis, MO 63130, USA Received 5 October 2004; accepted 4 January 2005 Abstract This review provides an introduction to presolar grains – preserved stardust from the interstellar molecular cloud from which our solar system formed – found in primitive meteorites. We describe the search for the presolar components, the currently known presolar mineral populations, and the chemical and isotopic characteristics of the grains and dust-forming stars to identify the grains’ most probable stellar sources. Keywords: Presolar grains; Interstellar dust; Asymptotic giant branch (AGB) stars; Novae; Supernovae; Nucleosynthesis; Isotopic ratios; Meteorites 1. Introduction The history of our solar system started with the gravitational collapse of an interstellar molecular cloud laden with gas and dust supplied from dying stars. The dust from this cloud is the topic of this review. A small fraction of this dust escaped destruction during the many processes that occurred after molecular cloud collapse about 4.55 Ga ago. We define presolar grains as stardust that formed in stellar outflows or ejecta and remained intact throughout its journey into the solar system where it was preserved in meteorites. The survival and presence of genuine stardust in meteorites was not expected in the early years of meteorite studies. -
Modal Abundances of Cais: Implications for Bulk Chondrite Element Abundances and Fractionations
Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. Dominik C. Hezel, Sara S. Russell, Aidan J. Ross, Anton T. Kearsley Impacts and Astromaterials Centre (IARC), Natural History Museum, Department of Mineralogy, Cromwell Road, SW7 5BD, London, UK *E-mail address of the corresponding author: [email protected] keywords: calcium-aluminum-rich inclusions (CAIs), modal abundance, inclusion(s) refractory, mathematic model 3. revised version to Meteoritics & Planetary Sciences June, 2008 Operating system: Mac OS X 10.4.11 Word processor: Apple Pages Spelling: British English 1 Abstract 2 3 Modal abundances of Ca,Al-rich inclusions (CAIs) are poorly known and reported 4 data scatter across large ranges. We combine reported CAI modal abundances and our own 5 set, and present a complete list of CAI modal abundances in carbonaceous chondrites. This 6 includes (in area%): CV: 2.98, CM: 1.21, Acfer 094: 1.12, CO: 0.99, CK/CV (Ningqiang & 7 DaG 055): 0.77, CK: 0.2, CR: 0.12 and CB: 0.1. CAIs are Poisson distributed and if only 8 small areas (<1000 mm2) are studied, the data are probably not representative of the true CAI 9 modal abundances, explaining their reported large scatter in a single chondrite group. 10 Carbonaceous chondrites have excess bulk Al concentrations when compared to the CI- 11 chondritic value. We find a correlation between this excess and CAI modal abundances and 12 conclude that the excess Al was delivered by CAIs. The excess Al is only a minor fraction 13 (usually ~10 rel%, but 25 rel% in case of CVs) of the bulk chondrite Al and cannot have 14 contributed much 26Al to heat the chondrite parent body. -
Grossite and Hibonite Bearing Refractory Inclusions in the CO3.1 Chondrite Miller Range 090019. D. K. Ross1 and J. I. Simon2, 1U
49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2559.pdf Grossite and Hibonite Bearing Refractory Inclusions in the CO3.1 Chondrite Miller Range 090019. D. K. Ross1 and J. I. Simon2, 1University of Texas El Paso/Jacobs Technology/NASA-JSC-ARES (2224 Bay Area Blvd. Houston TX 77058, USA ([email protected]), 2NASA-Johnson Space Center-ARES ([email protected]). Introduction: We have characterized 142 refract- finer grained particles with substantial porosity. Ongo- ory objects by EDS hyperspectral X-ray mapping in the ing reaction with nebular gases produces down-temper- CO3.1 chondrite MIL 090019-13. These include 127 ature phases partially replacing earlier formed phases Ca-Al rich inclusions (CAIs), 14 amoeboidal olivine ag- and infilling porosity, leading to densified objects. gregates (AOAs) and one Al-rich chondrule. These data Most CAIs are not fully equilibrated, but exhibit miner- are being used to reveal the mineralogy, texture and alogy reflecting a considerable range of temperature, bulk composition of these inclusions, and to identify ob- with relict phases. Hibonite is typically intergrown with, jects that represent endmembers within cogenetic popu- and partially replaced by spinel, violating the predicted lations of primitive inclusions, which will be further in- crystallization order from thermodynamic calcula- vestigated by future isotopic studies. Previous work re- tions[3], in which melilite should precede spinel crystal- lated to these refractory inclusions in this chondrite also lization. appear in [1] and [2]. Twenty six inclusions are hibonite-bearing, 18 are grossite-bearing and one inclusion is corundum-rich. In seven of these inclusions, grossite and hibonite coexist. -
Hibonite-(Fe); (Fe; Mg)Al12o19; a New Alteration Mineral from The
American Mineralogist, Volume 95, pages 188–191, 2010 LETTER Hibonite-(Fe), (Fe,Mg)Al12O19, a new alteration mineral from the Allende meteorite CHI MA* Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A. ABSTRA C T 2+ Hibonite-(Fe), (Fe,Mg)Al12O19, is the Fe -dominant analog of hibonite CaAl12O19, discovered in a highly altered Ca-,Al-rich refractory inclusion from the Allende meteorite. It occurs as scattered micrometer-sized single crystals within an aggregate of hercynite (Fe,Mg)Al2O4, adjacent to nepheline, ilmenite, ferroan spinel, perovskite, and hibonite. The mean chemical composition determined by electron microprobe analysis of hibonite-(Fe) is Al2O3 90.05 wt%, FeO 3.60, SiO2 2.09, MgO 1.61, Na2O 0.55, CaO 0.28, TiO2 0.04, V2O3 0.02, sum 98.25, corresponding to an empirical formula of 2+ (Fe 0.34Mg0.27Na0.12Al0.11Ca0.03)Σ0.87 (Al11.77Si0.23)Σ12.00O19. Hibonite-(Fe) is hexagonal, P63/mmc; a = 5.613 Å, c = 22.285 Å, V = 608.0 Å3 and Z = 2. Its electron backscatter diffraction pattern is a good match to that of the hibonite structure. Hibonite-(Fe) is apparently a secondary alteration product formed by iron-alkali-halogen metasomatism, whereas hibonite is a primary refractory phase. Keywords: Hibonite-(Fe), (Fe,Mg)Al12O19, a new Al-rich mineral, refractory inclusion, secondary alteration, Allende meteorite, carbonaceous chondrite, nanomineralogy INTRODU C TION material (Caltech Allende12A section D) has been deposited in Nanomineralogy is the study of Earth and planetary materi- the Smithsonian Institution’s National Museum of Natural His- als at nano-scales, focused on characterizing nanofeatures (like tory, Washington, D.C., and is cataloged under USNM 7554. -
And Vanadium-Bearing Garnets from Tranoroa, Madagascar
NOTES & NEW TECHNIQUES NEW CHROMIUM- AND VANADIUM-BEARING GARNETS FROM TRANOROA, MADAGASCAR By Karl Schmetzer, Thomas Hainschwang, Heinz-Jürgen Bernhardt, and Lore Kiefert In June 2001, we obtained a parcel of about 30 faceted garnets from southern Madagascar with Pyrope-spessartine garnets from Tranoroa, in south- unusual coloration (see, e.g., figure 1). According to ern Madagascar, contain appreciable Cr and some- our supplier, these garnets had been mined recently what lower V contents. Although these elements are responsible for the color-change behavior of similar from a new area near Tranoroa, about 60 km south- garnets from the nearby Bekily area, the Tranoroa west of Bekily (figure 2). We do not know the samples show only a slight change in color appear- amount of this material that has been mined to ance from day or fluorescent light (brownish purple- date. Both the Tranoroa and Bekily localities belong red) to incandescent light (purplish red). Charac- to a region formed by several metamorphic belts teristic internal features in the Tranoroa garnets consisting of high-grade metamorphic rocks of include networks of rutile needles and strain patterns Precambrian age (Windley et al., 1994). More infor- caused by anomalous double refraction. Additional mation on the geology, mining, and production of inclusions are graphite, quartz, negative crystals, garnets from the Bekily area can be found in apatite, zircon, and monazite. One Cr-bearing spes- Schmetzer et al. (2001). sartine from the same area is also described. The present study was undertaken to character- ize these new garnets, which differ from those pre- viously described from Madagascar with regard to em-quality pyrope-spessartine garnets have their color and color behavior. -
The Meteoritical Bulletin, No. 105
Meteoritics & Planetary Science 1 (2017) doi: 10.1111/maps.12944 The Meteoritical Bulletin, No. 105 Audrey BOUVIER1,Jerome^ GATTACCECA2, Jeffrey GROSSMAN3, and Knut METZLER4 1Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 3K7, Canada 2CNRS, Centre de Recherche et d’Enseignement de Geosciences de l’Environnement, Aix-Marseille Universite, IRD, College de France, 13545, Aix En Provence, France 3NASA Headquarters, Washington, DC 20546, USA 4Institut fur€ Planetologie, Universitat€ Munster,€ Wilhelm-Klemm-Str. 10, 48149 Munster€ Germany Abstract–Meteoritical Bulletin 105 contains 2666 meteorites including 12 falls (Aouinet Legraa, Banma, Buritizal, Ejby, Kamargaon, Moshampa, Mount Blanco, Murrili, Osceola, Saricßicßek, Sidi Ali Ou Azza, Stubenberg), with 2244 ordinary chondrites, 142 HED achondrites, 116 carbonaceous chondrites, 37 Lunar meteorites, 20 enstatite chondrites, 20 iron meteorites, 20 ureilites, 19 Martian meteorites, 12 Rumuruti chondrites, 10 primitive achondrites, 9 mesosiderites, 5 angrites, 4 pallasites, 4 ungrouped achondrites, 2 ungrouped chondrites, 1 enstatite achondrite, and 1 relict meteorite, and with 1545 from Antarctica, 686 from Africa, 245 from Asia, 147 from South America, 22 from North America, 14 from Europe, 5 from Oceania, 1 from unknown origin. Note: 5 meteorites from Russia were counted as European. It also includes a list of approved new Dense Collection Areas and a nomenclature of the Aletai (IIIE-an) iron meteorites from Xinjiang, China. TABLE OF CONTENTS 1. Alphabetical