Futo Journal Series (FUTOJNLS) e-ISSN : 2476-8456 p-ISSN : 2467-8325 Volume-5, Issue-1, pp- 189 - 209 www.futojnls.org Research Paper July 2019 Comparing AKS Algorithm for Deterministic Primality Testing Using Matlab Updated With Mapple and C++ 1Chidozie, K. K, 1*Obi, M. C. and 2Nwamba, I. 1Department of Mathematics, Federal University of Technology, Owerri, Imo State, Nigeria 2ICT Department, Imo State University, Owerri, Imo State, Nigeria *Corresponding Author’s Email:
[email protected];
[email protected] Abstract This work compared the use of MATLAB updated with MAPPLE and C++ to implement AKS algorithm which is the first deterministic primality testing algorithm in polynomial time. To test if the number 9965468763136528274628451 is prime took about 210 minutes in AKS algorithm. This is inefficient especially in cryptography where large numbers are often tested for primality. Thus implementing AKS algorithm in MATLAB updated with MAPPLE is faster and efficient than using C++. 1. Introduction The study of prime numbers dates back to 300BC. An ancient Greek Mathematician called Euclid used the method of contradiction to prove that there were infinitely many prime numbers. He also proved the fundamental theorem of arithmetic. In 200BC, another Greek Mathematician called Eratosthenes introduced an algorithm for primality testing called the Sieve of Eratosthenes when given integer numbers from 2 to , mark all the even numbers except 2. Then start with the next unmarked number, which in our case is 3, mark all the numbers which are multiplies of three except 3. Continue in this way until there are no new unmarked numbers.