Computing Facilities for AI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Political History of X Or How I Stopped Worrying and Learned to Love the GPL
A Political History of X or How I Stopped Worrying and Learned to Love the GPL Keith Packard SiFive [email protected] Unix in !"# ● $SD Everywhere – $'t not actually BS% ● )*+* want, to make Sy,tem V real – S'rely they still matter ● .o Free So/tware Anywhere The 0rigins of 1 ● $rian Reid and Pa'l Asente at Stan/ord – - kernel → VGTS → W window system – Ported to VS100 at Stan/ord ● $o4 Scheifler started hacking W→ X – Working on Argus with Barbara Liskov at LCS – 7ade it more Unix friendly (async9, renamed X -AXstation 00 (aka v, 339 Unix Workstation Market ● Unix wa, closed source ● Most vendors ,hipped a proprietary 0S 4ased on $SD #.x ● S'n: HP: Digita(: )po((o: *ektronix: I$7 ● ;congratu(ation,: yo'<re not running &'nice=. – Stil(: so many gratuito', di/ference, -AXstation II S'n >?@3 Early Unix Window Systems ● S'n-iew dominated (act'al commercial app,A De,ktop widget,A9 ● %igital had -WS/UIS (V7S on(y9 ● )pollo had %omain ● *ektronix demon,trating Sma((*alk 1 B1@ ● .onB/ree so/tware ● U,ed internally at MIT ● Shared with friend, in/ormally 1 3 ● )(mo,t u,able ● %elivered by Digital on V)1,tation, ● %i,trib'tion was not all free ,o/tware – Sun port relied on Sun-iew kernel API – %igital provided binary rendering code – IB7 PC?2T support act'ally complete (C9 Why 1 C ● 1 0 had wart, – rendering model was pretty terrible ● ,adly, X1 wa,n't m'ch better... – External window management witho't borders ● Get everyone involved – Well, at lea,t every workstation vendor willing to write big checks X as Corporate *ool ● Dim Gettys and Smokey -
Introduction to Programming in Lisp
Introduction to Programming in Lisp Supplementary handout for 4th Year AI lectures · D W Murray · Hilary 1991 1 Background There are two widely used languages for AI, viz. Lisp and Prolog. The latter is the language for Logic Programming, but much of the remainder of the work is programmed in Lisp. Lisp is the general language for AI because it allows us to manipulate symbols and ideas in a commonsense manner. Lisp is an acronym for List Processing, a reference to the basic syntax of the language and aim of the language. The earliest list processing language was in fact IPL developed in the mid 1950’s by Simon, Newell and Shaw. Lisp itself was conceived by John McCarthy and students in the late 1950’s for use in the newly-named field of artificial intelligence. It caught on quickly in MIT’s AI Project, was implemented on the IBM 704 and by 1962 to spread through other AI groups. AI is still the largest application area for the language, but the removal of many of the flaws of early versions of the language have resulted in its gaining somewhat wider acceptance. One snag with Lisp is that although it started out as a very pure language based on mathematic logic, practical pressures mean that it has grown. There were many dialects which threaten the unity of the language, but recently there was a concerted effort to develop a more standard Lisp, viz. Common Lisp. Other Lisps you may hear of are FranzLisp, MacLisp, InterLisp, Cambridge Lisp, Le Lisp, ... Some good things about Lisp are: • Lisp is an early example of an interpreted language (though it can be compiled). -
High-Level Language Features Not Found in Ordinary LISP. the GLISP
DOCUMENT RESUME ED 232 860 SE 042 634 AUTHOR Novak, Gordon S., Jr. TITLE GLISP User's Manual. Revised. INSTITUTION Stanford Univ., Calif. Dept. of Computer Science. SPONS AGENCY Advanced Research Projects Agency (DOD), Washington, D.C.; National Science Foundation, Washington, D.C. PUB DATE 23 Nov 82 CONTRACT MDA-903-80-c-007 GRANT SED-7912803 NOTE 43p.; For related documents, see SE 042 630-635. PUB TYPE Guides General (050) Reference Materials General (130) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Computer Programs; *Computer Science; Guides; *Programing; *Programing Languages; *Resource Materials IDENTIFIERS *GLISP Programing Language; National Science Foundation ABSTRACT GLISP is a LISP-based language which provides high-level language features not found in ordinary LISP. The GLISP language is implemented by means of a compiler which accepts GLISP as input and produces ordinary LISP as output. This output can be further compiled to machine code by the LISP compiler. GLISP is available for several ISP dialects, including Interlisp, Maclisp, UCI Lisp, ELISP, Franz Lisp, and Portable Standard Lisp. The goal of GLISP is to allow structured objects to be referenced in a convenient, succinct language and to allow the structures of objects to be changed without changing the code which references the objects. GLISP provides both PASCAL-like and English-like syntaxes; much of the power and brevity of GLISP derive from the compiler features necessary to support the relatively informal, English-like language constructs. Provided in this manual is the documentation necessary for using GLISP. The documentation is presented in the following sections: introduction; object descriptions; reference to objects; GLISP program syntax; messages; context rules and reference; GLISP and knowledge representation languages; obtaining and using GLISP; GLISP hacks (some ways of doing things in GLISP which might not be entirely obvious at first glance); and examples of GLISP object declarations and programs. -
Genera Workbook Using This Book Preface This Is the Document To
Genera Workbook Using This Book Preface This is the document to read when you’re ready to sit down at your Symbol- ics computer. It teaches you the initial skills you need to use the Genera system effectively. We present concepts you need to know, as well as providing exercises andactivitiesthatturnthoseconceptsintopracticalskills. The material covered in the first group of chapters in this workbook is a pre- requisite for all Symbolics Education Services Courses. However, you can com plete the second and third sections after taking your first course. Practicing the material helpsyou learn it faster. Bring this workbook to all courses you take with Symbolics. We expect that you have used a computer before; we do not expect that you have used a Symbolics computer before. You need to learn this material whether or not you are a programmer. This is not a programming textbook. We make no assumptions about your programming background or future; this work bookisforbothprogrammersandnonprogrammers. Every time we use a term for the first time, we put it in italics. If you see a term you don’t recognize, be sure to check the glossary at the end of the work book. This workbook uses Symbolics documentation conventions and a few of its own. If you see a word or phrase enclosed in brackets, like [Help], it is a menu item.We use two different conventions withrespect to Symbolics keyboard keys: in text,thekeylabelledHELPlookslikethis: HELP butinexamplesitlookslikethis: <HELP> todifferentiateitasasinglekeystrokefromthetextaroundit. It is very important to have a Symbolics computer available so that you can work through the hands-on activities, called walk-throughs. -
Implementation Notes
IMPLEMENTATION NOTES XEROX 3102464 lyric Release June 1987 XEROX COMMON LISP IMPLEMENTATION NOTES 3102464 Lyric Release June 1987 The information in this document is subject to change without notice and should not be construed as a commitment by Xerox Corporation. While every effort has been made to ensure the accuracy of this document, Xerox Corporation assumes no responsibility for any errors that may appear. Copyright @ 1987 by Xerox Corporation. Xerox Common Lisp is a trademark. All rights reserved. "Copyright protection claimed includes all forms and matters of copyrightable material and information now allowed by statutory or judicial law or hereinafter granted, including, without limitation, material generated from the software programs which are displayed on the screen, such as icons, screen display looks, etc. " This manual is set in Modern typeface with text written and formatted on Xerox Artificial Intelligence workstations. Xerox laser printers were used to produce text masters. PREFACE The Xerox Common Lisp Implementation Notes cover several aspects of the Lyric release. In these notes you will find: • An explanation of how Xerox Common Lisp extends the Common Lisp standard. For example, in Xerox Common Lisp the Common Lisp array-constructing function make-array has additional keyword arguments that enhance its functionality. • An explanation of how several ambiguities in Steele's Common Lisp: the Language were resolved. • A description of additional features that provide far more than extensions to Common Lisp. How the Implementation Notes are Organized . These notes are intended to accompany the Guy L. Steele book, Common Lisp: the Language which represents the current standard for Co~mon Lisp. -
PUB DAM Oct 67 CONTRACT N00014-83-6-0148; N00014-83-K-0655 NOTE 63P
DOCUMENT RESUME ED 290 438 IR 012 986 AUTHOR Cunningham, Robert E.; And Others TITLE Chips: A Tool for Developing Software Interfaces Interactively. INSTITUTION Pittsburgh Univ., Pa. Learning Research and Development Center. SPANS AGENCY Office of Naval Research, Arlington, Va. REPORT NO TR-LEP-4 PUB DAM Oct 67 CONTRACT N00014-83-6-0148; N00014-83-K-0655 NOTE 63p. PUB TYPE Reports - Research/Technical (143) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS *Computer Graphics; *Man Machine Systems; Menu Driven Software; Programing; *Programing Languages IDENTIF7ERS Direct Manipulation Interface' Interface Design Theory; *Learning Research and Development Center; LISP Programing Language; Object Oriented Programing ABSTRACT This report provides a detailed description of Chips, an interactive tool for developing software employing graphical/computer interfaces on Xerox Lisp machines. It is noted that Chips, which is implemented as a collection of customizable classes, provides the programmer with a rich graphical interface for the creation of rich graphical interfaces, and the end-user with classes for modeling the graphical relationships of objects on the screen and maintaining constraints between them. This description of the system is divided into five main sections: () the introduction, which provides background material and a general description of the system; (2) a brief overview of the report; (3) detailed explanations of the major features of Chips;(4) an in-depth discussion of the interactive aspects of the Chips development environment; and (5) an example session using Chips to develop and modify a small portion of an interface. Appended materials include descriptions of four programming techniques that have been sound useful in the development of Chips; descriptions of several systems developed at the Learning Research and Development Centel tsing Chips; and a glossary of key terms used in the report. -
The Evolution of Lisp
1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp. -
Allegro CL User Guide
Allegro CL User Guide Volume 1 (of 2) version 4.3 March, 1996 Copyright and other notices: This is revision 6 of this manual. This manual has Franz Inc. document number D-U-00-000-01-60320-1-6. Copyright 1985-1996 by Franz Inc. All rights reserved. No part of this pub- lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, by photocopying or recording, or otherwise, without the prior and explicit written permission of Franz incorpo- rated. Restricted rights legend: Use, duplication, and disclosure by the United States Government are subject to Restricted Rights for Commercial Software devel- oped at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii). Allegro CL and Allegro Composer are registered trademarks of Franz Inc. Allegro Common Windows, Allegro Presto, Allegro Runtime, and Allegro Matrix are trademarks of Franz inc. Unix is a trademark of AT&T. The Allegro CL software as provided may contain material copyright Xerox Corp. and the Open Systems Foundation. All such material is used and distrib- uted with permission. Other, uncopyrighted material originally developed at MIT and at CMU is also included. Appendix B is a reproduction of chapters 5 and 6 of The Art of the Metaobject Protocol by G. Kiczales, J. des Rivieres, and D. Bobrow. All this material is used with permission and we thank the authors and their publishers for letting us reproduce their material. Contents Volume 1 Preface 1 Introduction 1.1 The language 1-1 1.2 History 1-1 1.3 Format -
1960 1970 1980 1990 Japan California………………… UT IL in PA NJ NY Massachusetts………… Europe Lisp 1.5 TX
Japan UT IL PA NY Massachusetts………… Europe California………………… TX IN NJ Lisp 1.5 1960 1970 1980 1990 Direct Relationships Lisp 1.5 LISP Family Graph Lisp 1.5 LISP 1.5 Family Lisp 1.5 Basic PDP-1 LISP M-460 LISP 7090 LISP 1.5 BBN PDP-1 LISP 7094 LISP 1.5 Stanford PDP-1 LISP SDS-940 LISP Q-32 LISP PDP-6 LISP LISP 2 MLISP MIT PDP-1 LISP Stanford LISP 1.6 Cambridge LISP Standard LISP UCI-LISP MacLisp Family PDP-6 LISP MacLisp Multics MacLisp CMU SAIL MacLisp MacLisp VLISP Franz Lisp Machine Lisp LISP S-1 Lisp NIL Spice Lisp Zetalisp IBM Lisp Family 7090 LISP 1.5 Lisp360 Lisp370 Interlisp Illinois SAIL MacLisp VM LISP Interlisp Family SDS-940 LISP BBN-LISP Interlisp 370 Spaghetti stacks Interlisp LOOPS Common LOOPS Lisp Machines Spice Lisp Machine Lisp Interlisp Lisp (MIT CONS) (Xerox (BBN Jericho) (PERQ) (MIT CADR) Alto, Dorado, (LMI Lambda) Dolphin, Dandelion) Lisp Zetalisp TAO (3600) (ELIS) Machine Lisp (TI Explorer) Common Lisp Family APL APL\360 ECL Interlisp ARPA S-1 Lisp Scheme Meeting Spice at SRI, Lisp April 1991 PSL KCL NIL CLTL1 Zetalisp X3J13 CLTL2 CLOS ISLISP X3J13 Scheme Extended Family COMIT Algol 60 SNOBOL METEOR CONVERT Simula 67 Planner LOGO DAISY, Muddle Scheme 311, Microplanner Scheme 84 Conniver PLASMA (actors) Scheme Revised Scheme T 2 CLTL1 Revised Scheme Revised2 Scheme 3 CScheme Revised Scheme MacScheme PC Scheme Chez Scheme IEEE Revised4 Scheme Scheme Object-Oriented Influence Simula 67 Smalltalk-71 LOGO Smalltalk-72 CLU PLASMA (actors) Flavors Common Objects LOOPS ObjectLisp CommonLOOPS EuLisp New Flavors CLTL2 CLOS Dylan X3J13 ISLISP Lambda Calculus Church, 1941 λ Influence Lisp 1.5 Landin (SECD, ISWIM) Evans (PAL) Reynolds (Definitional Interpreters) Lisp370 Scheme HOPE ML Standard ML Standard ML of New Jersey Haskell FORTRAN Influence FORTRAN FLPL Lisp 1.5 S-1 Lisp Lisp Machine Lisp CLTL1 Revised3 Zetalisp Scheme X3J13 CLTL2 IEEE Scheme X3J13 John McCarthy Lisp 1.5 Danny Bobrow Richard Gabriel Guy Steele Dave Moon Jon L White. -
Programming Languages As Operating Systems (Or Revenge of the Son of the Lisp Machine)
Programming Languages as Operating Systems (or Revenge of the Son of the Lisp Machine) Matthew Flatt Robert Bruce Findler Shriram Krishnamurthi Matthias Felleisen Department of Computer Science∗ Rice University Houston, Texas 77005-1892 Abstract reclaim the program’s resources—even though the program and DrScheme share a single virtual machine. The MrEd virtual machine serves both as the implementa- To address this problem, MrEd provides a small set of tion platform for the DrScheme programming environment, new language constructs. These constructs allow a program- and as the underlying Scheme engine for executing expres- running program, such as DrScheme, to run nested programs sions and programs entered into DrScheme’s read-eval-print directly on the MrEd virtual machine without sacrificing loop. We describe the key elements of the MrEd virtual control over the nested programs. As a result, DrScheme machine for building a programming environment, and we can execute a copy of DrScheme that is executing its own step through the implementation of a miniature version of copy of DrScheme (see Figure 1). The inner and middle DrScheme in MrEd. More generally, we show how MrEd de- DrSchemes cannot interfere with the operation of the outer fines a high-level operating system for graphical programs. DrScheme, and the middle DrScheme cannot interfere with the outer DrScheme’s control over the inner DrScheme. 1 MrEd: A Scheme Machine In this paper, we describe the key elements of the MrEd virtual machine, and we step through the implementation The DrScheme programming environment [10] provides stu- of a miniature version of DrScheme in MrEd. -
Hackers and Painters: Big Ideas from the Computer
HACKERS & PAINTERS Big Ideas from the Computer Age PAUL GRAHAM Hackers & Painters Big Ideas from the Computer Age beijing cambridge farnham koln¨ paris sebastopol taipei tokyo Copyright c 2004 Paul Graham. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or [email protected]. Editor: Allen Noren Production Editor: Matt Hutchinson Printing History: May 2004: First Edition. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The cover design and related trade dress are trademarks of O’Reilly Media, Inc. The cover image is Pieter Bruegel’s Tower of Babel in the Kunsthistorisches Museum, Vienna. This reproduction is copyright c Corbis. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. ISBN13- : 978 - 0- 596-00662-4 [C] for mom Note to readers The chapters are all independent of one another, so you don’t have to read them in order, and you can skip any that bore you. -
Symbolics Architecture
Symbolics Architecture David A. Moon Symbolics, Inc. W hat is an architecture? In com- languages, user interface, and operating This architecture puter systems, an architecture system. System architecture defines the rapid is a specification of an inter- product that people actually use; the other enables face. To be dignified by the name architec- levels of architecture define the mecha- development and ture, an interface should be designed for a nism underneath that implements it. Sys- long lifespan and should connect system tem architecture is implemented by soft- efficient execution of components maintained by different orga- ware; hardware only sets bounds on what large, ambitious nizations. Often an architecture is part ofa is possible. System architecture defines the product definition and defines character- motivation for most of the design choices applications. An istics on which purchasers of that product at the other levels ofarchitecture. This sec- rely, but this is not true of everything that tion is an overview of Symbolics system unconventional design is called an architecture. An architecture is architecture. avoids trading off more formal than an internal interface be- The Symbolics system presents itself to tween closely-related system components, the user through a high-resolution bitmap safety for speed. and has farther-reaching effects on system display. In addition to text and graphics, characteristics and performance. the display contains presentations of ob- A computer system typically contains jects. The user operates on the objects by many levels and types ofarchitecture. This manipulating the presentations with a article discusses three architectures de- mouse. The display includes a continuous- fined in Symbolics computers: ly updated reminder of the mouse com- (1) System architecture-defines how mands applicable to the current context.