Blessed Thistle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
American Medicinal Leaves and Herbs
Historic, archived document Do not assume content reflects current scientific knowledge, policies, or practices. U. S. DEPARTMENT OF AGRICULTURE. BUREAU OF PLANT INDUSTRY—BULLETIN NO. 219. B. T. GALLOWAY, Chief of Bureau. AMERICAN MEDICINAL LEAVES AND HERBS. ALICE HENKEL, ant, Drug-Plant Investigations. Issued December 8, 191L WASHINGTON: GOVERNMENT PRINTING OFFICE. 1911. CONTENTS. Page. Introduction 7 Collection of leaves and herbs 7 Plants furnishing medicinal leaves and herbs 8 Sweet fern ( Comptonia peregrina) 9 Liverleaf (Hepatica hepatica and H. acuta) 10 Celandine ( Chelidonium majus) 11 Witch-hazel (Eamamelis virginiana) 12 13 American senna ( Cassia marilandica) Evening primrose (Oenothera biennis) 14 Yerba santa (Eriodictyon californicum) 15 Pipsissewa ( Chimaphila umbellata) 16 Mountain laurel (Kalmia latifolia) 17 Gravel plant (Epigaea repens) 18 Wintergreen (Gaultheria procumbens) 19 Bearberry (Arctostaphylos uva-ursi) 20 Buckbean ( Menyanthes trifoliata) 21 Skullcap (Scutellaria lateriflora) 22 Horehound ( Marrubium vu Igare) 23 Catnip (Nepeta cataria) 24 Motherwort (Leonurus cardiaca) 25 Pennyroyal (Hedeoma pulegioides) 26 Bugleweed (Lycopus virginicus) 27 Peppermint ( Mentha piperita) 28 Spearmint ( Mentha spicata) 29 Jimson weed (Datura stramonium) 30 Balmony (Chelone glabra) 31 Common speedwell ( Veronica officinalis) 32 Foxglove (Digitalis purpurea) 32 Squaw vine ( Mitchella repens) 34 Lobelia (Lobelia inflata) 35 Boneset (Eupatorium perfoliatum) 36 Gum plant (Grindelia robusta and G. squarrosa) 37 Canada fleabane (Leptilon canadense) 38 Yarrow (Achillea millefolium) 39 Tansy ( Tanacetum vulgare) 40 Wormwood (Artemisia absinthium) 41 Coltsfoot ( Tussilago farfara) 42 Fireweed (Erechthites hieracifolia) 43 Blessed thistle ( Cnicus benedictus) 44 Index 45 219 5 ,. LLUSTRATIONS Page. Fig. 1. Sweet fern (Comptonia peregrina), leaves, male and female catkins 9 2. Liverleaf (Hepatica hepatica), flowering plant. 10 3. -
Ecology of Cirsium Vulgare and Silybum Marianum in Relation To
Plant Protection Quarterly Vol.11 Supplement 2 1996 245 International Symposium on Biological Control of Weeds, pp. 495-501. Olivieri, I., Swan, M. and Gouyon, P.H. Ecology of Cirsium vulgare and Silybum marianum (1983). Reproductive system and colo- in relation to biological control nizing strategy of two species of Carduus (Compositae). Oecologia 60, 114-7. E. Bruzzese, Keith Turnbull Research Institute, Co-operative Research Centre Shea, K. (1996). Estimating the impact of for Weed Management Systems, PO Box 48, Frankston, Victoria 3199, Australia. control efforts: models of population dynamics. Plant Protection Quarterly 11, 263-5. Summary The ecology of spear thistle Sheppard A.W. (1996) Weeds in the Spear thistle (Cirsium vulgare) and vari- Spear thistle is an annual or biennial herb, Cardueae: Biological control and pat- egated thistle (Silybum marianum) are depending on its time of germination. Al- terns of herbivory. Proceedings of the two of the most widespread thistles though seed can germinate at any time of International Compositae Conference, which infest pastures in temperate south- the year, there are two main germination Kew, 1994, Volume 2 Biology and Utili- ern Australia. A biological control pro- times in late-summer to autumn and late zation, pp. 291-306. gram targeting these thistles was com- winter to spring (Bruzzese and Heap un- Sheppard, A.W. and Woodburn, T.L. menced in 1985. No specific ecological published). Because of this, infestations (1996). Population regulation in insects studies of these thistles and their preda- can consist of plants of different size and used to control thistles: can we predict tors in the area of origin aimed at the se- ages. -
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Pharmacokinetic Interactions Between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance
life Review Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance Laura Rombolà 1 , Damiana Scuteri 1,2 , Straface Marilisa 1, Chizuko Watanabe 3, Luigi Antonio Morrone 1, Giacinto Bagetta 1,2,* and Maria Tiziana Corasaniti 4 1 Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036 Rende, Italy; [email protected] (L.R.); [email protected] (D.S.); [email protected] (S.M.); [email protected] (L.A.M.) 2 Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy 3 Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 981-8558 Sendai, Japan; [email protected] 4 School of Hospital Pharmacy, University “Magna Graecia” of Catanzaro and Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0984-493462 Received: 28 May 2020; Accepted: 30 June 2020; Published: 4 July 2020 Abstract: The therapeutic efficacy of a drug or its unexpected unwanted side effects may depend on the concurrent use of a medicinal plant. In particular, constituents in the medicinal plant extracts may influence drug bioavailability, metabolism and half-life, leading to drug toxicity or failure to obtain a therapeutic response. This narrative review focuses on clinical studies improving knowledge on the ability of selected herbal medicines to influence the pharmacokinetics of co-administered drugs. Moreover, in vitro studies are useful to anticipate potential herbal medicine-drug interactions. -
Top-10 List of Herbal and Supplemental Medicines Used by Cosmetic Patients: What the Plastic Surgeon Needs to Know
COSMETIC Top-10 List of Herbal and Supplemental Medicines Used by Cosmetic Patients: What the Plastic Surgeon Needs to Know Justin Heller, B.S. Background: Widespread use of herbal medications/supplements among the Joubin S. Gabbay, M.D. presurgical population may have a negative effect on perioperative patient care. Kiu Ghadjar Thus, the authors’ goal was to identify the prevalence of such use in a cosmetic Mickel Jourabchi surgery patient population compared with use among the general public; to Catherine O’Hara, B.A. assess physician awareness of proper management of these herbal medications/ Misha Heller, B.S. supplements; and to review the literature to provide rational strategies for James P. Bradley, M.D. managing perioperative patients taking these remedies. Los Angeles, Calif. Methods: To assess patient (n ϭ 100) and general public (n ϭ 100) usage rates, open-ended lists of (1) the most common herbal medications/supplements and (2) homeopathic treatments were compiled. Board-certified plastic surgeons (n ϭ 20) were then given the same list of herbs/supplements and surveyed on their awareness of these treatments and perioperative side effects. Results: The usage rate for cosmetic versus public surveys for herbal medicines/ supplements was 55 percent versus 24 percent (p Ͻ 0.001), with 35 percent versus 8 percent (p Ͻ 0.001) engaging in homeopathic practices, respectively. Cosmetic patients’ top four herbal/supplements of usage were chondroitin (18 percent), ephedra (18 percent), echinacea (14 percent), and glucosamine (10 percent). The top four used by the general public were echinacea (8 percent), garlic (6 percent), ginseng (4 percent), and ginger (4 percent). -
Elemental Analysis of Some Medicinal Plants By
Journal of Medicinal Plants Research Vol. 4(19), pp. 1987-1990, 4 October, 2010 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR10.081 ISSN 1996-0875 ©2010 Academic Journals Full Length Research Paper Elemental analysis of some medicinal plants used in traditional medicine by atomic absorption spectrophotometer (AAS) Muhammad Zafar1*, Mir Ajab Khan1, Mushtaq Ahmad1, Gul Jan1, Shazia Sultana1, Kifayat Ullah1, Sarfaraz Khan Marwat1, Farooq Ahmad2, Asma Jabeen3, Abdul Nazir1, Arshad Mehmood Abbasi1, Zia ur Rehman1 and Zahid Ullah1 1Department of Plant Sciences, Quaid-i-Azam University Islamabad Pakistan. 2Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Murree Road, Rawalpindi, Pakistan. 3Environmental Sciences Department, Fatima Jinnah Women University, Rawalpindi, Pakistan. Accepted 10 September, 2010 Different elemental constituents at trace levels of plants play an effective role in the medicines prepared. Elemental composition of different parts including leaves, seeds and fruits have been determined by using Atomic Absorption Spectrophotometer (AAS). A total of 14 elements K+, Mg+2, Ca+2, Na+, Fe+2, Co+3, Mn+2, Cu+3, Cr+3, Zn+2, Ni+3, Li+1, Pb+4 and Cd+2 have been measured. Their concentrations were found to vary in different samples. Medicinal properties of these plant samples and their elemental distribution have been correlated. Key words: Elemental analysis, medicinal plants and atomic absorption spectrophotometer. INTRODUCTION Herbal drugs are being used as remedies for various the second dist heat pathological symptoms can be diseases across the world from ancient time. In recent relieved by replacing the element. To be pharmacolo- years, increasing interest has been focused on phyto- gically effective or essential, the trace element may need medicines as safer and more congenial to the human to be combining or chelated with some ligand, in order to body. -
Italian Thistle (Carduus Pycnocephalus)
Thistles: Identification and Management Rebecca Ozeran 1 May 2018 Common thistles in the San Joaquin Valley Carduus Centaurea Cirsium Silybum Onopordum Italian thistle Yellow starthistle Bull thistle (Blessed) milkthistle Scotch thistle Tocalote Canada thistle (Malta starthistle) All of these species are found at least one of Fresno, Kern, Kings, Madera, or Tulare Counties Identification • Many species start as a basal rosette in fall • Mature plants can have dense & bushy or tall & stemmy appearance • Purple/pink or yellow-flowered Identification • Why does thistle species matter? • Varying levels of risk to animals • Varying competition with forage • Varying susceptibility to control options Identification – 1. Italian thistle • Carduus pycnocephalus • narrow, spiky flower heads • winged, spiny stems branching above the base • found in Fresno, Kern, Madera, Tulare Identification – 2. Centaurea thistles • YELLOW STARTHISTLE (C. solstitialis) • long, yellow/white spines on phyllaries • can get a bushy structure • found in Fresno, Kern, Madera, Tulare • TOCALOTE (MALTA STARTHISTLE, C. melitensis) • stouter flower heads and shorter, redder spines on phyllaries • found in all 5 counties Identification – 3. Cirsium thistles • Canada thistle (C. arvense) • smooth stems, non-spiny flowerheads • flowers Jun-Oct • found in Fresno, Kern, Tulare • Bull thistle (C. vulgare) • large spiky looking flowerheads • lots of branching, dense plant • flowers Jun-Oct • found in all 5 counties Identification – 4. Blessed milk thistle • Silybum marianum • Distinct, -
Guideline 410 Prohibited Plant List
VENTURA COUNTY FIRE PROTECTION DISTRICT FIRE PREVENTION BUREAU 165 DURLEY AVENUE CAMARILLO, CA 93010 www.vcfd.org Office: 805-389-9738 Fax: 805-388-4356 GUIDELINE 410 PROHIBITED PLANT LIST This list was first published by the VCFD in 2014. It has been updated as of April 2019. It is intended to provide a list of plants and trees that are not allowed within a new required defensible space (DS) or fuel modification zone (FMZ). It is highly recommended that these plants and trees be thinned and or removed from existing DS and FMZs. In certain instances, the Fire Department may require the thinning and or removal. This list was prepared by Hunt Research Corporation and Dudek & Associates, and reviewed by Scott Franklin Consulting Co, VCFD has added some plants and has removed plants only listed due to freezing hazard. Please see notes after the list of plants. For questions regarding this list, please contact the Fire Hazard reduction Program (FHRP) Unit at 085-389-9759 or [email protected] Prohibited plant list:Botanical Name Common Name Comment* Trees Abies species Fir F Acacia species (numerous) Acacia F, I Agonis juniperina Juniper Myrtle F Araucaria species (A. heterophylla, A. Araucaria (Norfolk Island Pine, Monkey F araucana, A. bidwillii) Puzzle Tree, Bunya Bunya) Callistemon species (C. citrinus, C. rosea, C. Bottlebrush (Lemon, Rose, Weeping) F viminalis) Calocedrus decurrens Incense Cedar F Casuarina cunninghamiana River She-Oak F Cedrus species (C. atlantica, C. deodara) Cedar (Atlas, Deodar) F Chamaecyparis species (numerous) False Cypress F Cinnamomum camphora Camphor F Cryptomeria japonica Japanese Cryptomeria F Cupressocyparis leylandii Leyland Cypress F Cupressus species (C. -
Silybum Marianum) Seed Cakes on the Digestibility of Nutrients, Flavonolignans and the Individual Components of the Silymarin Complex in Horses
animals Article Dose Effect of Milk Thistle (Silybum marianum) Seed Cakes on the Digestibility of Nutrients, Flavonolignans and the Individual Components of the Silymarin Complex in Horses Hana Dockalova * , Ladislav Zeman, Daria Baholet, Andrej Batik, Sylvie Skalickova and Pavel Horky Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemˇedˇelská 1, 61300 Brno, Czech Republic; [email protected] (L.Z.); [email protected] (D.B.); [email protected] (A.B.); [email protected] (S.S.); [email protected] (P.H.) * Correspondence: [email protected]; Tel.: +420-773-996-710 Simple Summary: Silybum marianum is a well-known herb in terms of its pharmacological activities, and it is used as both a medicament and a dietary supplement (phytobiotics). Milk thistle seeds contain a mixture of flavonoids known as silymarin, which consists of silybin, isosilybin, silychristine, and silydianin. Until now, there has been no evidence of monitoring the digestibility of silymarin complex in horses. The aim of the research was to evaluate digestibility of silymarin complex and the effect of nutrient digestibility in horses. Different daily feed doses of milk thistle expeller (0 g, 100 g, 200 g, 400 g, 700 g) were administered to five mares kept under the same conditions and at the same Citation: Dockalova, H.; Zeman, L.; feed rations. We monitored the digestibility of silymarin, digestible energy, crude protein, crude fat, Baholet, D.; Batik, A.; Skalickova, S.; crude fiber, nitrogen-free extract, crude ash, calcium, phosphorus, and plasma profile. Statistically Horky, P. Dose Effect of Milk Thistle significant differences (p ≤ 0.05) were found between daily doses in digestibilities of flavonolignans (Silybum marianum) Seed Cakes on the and nutrients. -
The Pharmaceutical and Chemical Journal, 2016, 3(2):129-135
The Pharmaceutical and Chemical Journal, 2016, 3(2):129-135 Available online www.tpcj.org ISSN: 2349-7092 Review Article CODEN(USA): PCJHBA The Constituents and Pharmacology of Cnicus Benedictus- A Review Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, Thi qar University, Iraq Abstract The chemical constituents of Cnicus benedictus showed that it contained sesquiterpene lactone glycosides, cnicin, polyacetylen, absinthin, salonitenolide and artemisiifolin. Triterpenoids such as a-amyrenone, a-amyrin acetate, a-amyrine, and multiflorenol acetate. Lignans such as trachelogenin, nortracheloside and arctigenin. Flavonoids, including apigenin-7-O-glucoside, luteolin and astragalin. Tannins contents reached (8%). essential and volatile oils (0.3%) including n-nonane, n-undecane, n- tridecane, dodeca-l,ll-dien-3,5,7,9-tetrain (polyyne), p- cymene, fenchon, citral, cinnamaldehyde, were also isolated from the plant. It was also contained many nutritional components, minirals and trace elemints. The previous pharmacological studies showed that Cnicus benedictus possessed antimicrobial, cytotoxic, anti-inflammatory, wound healing, enhancing digestion and increasing bile secretion. This review was designed to highlight the chemical constituents, pharmacological and toxicological effects of Cnicus benedictus. Keywords constituents, pharmacology, toxicology, Cnicus benedictus. Introduction As a result of accumulated experience from the past generations, today, all the world’s cultures have an extensive knowledge of herbal medicine. 75% of the world’s population used plants for therapy and prevention. Plants are a valuable source of a wide range of secondary metabolites, which are used as pharmaceuticals, agrochemicals, flavours, fragrances, colours, biopesticides and food additives [1-30]. The chemical constituents of Cnicus benedictus showed that it contained sesquiterpene lactone glycosides, cnicin, polyacetylen, absinthin, salonitenolide and artemisiifolin. -
The Antimicrobial Activity of the Cnicus Benedictus L
The Antimicrobial Activity of the Cnicus benedictus L. Extracts THE ANTIMICROBIAL ACTIVITY OF THE CNICUS BENEDICTUS L. EXTRACTS Ildikó SZABÓ*, Annamaria PALLAG *, Cristian-Felix BLIDAR ** * University of Oradea, Faculty of Medicine and Pharmacy, Department of Pharmacy, Oradea, Romania **University of Oradea, Faculty of Science, Department of Biology, Oradea, Romania Corresponding author: Ildikó Szabó, University of Oradea, Faculty of Medicine and Pharmacy, Department of Pharmacy, 10 P-ta 1 Decembrie, 410068 Oradea, Romania, tel.: 0040259415680, fax: 0040259268038, e-mail: [email protected] Abstract. Our goal was to test the antimicrobial effect of the aqueous solutions obtained from the soft extract of Cnicus benedictus L. (Asteraceae family) flowers. The test was performed on Mueller - Hinton and blood-agar culture medium, on 8 standardized bacterial strains and microbiological strains obtained from infected secretions, using the diffusimetric method. The antimicrobial action of the plant extracts was confirmed by all bacterial tested strains, which presented inhibition zones, of approximately same values, at solutions with different concentrations. The values we obtained reveal significant differences of the intensity of the antimicrobial activity of the mature and immature flowers extract. Keywords: Cnicus benedictus L., aquous solutions, antimicrobial activity INTRODUCTION The extracts procurement The extracts were obtained through individual Cnicus benedictus L. (Blessed Thistle or Holy maceration, twice in eight days with 700 ml ethanol Thistle), the sole species in the genus Cnicus , is a 40% (the first extraction) and 500 ml ethanol 40% (the thistle-like plant in the family Asteraceae, native to the second extraction), for each vegetal product. The Mediterranean region. It is an annual plant growing to extractives solutions, obtained for each vegetal 60 cm tall, with leathery, hairy leaves up to 30 cm long product, were reunited and added to 1000 ml with the and 8 cm broad, with small spines on the margins. -
Amatoxin Mushroom Poisoning in North America 2015-2016 by Michael W
Amatoxin Mushroom Poisoning in North America 2015-2016 By Michael W. Beug PhD Chair NAMA Toxicology Committee Assessing the degree of amatoxin mushroom poisoning in North America is very challenging. Understanding the potential for various treatment practices is even more daunting. Although I have been studying mushroom poisoning for 45 years now, my own views on potential best treatment practices are still evolving. While my training in enzyme kinetics helps me understand the literature about amatoxin poisoning treatments, my lack of medical training limits me. Fortunately, critical comments from six different medical doctors have been incorporated in this article. All six, each concerned about different aspects in early drafts, returned me to the peer reviewed scientific literature for additional reading. There remains no known specific antidote for amatoxin poisoning. There have not been any gold standard double-blind placebo controlled studies. There never can be. When dealing with a potentially deadly poisoning (where in many non-western countries the amatoxin fatality rate exceeds 50%) treating of half of all poisoning patients with a placebo would be unethical. Using amatoxins on large animals to test new treatments (theoretically a great alternative) has ethical constraints on the experimental design that would most likely obscure the answers researchers sought. We must thus make our best judgement based on analysis of past cases. Although that number is now large enough that we can make some good assumptions, differences of interpretation will continue. Nonetheless, we may be on the cusp of reaching some agreement. Towards that end, I have contacted several Poison Centers and NAMA will be working with the Center for Disease Control (CDC).