Effects of Inhibitors of FGFR3 on Gene Transcription
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(APOCI, -C2, and -E and LDLR) and the Genes C3, PEPD, and GPI (Whole-Arm Translocation/Somatic Cell Hybrids/Genomic Clones/Gene Family/Atherosclerosis) A
Proc. Natl. Acad. Sci. USA Vol. 83, pp. 3929-3933, June 1986 Genetics Regional mapping of human chromosome 19: Organization of genes for plasma lipid transport (APOCI, -C2, and -E and LDLR) and the genes C3, PEPD, and GPI (whole-arm translocation/somatic cell hybrids/genomic clones/gene family/atherosclerosis) A. J. LUSIS*t, C. HEINZMANN*, R. S. SPARKES*, J. SCOTTt, T. J. KNOTTt, R. GELLER§, M. C. SPARKES*, AND T. MOHANDAS§ *Departments of Medicine and Microbiology, University of California School of Medicine, Center for the Health Sciences, Los Angeles, CA 90024; tMolecular Medicine, Medical Research Council Clinical Research Centre, Harrow, Middlesex HA1 3UJ, United Kingdom; and §Department of Pediatrics, Harbor Medical Center, Torrance, CA 90509 Communicated by Richard E. Dickerson, February 6, 1986 ABSTRACT We report the regional mapping of human from defects in the expression of the low density lipoprotein chromosome 19 genes for three apolipoproteins and a lipopro- (LDL) receptor and is strongly correlated with atheroscle- tein receptor as well as genes for three other markers. The rosis (15). Another relatively common dyslipoproteinemia, regional mapping was made possible by the use of a reciprocal type III hyperlipoproteinemia, is associated with a structural whole-arm translocation between the long arm of chromosome variation of apolipoprotein E (apoE) (16). Also, a variety of 19 and the short arm of chromosome 1. Examination of three rare apolipoprotein deficiencies result in gross perturbations separate somatic cell hybrids containing the long arm but not of plasma lipid transport; for example, apoCII deficiency the short arm of chromosome 19 indicated that the genes for results in high fasting levels oftriacylglycerol (17). -
Assignment of the AK1:Np:ABO Linkage Group to Human Chromosome 9 (Somatic Cell Hybrids/Enzyme Markers/Gene Localization) A
Proc. Nat. Acad. Sci. USA Vol. 73, No. 3, pp. 895-899, March 1976 Genetics Assignment of the AK1:Np:ABO linkage group to human chromosome 9 (somatic cell hybrids/enzyme markers/gene localization) A. WESTERVELD*§, A. P. M. JONGSMA*, P. MEERA KHANt, H. VAN SOMERENt, AND D. BOOTSMA* * Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands; t Department of Human Genetics, State University, Leiden, The Netherlands; and * Medical Biological Laboratory TNO, P.O. Box 45, Rijswijk 2100, The Netherlands Communicated by Victor A. McKusick, January 8,1976 ABSTRACT In man-Chinese hamster somatic cell hy- cytes were obtained from peripheral blood of male and fe- brids the segregation patterns of the loci for 25 human en- male donors. The details on production, isolation, and propa- zyme markers and human chromosomes were studied. The results provide evidence for the localization of the gene for gation of these hybrids have been published elsewhere (11). adenylate kinase-1 (AKI) on chromosome 9. Since the loci for In the hybrid and parental cell populations the following the ABO blood group (ABO), nail-patella syndrome (Np), and enzymes were analyzed by means of Cellogel electrophore- AK1 are known to be linked in man, the ABO.Np:AKj link- sis: glucose-6-phosphate dehydrogenase (G6PD); phospho- age group may be assigned to chromosome 9. glycerate kinase (PGK); a-galactosidase-A (a-Gal A); lactate dehydrogenases (LDH-A, LDH-B); 6-phosphogluconate de- In man several electrophoretically separable isoenzymes for hydrogenase (6PGD); phosphoglucomutases (PGMI, PGMs); adenylate kinase (AK; EC 2.7.4.3) have been described (1). -
Human Chromosome‐Specific Aneuploidy Is Influenced by DNA
Article Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features Marie Dumont1,†, Riccardo Gamba1,†, Pierre Gestraud1,2,3, Sjoerd Klaasen4, Joseph T Worrall5, Sippe G De Vries6, Vincent Boudreau7, Catalina Salinas-Luypaert1, Paul S Maddox7, Susanne MA Lens6, Geert JPL Kops4 , Sarah E McClelland5, Karen H Miga8 & Daniele Fachinetti1,* Abstract Introduction Intrinsic genomic features of individual chromosomes can contri- Defects during cell division can lead to loss or gain of chromosomes bute to chromosome-specific aneuploidy. Centromeres are key in the daughter cells, a phenomenon called aneuploidy. This alters elements for the maintenance of chromosome segregation fidelity gene copy number and cell homeostasis, leading to genomic instabil- via a specialized chromatin marked by CENP-A wrapped by repeti- ity and pathological conditions including genetic diseases and various tive DNA. These long stretches of repetitive DNA vary in length types of cancers (Gordon et al, 2012; Santaguida & Amon, 2015). among human chromosomes. Using CENP-A genetic inactivation in While it is known that selection is a key process in maintaining aneu- human cells, we directly interrogate if differences in the centro- ploidy in cancer, a preceding mis-segregation event is required. It was mere length reflect the heterogeneity of centromeric DNA-depen- shown that chromosome-specific aneuploidy occurs under conditions dent features and whether this, in turn, affects the genesis of that compromise genome stability, such as treatments with micro- chromosome-specific aneuploidy. Using three distinct approaches, tubule poisons (Caria et al, 1996; Worrall et al, 2018), heterochro- we show that mis-segregation rates vary among different chromo- matin hypomethylation (Fauth & Scherthan, 1998), or following somes under conditions that compromise centromere function. -
Chromosomal Assignment of the Genes for Human Aldehyde Dehydrogenase-1 and Aldehyde Dehydrogenase-2 LILY C
Am J Hum Genet 38:641-648, 1986 Chromosomal Assignment of the Genes for Human Aldehyde Dehydrogenase-1 and Aldehyde Dehydrogenase-2 LILY C. Hsu,', AKIRA YOSHIDA,' AND T. MOHANDAS2 SUMMARY Chromosomal assignment of the genes for two major human aldehyde dehydrogenase isozymes, that is, cytosolic aldehyde dehydrogenase-1 (ALDH1) and mitochondrial aldehyde dehydrogenase-2 (ALDH2) were determined. Genomic DNA, isolated from a panel of mouse- human and Chinese hamster-human hybrid cell lines, was digested by restriction endonucleases and subjected to Southern blot hybridiza- tion using cDNA probes for ALDH1 and for ALDH2. Based on the distribution pattern of ALDH1 and ALDH2 in cell hybrids, ALDHI was assigned to the long arm of human chromosome 9 and ALDH2 to chromosome 12. INTRODUCTION Two major and at least two minor aldehyde dehydrogenase isozymes exist in human and other mammalian livers. One of the major isozymes, designated as ALDH 1, or E1, is of cytosolic origin, and another major isozyme, designated as ALDH2 or E2, is of mitochondrial origin. The two isozymes are different from each other with respect to their kinetic properties, sensitivity to disulfiram inactivation, and protein structure [1-5]. Remarkable racial differences be- tween Caucasians and Orientals have been found in these isozymes. Approxi- mately 50% of Orientals have a variant form of ALDH2 associated with dimin- ished activity, while virtually all Caucasians have the wild-type active ALDH2 Received July 10, 1985; revised September 23, 1985. This work was supported by grant AA05763 from the National Institutes of Health. ' Department of Biochemical Genetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010. -
Mannosidases Are the Putative Catabolic Enzymes Which
THE CHARACTERIZATION OF A NOVEL HUMAN CORE-SPECIFIC LYSOSOMAL α1-6MANNOSIDASE INVOLVED IN N-GLYCAN CATABOLISM by CHAEHO PARK (Under the Direction of Kelley W. Moremen) ABSTRACT In humans and rodents lysosomal catabolism of Man3GlcNAc2 core N-glycan structures results from the concerted actions of exoglycosidases including the broad specificity lysosomal α- mannosidase (LysMan), a core-specific α1-6mannosidase, and β-mannosidase, as well as the core chitobiose cleavage by an di-N-acetylchitobiase. In ungulates and carnivora, both the chitobiase and the α1-6mannosidase enzyme activities are absent suggesting a co-regulation of the two enzymes. We describe here the cloning, expression, purification and characterization of the human core-specific α1-6mannosidase with similarity to members of the glycosylhydrolase family 38. The recombinant enzyme had a pH optimum of 4.0, was potently inhibited by swainsonine and 1,4-dideoxy1,4-imino-D-mannitol, and was stimulated by Co+2. NMR-based time course substrate specificity studies comparing the α1-6mannosidase with human LysMan revealed that the former enzyme selectively cleaved the α1-6mannose residue from Man3GlcNAc, but not Man3GlcNAc2 or other larger high mannose structures, indicating the requirement for chitobiase action prior to α1-6mannosidase cleavage. In contrast, LysMan cleaved all of the α-linked mannose residues from Man9-5GlcNAc2, Man3GlcNAc2, or Man3GlcNAc structures except the core α1-6mannose residue. Transcripts encoding the α1-6mannosidase were ubiquitously expressed in human tissues and expressed sequence tag searches in various mammalian species demonstrated a similar distribution in species-specific expression as the chitobiase. No expressed sequence tags were identified for bovine α1-6mannosidase despite the identification of two homologs in the bovine genome. -
3 Chromosome Chapter
Chromosome 3 ©Chromosome Disorder Outreach Inc. (CDO) Technical genetic content provided by Dr. Iosif Lurie, M.D. Ph.D Medical Geneticist and CDO Medical Consultant/Advisor. Ideogram courtesy of the University of Washington Department of Pathology: ©1994 David Adler.hum_03.gif Introduction The size of chromosome 3 is ~200 Mb. Within this chromosome, there are thousands of genes, many of which are necessary for normal intellectual development or involved in the formation of body organs. Deletions of Chromosome 3 The length of the short arm of chromosome 3 is ~90 Mb. Most known deletions of 3p are caused by the loss of its distal 15 Mb segment (3p25–pter). Deletions of the more proximal segments are relatively rare; there are only ~50 reports on such patients. Therefore, it would be premature to talk about any syndrome related to deletions of the proximal part of 3p. The location of the breakpoints, size of deletion, and reported abnormalities are different in most described patients. However, recurrent aortal stenosis in patients with deletion 3p11p14.2, abnormal lung lobation in patients with deletion 3p12p14.2, agenesis or hypoplasia of the corpus callosum in patients with deletion 3p13, microphthalmia and coloboma in patients with deletion 3p13p21.1, choanal atresia and absent gallbladder in patients with deletion 3p13p21, and hearing loss in patients with deletion 3p14 are all indicators that the above–mentioned segments likely contain genes involved in the formation of these systems. Deletions of 3p Deletion of 3p25–pter The most distal segment of the short arm of chromosome 3 is 3p26 and spans ~8 Mb. -
Alzheimer's Disease Genetics Fact Sheet
Alzheimer’s Disease Genetics FACT SHEET cientists don’t yet fully In other diseases, a genetic variant understand what causes may occur. This change in a gene can SAlzheimer’s disease. How- sometimes cause a disease directly. ever, the more they learn about More often, it acts to increase or this devastating disease, the more decrease a person’s risk of develop- they realize that genes* play an ing a disease or condition. When a important role in its development. genetic variant increases disease risk Research conducted and funded but does not directly cause a disease, by the National Institute on Aging it is called a genetic risk factor. (NIA) at the National Institutes of Health and others is advancing Alzheimer’s Disease Genetics the field of Alzheimer’s disease genetics. Alzheimer’s disease is an irreversible, progressive brain disease. It is charac- terized by the development of amyloid The Genetics of Disease plaques and neurofibrillary tangles, the loss of connections between nerve Some diseases are caused by a cells, or neurons, in the brain, and genetic mutation, or permanent the death of these nerve cells. There change in one or more specific are two types of Alzheimer’s—early- genes. If a person inherits from onset and late-onset. Both types have a parent a genetic mutation that a genetic component. causes a certain disease, then he or she will usually get the disease. Early-Onset Alzheimer’s Disease Sickle cell anemia, cystic fibrosis, and early-onset familial Alzheimer’s Early-onset Alzheimer’s disease disease are examples of inherited occurs in people age 30 to 60. -
CRL4-DCAF12 Ubiquitin Ligase Controls MOV10 RNA Helicase During Spermatogenesis and T Cell Activation
International Journal of Molecular Sciences Article CRL4-DCAF12 Ubiquitin Ligase Controls MOV10 RNA Helicase during Spermatogenesis and T Cell Activation Tomas Lidak 1,2, Nikol Baloghova 1, Vladimir Korinek 1,3 , Radislav Sedlacek 4, Jana Balounova 4 , Petr Kasparek 4 and Lukas Cermak 1,* 1 Laboratory of Cancer Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic; [email protected] (T.L.); [email protected] (N.B.); [email protected] (V.K.) 2 Faculty of Science, Charles University, 128 00 Prague, Czech Republic 3 Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic 4 Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic; [email protected] (R.S.); [email protected] (J.B.); [email protected] (P.K.) * Correspondence: [email protected] Abstract: Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an “ancient” RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a Citation: Lidak, T.; Baloghova, N.; proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demon- Korinek, V.; Sedlacek, R.; Balounova, strated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. -
CD29 Identifies IFN-Γ–Producing Human CD8+ T Cells With
+ CD29 identifies IFN-γ–producing human CD8 T cells with an increased cytotoxic potential Benoît P. Nicoleta,b, Aurélie Guislaina,b, Floris P. J. van Alphenc, Raquel Gomez-Eerlandd, Ton N. M. Schumacherd, Maartje van den Biggelaarc,e, and Monika C. Wolkersa,b,1 aDepartment of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; bLandsteiner Laboratory, Oncode Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; cDepartment of Research Facilities, Sanquin Research, 1066 CX Amsterdam, The Netherlands; dDivision of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and eDepartment of Molecular and Cellular Haemostasis, Sanquin Research, 1066 CX Amsterdam, The Netherlands Edited by Anjana Rao, La Jolla Institute for Allergy and Immunology, La Jolla, CA, and approved February 12, 2020 (received for review August 12, 2019) Cytotoxic CD8+ T cells can effectively kill target cells by producing therefore developed a protocol that allowed for efficient iso- cytokines, chemokines, and granzymes. Expression of these effector lation of RNA and protein from fluorescence-activated cell molecules is however highly divergent, and tools that identify and sorting (FACS)-sorted fixed T cells after intracellular cytokine + preselect CD8 T cells with a cytotoxic expression profile are lacking. staining. With this top-down approach, we performed an un- + Human CD8 T cells can be divided into IFN-γ– and IL-2–producing biased RNA-sequencing (RNA-seq) and mass spectrometry cells. Unbiased transcriptomics and proteomics analysis on cytokine- γ– – + + (MS) analyses on IFN- and IL-2 producing primary human producing fixed CD8 T cells revealed that IL-2 cells produce helper + + + CD8 Tcells. -
Role of Phytochemicals in Colon Cancer Prevention: a Nutrigenomics Approach
Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan J van Erk Promotor: Prof. Dr. P.J. van Bladeren Hoogleraar in de Toxicokinetiek en Biotransformatie Wageningen Universiteit Co-promotoren: Dr. Ir. J.M.M.J.G. Aarts Universitair Docent, Sectie Toxicologie Wageningen Universiteit Dr. Ir. B. van Ommen Senior Research Fellow Nutritional Systems Biology TNO Voeding, Zeist Promotiecommissie: Prof. Dr. P. Dolara University of Florence, Italy Prof. Dr. J.A.M. Leunissen Wageningen Universiteit Prof. Dr. J.C. Mathers University of Newcastle, United Kingdom Prof. Dr. M. Müller Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan Jolanda van Erk Proefschrift ter verkrijging van graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof.Dr.Ir. L. Speelman, in het openbaar te verdedigen op vrijdag 1 oktober 2004 des namiddags te vier uur in de Aula Title Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Author Marjan Jolanda van Erk Thesis Wageningen University, Wageningen, the Netherlands (2004) with abstract, with references, with summary in Dutch ISBN 90-8504-085-X ABSTRACT Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Specific food compounds, especially from fruits and vegetables, may protect against development of colon cancer. In this thesis effects and mechanisms of various phytochemicals in relation to colon cancer prevention were studied through application of large-scale gene expression profiling. Expression measurement of thousands of genes can yield a more complete and in-depth insight into the mode of action of the compounds. -
In Silico Haplotyping, Genotyping and Analysis of Resequencing Data Using Markov Models
IN SILICO HAPLOTYPING, GENOTYPING AND ANALYSIS OF RESEQUENCING DATA USING MARKOV MODELS by Yun Li A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Biostatistics) in The University of Michigan 2009 Doctoral Committee: Professor Gonçalo R. Abecasis, Co-Chair Professor Michael Lee Boehnke, Co-Chair Professor Margit Burmeister Professor Roderick J.A. Little Assistant Professor Noah A. Rosenberg © Yun Li 2009 To Mom, Dad, Iory and Duan. ii Acknowledgements I am grateful to the myriad of people who have made this work possible. First of all, I would like to thank Gonçalo and Mike for teaching me about science, for letting me discover how much I can enjoy research, for being encouraging and enthusiastic both because of and despite what we found, for guiding me to grow up as an independent researcher, for being exceptional role models both career-wise and family-wise, and for being approachable anytime I need help. I owe gratitude to my committee: Rod, Margit and Noah for their help and guidance beyond their duties as committee members. I sincerely appreciate their time, advice, and encouragement. Special thanks to Rod for brining in the missing data perspectives; to Margit for always asking questions that I have an answer in the next few slides; and to Noah for access to the HGDP data. I would like also to thank the CSG members: they make everyday research joyful and keep my spirits up even during my down times. I am also fortunate to be around a group of good friends including Qixuan, Jin, Rui, Jun, and Liming, who have made my 5-year graduate studies more colorful. -
1A Multiple Sclerosis Treatment
The Pharmacogenomics Journal (2012) 12, 134–146 & 2012 Macmillan Publishers Limited. All rights reserved 1470-269X/12 www.nature.com/tpj ORIGINAL ARTICLE Network analysis of transcriptional regulation in response to intramuscular interferon-b-1a multiple sclerosis treatment M Hecker1,2, RH Goertsches2,3, Interferon-b (IFN-b) is one of the major drugs for multiple sclerosis (MS) 3 2 treatment. The purpose of this study was to characterize the transcriptional C Fatum , D Koczan , effects induced by intramuscular IFN-b-1a therapy in patients with relapsing– 2 1 H-J Thiesen , R Guthke remitting form of MS. By using Affymetrix DNA microarrays, we obtained and UK Zettl3 genome-wide expression profiles of peripheral blood mononuclear cells of 24 MS patients within the first 4 weeks of IFN-b administration. We identified 1Leibniz Institute for Natural Product Research 121 genes that were significantly up- or downregulated compared with and Infection Biology—Hans-Knoell-Institute, baseline, with stronger changed expression at 1 week after start of therapy. Jena, Germany; 2University of Rostock, Institute of Immunology, Rostock, Germany and Eleven transcription factor-binding sites (TFBS) are overrepresented in the 3University of Rostock, Department of Neurology, regulatory regions of these genes, including those of IFN regulatory factors Rostock, Germany and NF-kB. We then applied TFBS-integrating least angle regression, a novel integrative algorithm for deriving gene regulatory networks from gene Correspondence: M Hecker, Leibniz Institute for Natural Product expression data and TFBS information, to reconstruct the underlying network Research and Infection Biology—Hans-Knoell- of molecular interactions. An NF-kB-centered sub-network of genes was Institute, Beutenbergstr.