Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies pharmaceutics Review Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies Rossella Sartorius 1 , Luciana D’Apice 1,* , Antonella Prisco 2 and Piergiuseppe De Berardinis 1 1 Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy 2 Institute of Genetics and Biophysics “A. Buzzati-Traverso” (IGB), 80131 CNR Naples, Italy * Correspondence: [email protected]; Tel.: +39-081-613-2584 Received: 26 June 2019; Accepted: 22 August 2019; Published: 1 September 2019 Abstract: The pharmaceutical use of bacteriophages as safe and inexpensive therapeutic tools is collecting renewed interest. The use of lytic phages to fight antibiotic-resistant bacterial strains is pursued in academic and industrial projects and is the object of several clinical trials. On the other hand, filamentous bacteriophages used for the phage display technology can also have diagnostic and therapeutic applications. Filamentous bacteriophages are nature-made nanoparticles useful for their size, the capability to enter blood vessels, and the capacity of high-density antigen expression. In the last decades, our laboratory focused its efforts in the study of antigen delivery strategies based on the filamentous bacteriophage ‘fd’, able to trigger all arms of the immune response, with particular emphasis on the ability of the MHC class I restricted antigenic determinants displayed on phages to induce strong and protective cytotoxic responses. We showed that fd bacteriophages, engineered to target mouse dendritic cells (DCs), activate innate and adaptive responses without the need of exogenous adjuvants, and more recently, we described the display of immunologically active lipids. In this review, we will provide an overview of the reported applications of the bacteriophage carriers and describe the advantages of exploiting this technology for delivery strategies. Keywords: filamentous bacteriophage; vaccine; nanoparticle; targeting; phage display; antigen delivery 1. Introduction Bacteriophages only infect and multiply with their specific host and currently, as bacterial resistance to antibiotics becomes widespread, the therapeutic use of bacteriophages is back on the agenda [1]. Recently, on the basis of successful treatments in five people with phage cocktails under a U.S. food and drug administration (FDA) process designed for emergencies, the University of California, San Diego (UCSD) is launching the Center for Innovative Phage Applications and Therapeutics (IPATH) to refine phage treatment and perform phage trials focused on patients with a single, known bacterial infection and without withholding other potentially beneficial treatments, including antibiotics [2]. In this context, an efficacious clinical treatment of Mycobacterium abscessus infection in a 15 years-old cystic fibrosis patient using a cocktail of three genetically engineered phages was recently reported [3], re-launching the use of bacteriophages as nanopharmaceuticals against antibiotic-resistant bacteria. Besides the use of lytic phages as antibacterials, which has been extensively reviewed elsewhere [2], a collection of evidence was obtained in recent years on the potential translational usage of filamentous bacteriophages. Filamentous phages are single-strand DNA virions belonging to the Inoviridae family; phages f1, fd, and M13 are a sub-group of rod-like shaped Inoviruses with a repeated and ordered capsid Pharmaceutics 2019, 11, 437; doi:10.3390/pharmaceutics11090437 www.mdpi.com/journal/pharmaceutics Pharmaceutics 2019, 11, x FOR PEER REVIEW 2 of 22 Filamentous phages are single-strand DNA virions belonging to the Inoviridae family; phages Pharmaceuticsf1, fd, and 2019M13, 11 are, 437 a sub-group of rod-like shaped Inoviruses with a repeated and ordered capsid2 of 22 structure. They are closely related species, sharing almost the same genome (with only about 1–2% of difference) that infect and replicate in Escherichia coli bacterial cells and which are often structure. They are closely related species, sharing almost the same genome (with only about 1–2% of collectively referred to as Ff phages. difference) that infect and replicate in Escherichia coli bacterial cells and which are often collectively Their peculiar proteic structure, together with the flexibility of the DNA genome and the referred to as Ff phages. easiness of purification has fostered their application in the phage display technology, with Their peculiar proteic structure, together with the flexibility of the DNA genome and the easiness of particular attention to the production of therapeutic antibodies first, and then as antigen delivery purificationsystem for the has development fostered their of application new vaccine in theformulations phage display [4,5] technology,. with particular attention to the production of therapeutic antibodies first, and then as antigen delivery system for the development Although practically every filamentous bacteriophage coat protein can be used to display offoreign new vaccineamino acidic formulations sequences, [4,5 ].the pVIII protein is the most used for the expression of exogenous peptidesAlthough in high practically copy number. every filamentous The pIII bacteriophageprotein, instead coat, proteinhas been can successfully be used to display used for foreign the aminoexpression acidic of sequences, up to five thecopies pVIII per protein virion is of the the most receptor used-ligand for the and expression single-chain of exogenous antibody peptides fragment in high(scFv copy) [6] ( number.Figure 1) The. pIII protein, instead, has been successfully used for the expression of up to five copies per virion of the receptor-ligand and single-chain antibody fragment (scFv) [6] (Figure1). Figure 1. Schematic image of a filamentous bacteriophage nanoparticle engineered for the expression ofFigure a short 1. antigenicSchematic peptide image asof a fusionfilamentous with N-terminus bacteriophage of the nanoparticle pVIII protein engineered and a single-chain for the expression antibody fragmentof a short (scFv) antigenic for thepeptide targeting, as a asfusion a fusion with with N-terminus the N-terminus of the pVII of theI protein pIII protein. and a Thesingle circular-chain single-strandantibody fragment DNA rich(scFv in) CpGfor the motifs targeting, can be as recognized a fusion w byith PPR the andN-terminus acts as an ofadjuvant. the pIII protein. The circular single-strand DNA rich in CpG motifs can be recognized by PPR and acts as an adjuvant. The foreign sequence expression is highly stable since the (poly)peptides of interest are genetically fusedThe to phage foreign proteins sequence and notexpress linkedion by is chemical highly bonds.stable since Small the peptides (poly)peptides can be easily of expressedinterest are on allgenetically copies of fused the pVIII to phage major proteins coat protein, and whereasnot linked for by the chemical expression bonds. of longer Small sequences peptides (14–20can be aminoeasily acids),expressed such on as all immunologically copies of the relevantpVIII major peptides, coat itprotein, is often whereas necessary for to the construct expression hybrid of phages,longer whichsequences express (14– recombinant20 amino acids copies), such of the as pVIII immunological interspersedly with relevant wild-type peptides, copies, it is in often order necessary to guarantee to aconstruct high expression hybrid phages, of the exogenous which express sequence recombinant without a copiesffecting of the the stability pVIII interspersed of the phage with lattice. wild Due-type to thecopies, highly-symmetrical in order to guarantee and repeated a high structure, expression Ff phagesof the areexog suitableenous forsequence the high-density without affecting exposure the of onestability or more of the epitopes phage onlattice. the coat Due surface. to the high Overallly-symmetric phage nanoparticlesal and repeated are made structure of highly, Ff phages organized are monomerssuitable for represented the high-density mainly exposure by the pVIII of proteinone or more (5.5 kDa), epitopes an alpha-helix on the coat closely surface. packed Overall to compose phage ananoparticles right-handed are helical mad latexe of highly with a organized rod-like structure. monomers represented mainly by the pVIII protein (5.5 kDa),Combining an alpha-helix a relatively closely packed simple to surface compose structure a right- withhanded a particulate helical latex nature with a and rod with-like structure. adjuvant properties,Combining filamentous a relatively phages simple represent surface ideal structure nanoparticles with a comparedparticulate to nature other carriers.and with Drugs adjuvant can beproperties, easily conjugated filamentous to thephages phage represent surface ideal by chemical nanoparticles modification compared of aminoto other and carriers. carboxyl Drugs groups can exposedbe easily in conjugate the aminod terminusto the phage of the surface pVIIIprotein. by chemical Furthermore, modification the filamentous of amino and phages carboxyl are extremely groups tolerantexposed to in variations the amino in theterminus size of theirof the genome, pVIII pro whichtein. makes Furthermore, them versatile the filamentous for engineering phages through are theextremely phage displaytolerant technique, to variations allowing in thethe successfulsize of their expression genome, of Bwhich and T (CD4makes+ andthem CD8 versatile+) epitopes for onengineering the phage through nanoparticles, the phage and between display
Recommended publications
  • Single M13 Bacteriophage Tethering and Stretching
    Single M13 bacteriophage tethering and stretching Ahmad S. Khalil*, Jorge M. Ferrer†, Ricardo R. Brau†, Stephen T. Kottmann‡, Christopher J. Noren§, Matthew J. Lang*†¶, and Angela M. Belcher†¶ʈ Departments of *Mechanical Engineering, †Biological Engineering, ‡Chemistry, and ʈMaterials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and §New England Biolabs, 240 Country Road, Ipswich, MA 01938 Edited by Robert H. Austin, Princeton University, Princeton, NJ, and approved January 12, 2007 (received for review July 8, 2006) The ability to present biomolecules on the highly organized struc- tightly packaged and contribute little to the WT length of ture of M13 filamentous bacteriophage is a unique advantage. 880–950 nm (7). Where previously this viral template was shown to direct the Control over the composition and assembly of M13 bacterio- orientation and nucleation of nanocrystals and materials, here we phage is not limited to the single-particle level. At critical apply it in the context of single-molecule (SM) biophysics. Genet- concentrations and ionic solution strengths, filamentous bacte- ically engineered constructs were used to display different reactive riophages undergo transitions into various liquid crystalline species at each of the filament ends and along the major capsid, phases (8), which have subsequently been exploited as mac- and the resulting hetero-functional particles were shown to con- roscale templates for organizing nanocrystals (9). These phase sistently tether microscopic beads in solution. With this system, we transitions result from purely entropic effects, typically from the report the development of a SM assay based on M13 bacterio- competition between rotational and translational entropy (10).
    [Show full text]
  • Entry of the Membrane-Containing Bacteriophages Into Their Hosts
    Entry of the membrane-containing bacteriophages into their hosts - Institute of Biotechnology and Department of Biosciences Division of General Microbiology Faculty of Biosciences and Viikki Graduate School in Molecular Biosciences University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biosciences, University of Helsinki, in the auditorium 3 of Info center Korona, Viikinkaari 11, Helsinki, on June 18th, at 8 a.m. HELSINKI 2010 Supervisor Professor Dennis H. Bamford Department of Biosciences University of Helsinki, Finland Reviewers Professor Martin Romantschuk Department of Ecological and Environmental Sciences University of Helsinki, Finland Professor Mikael Skurnik Department of Bacteriology and Immunology University of Helsinki, Finland Opponent Dr. Alasdair C. Steven Laboratory of Structural Biology Research National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health, USA ISBN 978-952-10-6280-3 (paperback) ISBN 978-952-10-6281-0 (PDF) ISSN 1795-7079 Yliopistopaino, Helsinki University Printing House Helsinki 2010 ORIGINAL PUBLICATIONS This thesis is based on the following publications, which are referred to in the text by their roman numerals: I. 6 - Verkhovskaya R, Bamford DH. 2005. Penetration of enveloped double- stranded RNA bacteriophages phi13 and phi6 into Pseudomonas syringae cells. J Virol. 79(8):5017-26. II. Gaidelyt A*, Cvirkait-Krupovi V*, Daugelaviius R, Bamford JK, Bamford DH. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol. 188(16):5925-34. III. Cvirkait-Krupovi V, Krupovi M, Daugelaviius R, Bamford DH. 2010. Calcium ion-dependent entry of the membrane-containing bacteriophage PM2 into Pseudoalteromonas host.
    [Show full text]
  • Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy
    International Journal of Molecular Sciences Review Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy Magdalena Podlacha 1 , Łukasz Grabowski 2 , Katarzyna Kosznik-Kaw´snicka 2 , Karolina Zdrojewska 1 , Małgorzata Stasiłoj´c 1 , Grzegorz W˛egrzyn 1 and Alicja W˛egrzyn 2,* 1 Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; [email protected] (M.P.); [email protected] (K.Z.); [email protected] (M.S.); [email protected] (G.W.) 2 Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; [email protected] (Ł.G.); [email protected] (K.K.-K.) * Correspondence: [email protected]; Tel.: +48-58-523-6024 Abstract: Bacteriophages are viruses infecting bacterial cells. Since there is a lack of specific receptors for bacteriophages on eukaryotic cells, these viruses were for a long time considered to be neutral to animals and humans. However, studies of recent years provided clear evidence that bacteriophages can interact with eukaryotic cells, significantly influencing the functions of tissues, organs, and systems of mammals, including humans. In this review article, we summarize and discuss recent discoveries in the field of interactions of phages with animal and human organisms. Possibilities of penetration of bacteriophages into eukaryotic cells, tissues, and organs are discussed, and evidence of the effects of phages on functions of the immune system, respiratory system, central nervous system, gastrointestinal system, urinary tract, and reproductive system are presented and discussed.
    [Show full text]
  • JACK GRIFFITH, Ph
    CURRICULUM VITAE JACK GRIFFITH PERSONAL INFORMATION Home Address: 7515 Kennebec Road Chapel Hill NC 27517 Telephone: 919-966-8563 FAX 919-966-3015 Email address [email protected] Date & Place of Birth: March 26, 1942; Logan, Utah EDUCATION 1964 B.A., Physics, Occidental College, Los Angeles, California. 1969 California Institute of Technology, Biology Department, Ph.D., Biology, (James Bonner, advisor). 1969-1970 Cornell University, Ithaca, New York, Department of Applied Physics, Postdoctoral Fellow, (with Benjamin Siegel). 1970-1973 Stanford University, Stanford, California, Department of Biochemistry, Postdoctoral Fellow, (with Arthur Kornberg). RESEARCH AND PROFESSIONAL EXPERIENCE 1986-present: Full Professor, Lineberger Comprehensive Cancer Center, and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill. 1978-1986: Associate Professor, Lineberger Comprehensive Cancer Center, and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill. 1978-present: Member, Genetics Curriculum, and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill. 1973-1977: Research Scientist, Biochemistry Department, Stanford University, Stanford, California. 1 PROFESSIONAL SOCIETIES Biophysical Society Associated Societies for Biochemistry and Molecular Biology PROFESSIONAL SERVICE Editorial Boards Journal of Biological Chemistry, 2002-2007 re appointed for 2010-2015 National Review Panels: NIH: Molecular Cytology Study Section: ad Hoc 1985, 1986 NIH: Molecular Biology Study Section: ad hoc 1998 NIH: AIDS/Molecular Biology Study Section: ad hoc 1988 NIH: AIDS/Molecular Biology Study Section: 1989-1994. NIH: AIDS/Molecular Biology Study Section Chair 1992-1994. NIH: Site visit to Albany New York National EM center. Scientific Advisory boards: Board of Scientific Advisors, Brookhaven National Laboratory, 1996-1998 Advisory Board, Fragile X Advocate, 1996-1999.
    [Show full text]
  • Determination of the Survival of Bacteriophage M13 from Chemical and Physical Challenges to Assist in Its Sustainable Bioprocessing
    Biotechnology and Bioprocess Engineering 18: 560-566 (2013) DOI 10.1007/s12257-012-0776-9 RESEARCH PAPER Determination of the Survival of Bacteriophage M13 from Chemical and Physical Challenges to Assist in Its Sustainable Bioprocessing Steven D. Branston, Emma C. Stanley, John M. Ward, and Eli Keshavarz-Moore Received: 23 November 2012 / Revised: 8 January 2013 / Accepted: 17 January 2013 © The Korean Society for Biotechnology and Bioengineering and Springer 2013 Abstract Bacteriophages are naturally infectious particles towards their sustainable manufacture can be achieved. that replicate extremely efficiently in their bacterial hosts. Consequently, a facility processing bioproducts from a Keywords: filamentous, bacteriophage, M13, disinfectant, bacterial strain would be typically expected to focus on pH, temperature, desiccation, bioprocessing avoiding bacteriophage contamination. However, bacterio- phages themselves are now showing great promise as a whole new class of industrial agents, such as biologically 1. Introduction based nano-materials, delivery vectors and antimicrobials. This therefore raises a new challenge for their large-scale Bacteriophage-based products offer promise of a new manufacture, potentially in contracted facilities shared with generation of antimicrobial treatments, vaccines and gene the host organism. The key issue is that knowledge of therapy. There have been numerous discoveries and proof- individual bacteriophage behaviour in the face of physical of-concept demonstrations in recent years [1-4], and several and chemical challenges is frequently incomplete, compli- companies exist in the UK and abroad to commercialize cating decision-making regarding their safe introduction to many of these findings [5]. The Ff group of filamentous a facility. This study tackles this issue for the filamentous bacteriophages in particular show importance as a bacteriophage M13.
    [Show full text]
  • Genome-Wide Comparison of Phage M13-Infected Vs. Uninfected Escherichia Coli
    29 Genome-wide comparison of phage M13-infected vs. uninfected Escherichia coli Fredrik Karlsson, Ann-Christin Malmborg-Hager, Ann-Sofie Albrekt, and Carl A.K Borrebaeck Abstract: To identify Escherichia coli genes potentially regulated by filamentous phage infection, we used oligonucleotide microarrays. Genome-wide comparison of phage M13-infected and uninfected E. coli, 2 and 20 min af- ter infection, was performed. The analysis revealed altered transcription levels of 12 E. coli genes in response to phage infection, and the observed regulation of phage genes correlated with the known in vivo pattern of M13 mRNA spe- cies. Ten of the 12 host genes affected could be grouped into 3 different categories based on cellular function, suggest- ing a coordinated response. The significantly upregulated genes encode proteins involved in reactions of the energy- generating phosphotransferase system and transcription processing, which could be related to phage transcription. No genes belonging to any known E. coli stress response pathways were scored as upregulated. Furthermore, phage infec- tion led to significant downregulation of transcripts of the bacterial genes gadA, gadB, hdeA, gadE, slp, and crl. These downregulated genes are normally part of the host stress response mechanisms that protect the bacterium during condi- tions of acid stress and stationary phase transition. The phage-infected cells demonstrated impaired function of the oxi- dative and the glutamate-dependent acid resistance systems. Thus, global transcriptional analysis and functional analysis revealed previously unknown host responses to filamentous phage infection. Key words: filamentous phage infection, global transcriptional analysis, AR, Escherichia coli. Résumé : Afin d’identifier les gènes de Escherichia coli (E.
    [Show full text]
  • Evolution from Phage Display to Nanobiotechnology
    viruses Review Landscape Phage: Evolution from Phage Display to Nanobiotechnology Valery A. Petrenko Department of Pathobiology, Auburn University, Auburn, AL 36849-5519, USA; [email protected]; Tel.: +1-334-844-2897 Received: 11 May 2018; Accepted: 5 June 2018; Published: 7 June 2018 Abstract: The development of phage engineering technology has led to the construction of a novel type of phage display library—a collection of nanofiber materials with diverse molecular landscapes accommodated on the surface of phage particles. These new nanomaterials, called the “landscape phage”, serve as a huge resource of diagnostic/detection probes and versatile construction materials for the preparation of phage-functionalized biosensors and phage-targeted nanomedicines. Landscape-phage-derived probes interact with biological threat agents and generate detectable signals as a part of robust and inexpensive molecular recognition interfaces introduced in mobile detection devices. The use of landscape-phage-based interfaces may greatly improve the sensitivity, selectivity, robustness, and longevity of these devices. In another area of bioengineering, landscape-phage technology has facilitated the development and testing of targeted nanomedicines. The development of high-throughput phage selection methods resulted in the discovery of a variety of cancer cell-associated phages and phage proteins demonstrating natural proficiency to self-assemble into various drug- and gene-targeting nanovehicles. The application of this new “phage-programmed-nanomedicines” concept led to the development of a number of cancer cell-targeting nanomedicine platforms, which demonstrated anticancer efficacy in both in vitro and in vivo experiments. This review was prepared to attract the attention of chemical scientists and bioengineers seeking to develop functionalized nanomaterials and use them in different areas of bioscience, medicine, and engineering.
    [Show full text]
  • DISSERTATION DEVELOPMENT of a PHAGE-BASED DIAGNOSTIC SENSOR for ACTIVE TUBERCULOSIS Submitted by Ning Zhao Department of Chemica
    DISSERTATION DEVELOPMENT OF A PHAGE-BASED DIAGNOSTIC SENSOR FOR ACTIVE TUBERCULOSIS Submitted by Ning Zhao Department of Chemical and Biological Engineering In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2016 Doctoral Committee: Advisor: John D. Fisk John S. Spencer Charles S. Henry Christie Peebles Copyright by Ning Zhao 2016 All Rights Reserved ABSTRACT DEVELOPMENT OF A PHAGE-BASED DIAGNOSTIC SENSOR FOR ACTIVE TUBERCULOSIS Antibodies, the quintessential biological recognition molecules, are not ideal for many applications because of their large size, complex modifications, and thermal and chemical instability. Identifying alternative scaffolds that can be evolved into tight, specific binding molecules with improved physical properties is of increasing interest, particularly for biomedical applications in resource-limited environments. Hyperthermophilic organisms, such as Sulfolobus solfataricus, are an attractive source of highly stable proteins as starting points for alternative molecular recognition scaffolds. We describe the first application of phage display to identify binding proteins based on the Sulfolobus solfataricus protein Sso7d scaffold. Sso7d is a small (approximately 7 kDa, 63 amino acids), cysteine free DNA-binding protein with a melting temperature of nearly 100 °C. Tight binding Sso7d variants were selected for a diverse set of protein targets from a 1010 member library, demonstrating the versatility of the scaffold. These Sso7d variants are able to discriminate among closely-related human, bovine, and rabbit serum albumins. Equilibrium dissociation constants in the nanomolar to low micromolar range were measured via competitive ELISA. Importantly, the Sso7d variants continue to bind their targets in the absence of the phage context.
    [Show full text]
  • Production of Tunable Nanomaterials Using Hierarchically Assembled
    PROTOCOL Production of tunable nanomaterials using hierarchically assembled bacteriophages Ju Hun Lee1–3,7, Christopher M Warner4,7, Hyo-Eon Jin1,2,5,7, Eftihia Barnes6, Aimee R Poda4, Edward J Perkins4 & Seung-Wuk Lee1–3 1Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA. 2Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 3Tsinghua-Berkeley Shenzhen Institute, Berkeley, CA, USA. 4Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA. 5College of Pharmacy, Ajou University, Suwon, Republic of Korea. 6Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA. 7These authors contributed equally to this work. Correspondence should be addressed to S.-W.L. ([email protected]). Published online 31 August 2017; doi:10.1038/nprot.2017.085 Large-scale fabrication of precisely defined nanostructures with tunable functions is critical to the exploitation of nanoscience and nanotechnology for production of electronic devices, energy generators, biosensors, and bionanomedicines. Although self- assembly processes have been developed to exploit biological molecules for functional materials, the resulting nanostructures and functions are still very limited, and scalable synthesis is far from being realized. Recently, we have established a bacteriophage- based biomimetic process, called ‘self-templating assembly’. We used bacteriophage as a nanofiber model system to exploit its liquid crystalline structure for the creation of diverse hierarchically organized structures. We have also demonstrated that genetic modification of functional peptides of bacteriophage results in structures that can be used as soft and hard tissue- All rights reserved. regenerating materials, biosensors, and energy-generating materials.
    [Show full text]
  • Engineered Phagemids for Nonlytic, Targeted Antibacterial Therapies
    Engineered Phagemids for Nonlytic, Targeted Antibacterial Therapies The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Krom, Russell J.; Bhargava, Prerna; Lobritz, Michael A. and Collins, James J. “Engineered Phagemids for Nonlytic, Targeted Antibacterial Therapies.” Nano Letters 15, no. 7 (July 2015): 4808– 4813. © 2015 American Chemical Society As Published http://dx.doi.org/10.1021/acs.nanolett.5b01943 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/108626 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Engineered phagemids for non-lytic, targeted antibacterial therapies †,‡, , †,§, †,§, , †,‡,§, Russell J. Krom ⊥ ||, Prerna Bhargava ⊥, Michael A. Lobritz ⊥ ∇, and James J. Collins ⊥* † Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, MIT, Cambridge, MA, USA ‡ Harvard-MIT Program in Health Sciences and Technology § Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA ⊥ Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA || Department of Molecular and Translational Medicine, Boston University, Boston, Massachusetts, USA ∇ Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA 1 ABSTRACT The increasing incidence of antibiotic-resistant bacterial infections is creating a global public health threat. Since conventional antibiotic drug discovery has failed to keep pace with the rise of resistance, a growing need exists to develop novel antibacterial methodologies. Replication- competent bacteriophages have been utilized in a limited fashion to treat bacterial infections.
    [Show full text]
  • Thesis a Kinetic Model Development of the M13
    THESIS A KINETIC MODEL DEVELOPMENT OF THE M13 BACTERIOPHAGE LIFE CYCLE Submitted by Steven William Smeal Department of Chemical and Biological Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2014 Master’s Committee: Advisor: Nick Fisk Co-Advisor: Ashok Prasad Claudia Gentry-Weeks Copyright by Steven William Smeal 2014 All Rights Reserved ABSTRACT A KINETIC MODEL DEVELOPMENT OF THE M13 BACTERIOPHAGE LIFE CYCLE A kinetic model which can simulate the M13 bacteriophage (a virus which only infects bacteria) life-cycle was created through a set of ordinary differential equations. The M13 bacteriophage is a filamentous phage with a circular single-stranded DNA genome. The kinetic model was developed by converting the biology into ordinary differential equations through careful studying of the existing literature describing the M13 life cycle. Most of the differential equations follow simple mass-action kinetics but some have an additional function, called the Hill Function, to account for special scenarios. Whenever possible, the rate constants associated with each ordinary differential equation were based off of experimentally determined constants. The literature describing M13 viral infection did not provide all of the rate constants necessary for our model. The parameters which were not experimentally determined through literature were estimated in the model based on what is known about the process. At present, no experiments were performed by our lab to verify the model or expand on the information available in the literature. However, the M13 phage model has improved the understanding of phage biology and makes some suggestions about the unknown factors that are most important to quantitatively understanding phage biology.
    [Show full text]
  • Detection and Destruction of Escherichia Coli Bacteria and Bacteriophage Using Biofunctionalized Nanoshells
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2007 Detection and Destruction of Escherichia Coli Bacteria and Bacteriophage Using Biofunctionalized Nanoshells Joseph E. Van Buren Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Molecular Biology Commons Repository Citation Van Buren, Joseph E., "Detection and Destruction of Escherichia Coli Bacteria and Bacteriophage Using Biofunctionalized Nanoshells" (2007). Browse all Theses and Dissertations. 190. https://corescholar.libraries.wright.edu/etd_all/190 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. DETECTION AND DESTRUCTION OF ESCHERICHIA COLI BACTERIA AND BACTERIOPHAGE USING BIOFUNCTIONALIZED NANOSHELLS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By JOSEPH EDWARD VAN NOSTRAND Ph.D., University of Illinois at Urbana/Champaign, 1996 M.S., Clarkson University, 1991 B.S., Clarkson University, 1988 2007 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES ____25 July 2007____ I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Joseph Edward Van Nostrand ENTITLED Detection and Destruction of Escherichia coli Bacteria and Bacteriophage Using Biofunctionalized Nanoshells BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. ___________________________ Madhavi P. Kadakia, Ph.D. Thesis Director ___________________________ Committee on Daniel T. Organisciak, Ph.D. Final Examination Department Chair ___________________________ Madhavi P.
    [Show full text]