Developmental Cell Article PTK7-Src Signaling at Epithelial Cell Contacts Mediates Spatial Organization of Actomyosin and Planar Cell Polarity Anna Andreeva,1,4 Jianyi Lee,1,4 Madhura Lohia,2 Xiaoji Wu,3,5 Ian G. Macara,2,6 and Xiaowei Lu1,* 1Department of Cell Biology, P.O. Box 800732, University of Virginia, Charlottesville, VA 22908, USA 2Department of Microbiology, Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA 3School of Life Sciences, Peking University, Beijing, China, 100871 4Co-first authors 5Present address: PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA 6Present address: Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA *Correspondence:
[email protected] http://dx.doi.org/10.1016/j.devcel.2014.02.008 SUMMARY of the cell apex, results in bending and invagination of an epithe- lial cell sheet (Martin et al., 2009; Sawyer et al., 2010). During Actomyosin contractility plays a key role in tissue embryonic axis elongation in Drosophila and Xenopus, aniso- morphogenesis. During mammalian development, tropic contractile forces mediate directional cell intercalation PTK7 regulates epithelial morphogenesis and planar and convergent extension (Blankenship et al., 2006; Rauzi cell polarity (PCP) through modulation of actomyosin et al., 2010; Skoglund et al., 2008). However, mechanisms contractility, but the underlying mechanism is un- underlying precise spatial and temporal control of actomyosin known. Here, we show that PTK7 interacts with the assembly on a tissue scale remain poorly understood. Emerging evidence indicates that planar cell polarity (PCP) tyrosine kinase Src and stimulates Src signaling signaling plays an important role in spatial regulation of actomy- along cell-cell contacts.