Symbolics Architecture

Total Page:16

File Type:pdf, Size:1020Kb

Symbolics Architecture Symbolics Architecture David A. Moon Symbolics, Inc. W hat is an architecture? In com- languages, user interface, and operating This architecture puter systems, an architecture system. System architecture defines the rapid is a specification of an inter- product that people actually use; the other enables face. To be dignified by the name architec- levels of architecture define the mecha- development and ture, an interface should be designed for a nism underneath that implements it. Sys- long lifespan and should connect system tem architecture is implemented by soft- efficient execution of components maintained by different orga- ware; hardware only sets bounds on what large, ambitious nizations. Often an architecture is part ofa is possible. System architecture defines the product definition and defines character- motivation for most of the design choices applications. An istics on which purchasers of that product at the other levels ofarchitecture. This sec- rely, but this is not true of everything that tion is an overview of Symbolics system unconventional design is called an architecture. An architecture is architecture. avoids trading off more formal than an internal interface be- The Symbolics system presents itself to tween closely-related system components, the user through a high-resolution bitmap safety for speed. and has farther-reaching effects on system display. In addition to text and graphics, characteristics and performance. the display contains presentations of ob- A computer system typically contains jects. The user operates on the objects by many levels and types ofarchitecture. This manipulating the presentations with a article discusses three architectures de- mouse. The display includes a continuous- fined in Symbolics computers: ly updated reminder of the mouse com- (1) System architecture-defines how mands applicable to the current context. the system appears to end users and appli- Behind the display is a powerful symbol cation programmers, including the char- processor with specialized hardware and acteristics of languages, user interface, software. The system is dedicated to one and operating system. user at a time and shares such resources as (2) Instruction architecture-defines files, printers, and electronic mail with the instruction set of the machine, the other Symbolics and non-Symbolics com- types of data that can be manipulated by puters through both local-area and long- those instructions, and the environment in distance networks of several types. The which the instructions operate, for exam- local-area network is integral to system ple subroutine calling discipline, virtual operation. memory management, interrupts and ex- The system is designed for high- ception traps, etc. This is an interface be- productivity software development both tween the compilers and the hardware. in symbolic languages, such as Common (3) Processor architecture-defmes the Lisp' and Prolog, and in nonsymbolic overall structure ofthe implementation of languages, such as Ada and Fortran. It is the instruction architecture. This is an in- also designed for efficient execution of terface between the firmware and the large programs, particularly in symbolic hardware, and is also an interface between languages, and delivery of such programs the parts of the processor hardware. to end users. The system is intended to be especially suited to complex, ambitious ap- plications that go beyond what has been System architecture done before; thus it provides facilities for exploratory programming, complexity System architecture defines how the sys- management, incremental construction of tem looks to the end user and to the pro- programs, and so forth. The operating grammer, including the characteristics of system is written in Lisp and the architec- January 1987 0018-9162/87/0100-0043S01.00 © 1987 IEEE 43 tural concept originated at the MIT Artifi- speed. Our system architecture deems this (2) Why use a symbolic system architec- cial Intelligence Laboratory. However, ap- unacceptable, because complex, ambi- ture? plications are not limited to Lisp and Al. tious application programs are typically (3) Why build a symbolic system archi- Many non-Al applications that are com- never finished to the point where it is safe tecture on unconventional lower-level plex enough to be difficult on an ordi- to declare them bug-free and remove run- architectures? nary computer have been successfully time error-checking. We feel it is essential implemented. for such applications to be robust when Meeting these needs requires an extraor- delivered to end users, so that when some- Why dedicate a computer to each user dinary system architecture-just another thing unanticipated by the programmer instead oftime-sharing? This seemed like PC or Unix clone won't do. The intended happens, the application will fail in an ob- a big issue back in 1974 when Lisp applications demand a lot of processor vious, comprehensible, and controlled machines were invented, but perhaps by power, main and virtual memory size, and way, rather than just supplying the wrong now the battle has been won. A report disk capacity. The system must provide as answer. To support such applications, a from that era3 states these reasons for much performance as possible without ex- system must provide speed and safety at abandoning time-sharing: ceeding practical limits on cost, and com- the same time. * Time-sharing systems degrade under puting capacity must not be diluted by Symbolics systems use a combination of heavy load, so work on large, ambitious sharing it among multiple users. These approaches to break the traditional dilem- programs could only be conducted in off- purely hardware aspects are not sufficient, ma in which a programmer must choose peak hours. In contrast, a single-user sys- however. The system must also improve either speed or safety and comfortable tem would perform consistently at any both the speed ofsoftware production and software development: time of day. the quality of the resulting software by * The hardware performs low-level * Performance was limited by the speed providing a more complete substrate on checking in parallel with computation and of the disk when running programs too which to erect programs than has been memory access, so that this checking takes large to fit in main memory. Dedicating a customary. Programmers should not be no extra time. disk to each user would give better perfor- handed just a language and an operating * Machine instructions are generic. For mance. system and be forced to do everything else example, the Add instruction is capable of The underlying argument was that in- themselves. adding any two numbers regardless of creasing program size and advancing tech- At a high level, the Symbolics substrate their data types. Programs need not know nology, making capable processors much provides many facilities that can be incor- ahead of time what type of numbers they less expensive, had eliminated the econo- porated into user programs, such as user- will be adding, and they need no declara- my of scale of time-sharing systems. The interface management, embedded lan- tions to achieve efficiency when using only original purpose of time-sharing was to guages, object-oriented programming, the fastest types of numbers. Automatic share expensive hardware that was only and networking. At a low level, the sub- conversion between data types occurs lightly used by any individual user. The strate provides full run-time checking of when the two operands of Add are not of serendipitous feature of time-sharing was data types, of array subscript bounds, of the same type. interuser communication. Both of these the number ofarguments passed to a func- * Function calling is very fast, yet does purposes are now served by local-area net- tion, and of undefined functions and vari- not lose information needed for debug- working. Expensive hardware units are ables. Programs can be incrementally ging and does not prevent functions from still shared, but the processor is no longer modified, even while they are running, being redefined. among them. and information needed for debugging is * Built-in substrate facilities are already These arguments apply to all types of not lost by compilation. Thus the edit- optimized and available for programmers dedicated single-user computers, even compile-test program development cycle to incorporate into their programs. PCs, not only to symbolic architectures. can be repeated very rapidly. Storage man- * Application-specific control of agement, including reclamation of space virtual-memory paging is possible. Pre- Why use a symbolic system architec- occupied by objects that are no longer in paging, postpurging, multipage transfers, ture? Many users who need a platform for use, is automatic so that the programmer and reordering of objects to improve efficient execution of large symbolic does not have to worry about it; incre- locality are supported. 2 programs, a high-productivity software mental so that it interferes minimally with These benefits are not without costs: development environment, or a system for response to the user; and efficient because * Both the cost and the complexity of exploratory programming and rapid pro- it concentrates on ephemeral objects, system hardware and software are in- totyping have found symbolic languages which are the best candidates for reclama- such as Lisp and symbolic architectures tion. creased by these additional facilities. The system never compromises safe- * Performance
Recommended publications
  • Genera Workbook Using This Book Preface This Is the Document To
    Genera Workbook Using This Book Preface This is the document to read when you’re ready to sit down at your Symbol- ics computer. It teaches you the initial skills you need to use the Genera system effectively. We present concepts you need to know, as well as providing exercises andactivitiesthatturnthoseconceptsintopracticalskills. The material covered in the first group of chapters in this workbook is a pre- requisite for all Symbolics Education Services Courses. However, you can com plete the second and third sections after taking your first course. Practicing the material helpsyou learn it faster. Bring this workbook to all courses you take with Symbolics. We expect that you have used a computer before; we do not expect that you have used a Symbolics computer before. You need to learn this material whether or not you are a programmer. This is not a programming textbook. We make no assumptions about your programming background or future; this work bookisforbothprogrammersandnonprogrammers. Every time we use a term for the first time, we put it in italics. If you see a term you don’t recognize, be sure to check the glossary at the end of the work book. This workbook uses Symbolics documentation conventions and a few of its own. If you see a word or phrase enclosed in brackets, like [Help], it is a menu item.We use two different conventions withrespect to Symbolics keyboard keys: in text,thekeylabelledHELPlookslikethis: HELP butinexamplesitlookslikethis: <HELP> todifferentiateitasasinglekeystrokefromthetextaroundit. It is very important to have a Symbolics computer available so that you can work through the hands-on activities, called walk-throughs.
    [Show full text]
  • Getting Started Computing at the Al Lab by Christopher C. Stacy Abstract
    MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLI..IGENCE LABORATORY WORKING PAPER 235 7 September 1982 Getting Started Computing at the Al Lab by Christopher C. Stacy Abstract This document describes the computing facilities at the M.I.T. Artificial Intelligence Laboratory, and explains how to get started using them. It is intended as an orientation document for newcomers to the lab, and will be updated by the author from time to time. A.I. Laboratory Working Papers are produced for internal circulation. and may contain information that is, for example, too preliminary or too detailed for formal publication. It is not intended that they should be considered papers to which reference can be made in the literature. a MASACHUSETS INSTITUTE OF TECHNOLOGY 1982 Getting Started Table of Contents Page i Table of Contents 1. Introduction 1 1.1. Lisp Machines 2 1.2. Timesharing 3 1.3. Other Computers 3 1.3.1. Field Engineering 3 1.3.2. Vision and Robotics 3 1.3.3. Music 4 1,3.4. Altos 4 1.4. Output Peripherals 4 1.5. Other Machines 5 1.6. Terminals 5 2. Networks 7 2.1. The ARPAnet 7 2.2. The Chaosnet 7 2.3. Services 8 2.3.1. TELNET/SUPDUP 8 2.3.2. FTP 8 2.4. Mail 9 2.4.1. Processing Mail 9 2.4.2. Ettiquette 9 2.5. Mailing Lists 10 2.5.1. BBoards 11 2.6. Finger/Inquire 11 2.7. TIPs and TACs 12 2.7.1. ARPAnet TAC 12 2.7.2. Chaosnet TIP 13 3.
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • Programming Languages As Operating Systems (Or Revenge of the Son of the Lisp Machine)
    Programming Languages as Operating Systems (or Revenge of the Son of the Lisp Machine) Matthew Flatt Robert Bruce Findler Shriram Krishnamurthi Matthias Felleisen Department of Computer Science∗ Rice University Houston, Texas 77005-1892 Abstract reclaim the program’s resources—even though the program and DrScheme share a single virtual machine. The MrEd virtual machine serves both as the implementa- To address this problem, MrEd provides a small set of tion platform for the DrScheme programming environment, new language constructs. These constructs allow a program- and as the underlying Scheme engine for executing expres- running program, such as DrScheme, to run nested programs sions and programs entered into DrScheme’s read-eval-print directly on the MrEd virtual machine without sacrificing loop. We describe the key elements of the MrEd virtual control over the nested programs. As a result, DrScheme machine for building a programming environment, and we can execute a copy of DrScheme that is executing its own step through the implementation of a miniature version of copy of DrScheme (see Figure 1). The inner and middle DrScheme in MrEd. More generally, we show how MrEd de- DrSchemes cannot interfere with the operation of the outer fines a high-level operating system for graphical programs. DrScheme, and the middle DrScheme cannot interfere with the outer DrScheme’s control over the inner DrScheme. 1 MrEd: A Scheme Machine In this paper, we describe the key elements of the MrEd virtual machine, and we step through the implementation The DrScheme programming environment [10] provides stu- of a miniature version of DrScheme in MrEd.
    [Show full text]
  • Performance Comparison of the Window Systems of Two LISP Machines
    A Performance Comparison of the Window Systems of Two LISP Machines Ramin Zabih Raj Jain Massachusetts Institute o fTechnology Digital Equipment Corp. Department ofEE & CS 77 Reed Road (HLO2-3/N03) Cambridge, MA 02139 Hudson, MA 01749 We chose total elapsed time as our performance metric. EXTENDED ABSTRACT Elapsed time is also referred to as response time. We ran 1000 We have constructed a workload for comparing window trials ofour workload on a 3600 running Release 5 software with 1 system performance of different computers. It consists of key Megabyte of physical memory and on a CADR running release 4.5 operations that window systems should universally provide. We software with 386 Kbytes of memory. The results of our tests are have used this workload to measure the performance of a the reported in Table 1. Using the p2 algorithm [2],we also calculated Symbolics ZetaLisp window system on two Lisp Machines, the the fifth and ninety-fifth percentiles for the results. In addition, 3600 [3,4] and the CADR [ 1 ]. we have listed the median and the mean. The workload consists of repeating a sequence of operations Table 1: Time in milliseconds is shown as tl/t2,where t I is time (which we call a run) many times. Each run starts by creating a for 3600, t2 is the time for CADR. test window, and proceeds to perform various operations on the window in the order below. Finally, the test window is deleted. Operation 95_.....% 5% Median Mean The details of the operations performed in an individual run of the CREATE 60/70 10/40 20/50 21.8/48.5 workload follow.
    [Show full text]
  • The Lisp Machine: Noble Experiment Or Fabulous Failure?
    THE LISP MACHINE: NOBLE EXPERIMENT OR FABULOUS FAILURE? P. T. Withington Symbolics, Inc. The “Lisp Machine”, a custom computer oriented programming, integrated pro- work-station designed specifically for the gramming environments, computer music, execution of Lisp, has been an important integrated-circuit design, and of course part of the Lisp tradition for 20 years. Artificial Intelligence (AI). Recently, the Lisp Machine has been depre- cated in view of the demise of many Lisp But, Lisp’s purity did not come without a Machine vendors, the swing towards stan- price. The choice by many languages to dardization, and the advances that reduced expose implementational limitations is often instruction set (RISC) architectures have a choice of efficiency. The speed of the brought. But rumors of its death are greatly normal case is optimized at the risk of the exaggerated. abnormal case going undetected. Lisp, on the other hand, guarantees the unusual as Unlike most commercial computer lan- well as the usual will be dealt with uni- guages, Lisp has always been a language of formly. It must always be on its guard: ideals. Its roots are in the theory of lambda- every operation must be checked for excep- calculus. Whereas other languages burden tions. As a consequence, Lisp on conven- the programmer with implementational gaps tional machines has historically been pon- in their abstractions, Lisp has always had the derous to work with. aim of supporting complete abstractions.1 This idealistic bent of Lisp has led to it often In the early 1970’s several groups of being the language of choice for computer- researchers utilized two novel hardware oriented research in universities and indus- technologies to improve the efficiency of try.
    [Show full text]
  • Free As in Freedom (2.0): Richard Stallman and the Free Software Revolution
    Free as in Freedom (2.0): Richard Stallman and the Free Software Revolution Sam Williams Second edition revisions by Richard M. Stallman i This is Free as in Freedom 2.0: Richard Stallman and the Free Soft- ware Revolution, a revision of Free as in Freedom: Richard Stallman's Crusade for Free Software. Copyright c 2002, 2010 Sam Williams Copyright c 2010 Richard M. Stallman Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License." Published by the Free Software Foundation 51 Franklin St., Fifth Floor Boston, MA 02110-1335 USA ISBN: 9780983159216 The cover photograph of Richard Stallman is by Peter Hinely. The PDP-10 photograph in Chapter 7 is by Rodney Brooks. The photo- graph of St. IGNUcius in Chapter 8 is by Stian Eikeland. Contents Foreword by Richard M. Stallmanv Preface by Sam Williams vii 1 For Want of a Printer1 2 2001: A Hacker's Odyssey 13 3 A Portrait of the Hacker as a Young Man 25 4 Impeach God 37 5 Puddle of Freedom 59 6 The Emacs Commune 77 7 A Stark Moral Choice 89 8 St. Ignucius 109 9 The GNU General Public License 123 10 GNU/Linux 145 iii iv CONTENTS 11 Open Source 159 12 A Brief Journey through Hacker Hell 175 13 Continuing the Fight 181 Epilogue from Sam Williams: Crushing Loneliness 193 Appendix A { Hack, Hackers, and Hacking 209 Appendix B { GNU Free Documentation License 217 Foreword by Richard M.
    [Show full text]
  • A Lisp Oriented Architecture by John W.F
    A Lisp Oriented Architecture by John W.F. McClain Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degrees of Master of Science in Electrical Engineering and Computer Science and Bachelor of Science in Electrical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 1994 © John W.F. McClain, 1994 The author hereby grants to MIT permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author ...... ;......................... .............. Department of Electrical Engineering and Computer Science August 5th, 1994 Certified by....... ......... ... ...... Th nas F. Knight Jr. Principal Research Scientist 1,,IA £ . Thesis Supervisor Accepted by ....................... 3Frederic R. Morgenthaler Chairman, Depattee, on Graduate Students J 'FROM e ;; "N MfLIT oARIES ..- A Lisp Oriented Architecture by John W.F. McClain Submitted to the Department of Electrical Engineering and Computer Science on August 5th, 1994, in partial fulfillment of the requirements for the degrees of Master of Science in Electrical Engineering and Computer Science and Bachelor of Science in Electrical Engineering Abstract In this thesis I describe LOOP, a new architecture for the efficient execution of pro- grams written in Lisp like languages. LOOP allows Lisp programs to run at high speed without sacrificing safety or ease of programming. LOOP is a 64 bit, long in- struction word architecture with support for generic arithmetic, 64 bit tagged IEEE floats, low cost fine grained read and write barriers, and fast traps. I make estimates for how much these Lisp specific features cost and how much they may speed up the execution of programs written in Lisp.
    [Show full text]
  • Basic Lisp Techniques
    Basic Lisp Techniques David J. Cooper, Jr. February 14, 2011 ii 0Copyright c 2011, Franz Inc. and David J. Cooper, Jr. Foreword1 Computers, and the software applications that power them, permeate every facet of our daily lives. From groceries to airline reservations to dental appointments, our reliance on technology is all-encompassing. And, it’s not enough. Every day, our expectations of technology and software increase: • smart appliances that can be controlled via the internet • better search engines that generate information we actually want • voice-activated laptops • cars that know exactly where to go The list is endless. Unfortunately, there is not an endless supply of programmers and developers to satisfy our insatiable appetites for new features and gadgets. Every day, hundreds of magazine and on-line articles focus on the time and people resources needed to support future technological expectations. Further, the days of unlimited funding are over. Investors want to see results, fast. Common Lisp (CL) is one of the few languages and development options that can meet these challenges. Powerful, flexible, changeable on the fly — increasingly, CL is playing a leading role in areas with complex problem-solving demands. Engineers in the fields of bioinformatics, scheduling, data mining, document management, B2B, and E-commerce have all turned to CL to complete their applications on time and within budget. CL, however, no longer just appropriate for the most complex problems. Applications of modest complexity, but with demanding needs for fast development cycles and customization, are also ideal candidates for CL. Other languages have tried to mimic CL, with limited success.
    [Show full text]
  • CLX — Common LISP X Interface
    CLX Common LISP X Interface 1988, 1989 Texas Instruments Incorporated Permission is granted to any individual or institution to use, copy, modify and distribute this document, provided that this complete copyright and permission notice is maintained, intact, in all copies and supporting documentation. Texas Instruments Incorporated makes no representations about the suitability of this document or the software described herein for any purpose. It is provided ”as is” without express or implied warranty. CLX Programmer’s Reference i ACKNOWLEDGMENTS Primary Interface Author: Robert W. Scheifler MIT Laboratory for Computer Science 545 Technology Square, Room 418 Cambridge, MA 02139 [email protected] Primary Implementation Author: LaMott Oren Texas Instruments PO Box 655474, MS 238 Dallas, TX 75265 [email protected] Design Contributors: Dan Cerys, BBN Scott Fahlman, CMU Kerry Kimbrough, Texas Instruments Chris Lindblad, MIT Rob MacLachlan, CMU Mike McMahon, Symbolics David Moon, Symbolics LaMott Oren, Texas Instruments Daniel Weinreb, Symbolics John Wroclawski, MIT Richard Zippel, Symbolics Documentation Contributors: Keith Cessna, Texas Instruments Kerry Kimbrough, Texas Instruments Mike Myjak LaMott Oren, Texas Instruments Dan Stenger, Texas Instruments The X Window System is a trademark of MIT. UNIX is a trademark of AT&T Bell Laboratories. ULTRIX, ULTRIX–32, ULTRIX–32m, ULTRIX–32w, and VAX/VMS are trademarks of Digital Equipment Corporation. ii CLX Programmer’s Reference CONTENTS Section Title 1 INTRODUCTION TO CLX 2 DISPLAYS 3 SCREENS 4 WINDOWS AND PIXMAPS 5 GRAPHICS CONTEXTS 6 GRAPHIC OPERATIONS 7 IMAGES 8 FONTS AND CHARACTERS 9 COLORS 10 CURSORS 11 ATOMS, PROPERTIES, AND SELECTIONS 12 EVENTS AND INPUT 13 RESOURCES 14 CONTROL FUNCTIONS 15 EXTENSIONS 16 ERRORS A PROTOCOL VS.
    [Show full text]
  • ' MACSYMA Users' Conference
    ' MACSYMA Users'Conference Held at University of California Berkeley, California July 27-29, 1977 I TECH LIBRARY KAFB, NY NASA CP-2012 Proceedings of the 1977 MACSYMA Users’ Conference Sponsored by Massachusetts Institute of Technology, University of California at Berkeley, NASA Langley Research Center and held at Berkeley, California July 27-29, 1977 Scientific and TechnicalInformation Office 1977 NATIONALAERONAUTICS AND SPACE ADMINISTRATION NA5A Washington, D.C. FOREWORD The technical programof the 1977 MACSPMA Users' Conference, held at Berkeley,California, from July 27 to July 29, 1977, consisted of the 45 contributedpapers reported in.this publicationand of a workshop.The work- shop was designed to promote an exchange of information between implementers and users of the MACSYMA computersystem and to help guide future developments. I The response to the call for papers has well exceeded the early estimates of the conference organizers; and the high quality and broad ra.ngeof topics of thepapers submitted has been most satisfying. A bibliography of papers concerned with the MACSYMA system is included at the endof this publication. We would like to thank the members of the programcommittee, the many referees, and the secretarial and technical staffs at the University of California at Berkeley and at the Laboratory for Computer Science, Massachusetts Instituteof Technology, for shepherding the many papersthrough the submission- to-publicationprocess. We are especiallyappreciative of theburden. carried by .V. Ellen Lewis of M. I. T. for serving as expert in document preparation from computer-readableto camera-ready copy for several papers. This conference originated as the result of an organizing session called by Joel Moses of M.I.T.
    [Show full text]
  • The LOOPS Project (1982-1986)
    Programming Languges Programming Languages -- The LOOPS Project (1982-1986) Main Participants: Daniel Bobrow, Sanjay Mittal, Stanley Lanning, and Mark Stefik. The LOOPS (Lisp Object-Oriented Language) project was started to support development of expert systems project at PARC. We wanted a language that had many of the features of frame languages, such as objects, annotated values, inheritance, and attached procedures. We drew heavily on Smalltalk-80, which was being developed next door. Bobrow and Stefik had done frame languages before (KRL and UNITS, respectively). KRL was one of the first frame languges ever and established the paradigm. Units was part of a doctoral dissertation, was heavily used at Stanford, and was subsequently developed by Intellicorp to become KEE. Loops was a multiple-paradigm extension to Interlisp-D. It had ● Object-oriented programming. (Classes and objects, class variables, instance variables, methods, multiple-inheritance, interactive class browsers) ● Access-oriented programming. Nestable active values that can be attached to instance variables. Whenever a program puts a value to an instance variable or gets a value from an instance variable to which active values are attached, procedures specified in the active value are triggered. Active values also enabled attaching lists of property values to instance variables. This was used for creating audit trails and other things. ● Rule-oriented programming. A simple forward-chaining rule language with facilities for leaving an audit trail via active values. Loops provided "gauges" that could be used for debugging and for monitoring in simulation programs. Gauges were LOOPS objects. They could be attached to any value of any object in the system and provide a visual indication of program activity.
    [Show full text]