Cosmology in Symmetric Teleparallel Gravity and Its Dynamical System

Total Page:16

File Type:pdf, Size:1020Kb

Cosmology in Symmetric Teleparallel Gravity and Its Dynamical System Eur. Phys. J. C (2019) 79:530 https://doi.org/10.1140/epjc/s10052-019-7038-3 Regular Article - Theoretical Physics Cosmology in symmetric teleparallel gravity and its dynamical system Jianbo Lua, Xin Zhao, Guoying Cheeb Department of Physics, Liaoning Normal University, Dalian 116029, People’s Republic of China Received: 28 February 2019 / Accepted: 10 June 2019 / Published online: 20 June 2019 © The Author(s) 2019 Abstract We explore an extension of the symmetric telepa- symmetric teleparallel connection that is not metric compati- rallel gravity denoted the f (Q) theory, by considering a ble. This classification highlights that curvature is a property function of the nonmetricity invariant Q as the gravitational of the connection and not of the metric tensor or the mani- Lagrangian. Some interesting properties could be found in fold. It becomes a property of the metric only through the use the f (Q) theory by comparing with the f (R) and f (T ) the- of the Levi–Civita connection. GR can be equivalently for- ories. The field equations are derived in the f (Q) theory. mulated in terms of either of these connections. All of them The cosmological application is investigated. In this theory can be used to define Lagrangians of which Euler-Lagrange the accelerating expansion is an intrinsic property of the uni- equations coincide with the Einstein equations for a particu- verse geometry without need of either exotic dark energy or lar choice of contributing terms. extra fields. And the state equation of the geometrical dark In recent years teleparallel theories have gained more energy can cross over the phantom divide line in the f (Q) attention as alternative theories of gravity. While one mostly theory. In addition, the dynamical system method are inves- works in the torsion-based setting, there has been interest in tigated. It is shown that there are five critical points in the the direction of symmetric teleparallelism, where instead of STG model for taking f (Q) = Q +αQ2. The critical points curvature or torsion gravity is effectively described by non- P4 and P5 are stable. P4 corresponds to the geometrical dark metricity. It should be mentioned that the mechanism medi- wef f =− energy dominated de Sitter universe ( tot 1), while P5 ating gravity is the affine connection rather than the physi- wef f = corresponds to the matter dominated universe ( tot 0). cal manifold. This is reflected in the fact that in GR curva- Given that P4 represents an attractor, the cosmological con- ture is a property of the connection and not of the manifold stant problems, such as the fine tuning problem, could be itself, and thus can be equally described by other connection solved in the STG model. property such as nonmetricity. Symmetric teleparallel grav- ity (STG) offers an interesting geometric interpretation of gravitation besides its formulation in terms of a spacetime 1 Introduction metric and Levi–Civita connection or its teleparallel formu- lation. It describes gravity through a connection which is not The discovery of the cosmic accelerated expansion has moti- metric compatible, however is curvature-free and torsion- vated a vast number of researches on modifications of general free. This connection can be simplified to a partial derivative relativity (GR) (for recent reviews, see [1–3]) to explain this through the so-called coincident gauge [4,5]. This geometri- acceleration. A plethora of theories have been proposed in cally implies that vectors do remain parallel at long distances the literature, essentially based on specific approaches. From on a manifold [6]. By demanding that the curvature vanishes the view point of the connection, theories of gravity can be and that the connection is torsionless, the remaining gravita- classified into three broad classes. The first class uses the tional information is encoded in nonmetricity contributions Levi–Civita connection of the metric and its curvature. The [4,6–9]. second class uses the tetrads of a metric and their curvature In STG, the metricity condition of GR is relaxed and then ¨ free, metric-compatible, Weitzenbock connection with tor- produces teleparallel equivalent of general relativity [10]. sion. And the third class uses a curvature-free and torsion-free One of important properties of STG is their ability to separate gravitational and inertial effects [11] which is not possible in a e-mail: [email protected] GR. It has produced many strains on the theory such as the b e-mail: [email protected] 123 530 Page 2 of 8 Eur. Phys. J. C (2019) 79 :530 issue of defining a gravitational energy-momentum tensor sic property of the universe geometry without need of either [12]. exotic dark energy or extra fields. This theory is identified as More recently, STG was deeply analyzed in [4]. An excep- a metrical formulation of f (T ) gravity. In contrast with f (T ) tional class with a vanishing affine connection was discov- gravity, this new theory respects local Lorentz symmetry and ered. Based on this property, a simpler geometrical formula- harbour no extra degrees of freedom, since the dynamic vari- tion of GR was proposed. It leads to a purely inertial connec- able is the metric instead of the tetrad. At the same time it tion that can be completely removed by a coordinate gauge has the advantage over f (R) gravity that its field equations choice [13]. This formulation fundamentally deprives gravity are second-order instead of fourth-order and then is free of from any inertial character. The resulting theory is described pathologies. It may provide an satisfactory alternative to con- by the Hilbert action purged from the boundary term and is ventional dark energy in general relativistic cosmology and a more robustly underpinned by the spin-2 field theory. This new explanation of the acceleration of the cosmic expansion. construction also provides a novel starting point for modified The cosmological constant problem, the fine tuning problem gravity theories, and presents new and simple generaliza- and the problem of phantom divide line crossing are solved tions where analytical self-accelerating cosmological solu- or disappear. tions arise naturally in the early and late time universe. Even though the physical aspects of the dynamical non- metricity are not easy to interpret, a gauge interpretation 2 Field equations of STG was proposed from a physical point of view [11]. The equivalence principle which allows eliminating locally The symmetric teleparallel connection relies only on non- gravitation makes it to be an integrable gauge theory. In this metricity and does not possess neither curvature nor torsion approach, the metric represents the gravitational field and the which yields some interesting results. One can transform to connection corresponds to the gauge potential [14]. a zero connection gauge and thereby covariantize the partial STG was presented originally in a paper by Nester and Yo derivatives as well as split the Einstein–Hilbert action into [6], where the authors emphasize that the formulation brings the Einstein Lagrangian density and a boundary term [4,6]. a new perspective to bear on GR. However, the formulation In differential geometry, the general affine connection can is geometric and covariant. More recently, some new results always be decomposed into three independent components and important developments have been obtained. An excep- [17], namely, tional class was discovered which is consistent with a vanish- λ λ λ λ μν = μν + K μν + L μν, (1) ing affine connection [7]. Based on this remarkable property, a simpler geometrical formulation of GR was proposed. It where the first term is the Levi–Civita connection of the met- provides a novel starting point for modified gravity theories, ric gμν, given by the standard definition and presents new and simple generalizations where acceler- λ 1 λβ ating cosmological solutions arise naturally in the early and μ ν ≡ g ∂μgβν + ∂ν gβμ − ∂β gμν . (2) 2 late-time universe. λ In a generalization of STG [15], a nonminimal cou- The second term K μν is the contortion: pling of a scalar field to the nonmetricity invariant was λ 1 λ λ K μν ≡ T μν + T(μ ν), (3) introduced. The similarities and differences with analogous 2 scalar-curvature and scalar-torsion theories were discussed. λ λ with the torsion tensor defined as T μν ≡ 2 μν . The third The class of scalar-nonmetricity theories was extended by [ ] term is the disformation considering a five-parameter quadratic nonmetricity scalar λ 1 λρ and including a boundary term [16]. The equivalents for L μν ≡ g −Qμρν − Qνρμ + Qρμν , (4) GR and ordinary (curvature based) scalar-tensor theories 2 were obtained as particular cases. In a recent paper [5], which is defined in terms of the nonmetricity tensor: Qρμν ≡ STG is extended by considering a new class of theories ∇ρ gμν. We define two traces of the nonmetricity tensor: where the nonmetricity is coupled nonminimally to the mat- μ μ Qρ = Qρ μ, Qρ = Q ρμ, (5) ter Lagrangian. The theoretical consistency and motivations on this extension are established. Its cosmological applica- and introduce the superpotential tion provides a gravitational alternative to dark energy. α α α α α α 4P μν=−Q μν+2Q(μ ν) − Q gμν−Q gμν − δ(μ Qν). However, comparing to these complicated general appro- aches mentioned above, a more special and simple model is (6) more suitable to the cosmological application. In this paper, We have therefore starting from a rather simple Lagrangian a good toy model λ 1 λρ is obtained, where the accelerating expansion is an intrin- L μν ≡ g −∇μgρν −∇ν gμρ +∇ρ gμν , (7) 2 123 Eur. Phys. J. C (2019) 79 :530 Page 3 of 8 530 and can construct an invariant, the quadratic nonmetricity at first.
Recommended publications
  • Selected Papers on Teleparallelism Ii
    SELECTED PAPERS ON TELEPARALLELISM Edited and translated by D. H. Delphenich Table of contents Page Introduction ……………………………………………………………………… 1 1. The unification of gravitation and electromagnetism 1 2. The geometry of parallelizable manifold 7 3. The field equations 20 4. The topology of parallelizability 24 5. Teleparallelism and the Dirac equation 28 6. Singular teleparallelism 29 References ……………………………………………………………………….. 33 Translations and time line 1928: A. Einstein, “Riemannian geometry, while maintaining the notion of teleparallelism ,” Sitzber. Preuss. Akad. Wiss. 17 (1928), 217- 221………………………………………………………………………………. 35 (Received on June 7) A. Einstein, “A new possibility for a unified field theory of gravitation and electromagnetism” Sitzber. Preuss. Akad. Wiss. 17 (1928), 224-227………… 42 (Received on June 14) R. Weitzenböck, “Differential invariants in EINSTEIN’s theory of teleparallelism,” Sitzber. Preuss. Akad. Wiss. 17 (1928), 466-474……………… 46 (Received on Oct 18) 1929: E. Bortolotti , “ Stars of congruences and absolute parallelism: Geometric basis for a recent theory of Einstein ,” Rend. Reale Acc. dei Lincei 9 (1929), 530- 538...…………………………………………………………………………….. 56 R. Zaycoff, “On the foundations of a new field theory of A. Einstein,” Zeit. Phys. 53 (1929), 719-728…………………………………………………............ 64 (Received on January 13) Hans Reichenbach, “On the classification of the new Einstein Ansatz on gravitation and electricity,” Zeit. Phys. 53 (1929), 683-689…………………….. 76 (Received on January 22) Selected papers on teleparallelism ii A. Einstein, “On unified field theory,” Sitzber. Preuss. Akad. Wiss. 18 (1929), 2-7……………………………………………………………………………….. 82 (Received on Jan 30) R. Zaycoff, “On the foundations of a new field theory of A. Einstein; (Second part),” Zeit. Phys. 54 (1929), 590-593…………………………………………… 89 (Received on March 4) R.
    [Show full text]
  • Arxiv:0911.0334V2 [Gr-Qc] 4 Jul 2020
    Classical Physics: Spacetime and Fields Nikodem Poplawski Department of Mathematics and Physics, University of New Haven, CT, USA Preface We present a self-contained introduction to the classical theory of spacetime and fields. This expo- sition is based on the most general principles: the principle of general covariance (relativity) and the principle of least action. The order of the exposition is: 1. Spacetime (principle of general covariance and tensors, affine connection, curvature, metric, tetrad and spin connection, Lorentz group, spinors); 2. Fields (principle of least action, action for gravitational field, matter, symmetries and conservation laws, gravitational field equations, spinor fields, electromagnetic field, action for particles). In this order, a particle is a special case of a field existing in spacetime, and classical mechanics can be derived from field theory. I dedicate this book to my Parents: Bo_zennaPop lawska and Janusz Pop lawski. I am also grateful to Chris Cox for inspiring this book. The Laws of Physics are simple, beautiful, and universal. arXiv:0911.0334v2 [gr-qc] 4 Jul 2020 1 Contents 1 Spacetime 5 1.1 Principle of general covariance and tensors . 5 1.1.1 Vectors . 5 1.1.2 Tensors . 6 1.1.3 Densities . 7 1.1.4 Contraction . 7 1.1.5 Kronecker and Levi-Civita symbols . 8 1.1.6 Dual densities . 8 1.1.7 Covariant integrals . 9 1.1.8 Antisymmetric derivatives . 9 1.2 Affine connection . 10 1.2.1 Covariant differentiation of tensors . 10 1.2.2 Parallel transport . 11 1.2.3 Torsion tensor . 11 1.2.4 Covariant differentiation of densities .
    [Show full text]
  • The State of the Multiverse: the String Landscape, the Cosmological Constant, and the Arrow of Time
    The State of the Multiverse: The String Landscape, the Cosmological Constant, and the Arrow of Time Raphael Bousso Center for Theoretical Physics University of California, Berkeley Stephen Hawking: 70th Birthday Conference Cambridge, 6 January 2011 RB & Polchinski, hep-th/0004134; RB, arXiv:1112.3341 The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape Magnitude of contributions to the vacuum energy graviton (a) (b) I Vacuum fluctuations: SUSY cutoff: ! 10−64; Planck scale cutoff: ! 1 I Effective potentials for scalars: Electroweak symmetry breaking lowers Λ by approximately (200 GeV)4 ≈ 10−67. The cosmological constant problem −121 I Each known contribution is much larger than 10 (the observational upper bound on jΛj known for decades) I Different contributions can cancel against each other or against ΛEinstein. I But why would they do so to a precision better than 10−121? Why is the vacuum energy so small? 6= 0 Why is the energy of the vacuum so small, and why is it comparable to the matter density in the present era? Recent observations Supernovae/CMB/ Large Scale Structure: Λ ≈ 0:4 × 10−121 Recent observations Supernovae/CMB/ Large Scale Structure: Λ ≈ 0:4 × 10−121 6= 0 Why is the energy of the vacuum so small, and why is it comparable to the matter density in the present era? The Cosmological Constant Problem The Landscape of String Theory Cosmology: Eternal inflation and the Multiverse The Observed Arrow of Time The Arrow of Time in Monovacuous Theories A Landscape with Two Vacua A Landscape with Four Vacua The String Landscape Many ways to make empty space Topology and combinatorics RB & Polchinski (2000) I A six-dimensional manifold contains hundreds of topological cycles.
    [Show full text]
  • Research Article Weyl-Invariant Extension of the Metric-Affine Gravity
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Open Access Repository Hindawi Publishing Corporation Advances in High Energy Physics Volume 2015, Article ID 902396, 7 pages http://dx.doi.org/10.1155/2015/902396 Research Article Weyl-Invariant Extension of the Metric-Affine Gravity R. Vazirian,1 M. R. Tanhayi,2 and Z. A. Motahar3 1 Plasma Physics Research Center, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran 2Department of Physics, Islamic Azad University, Central Tehran Branch, Tehran 8683114676, Iran 3Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence should be addressed to M. R. Tanhayi; [email protected] Received 30 September 2014; Accepted 28 November 2014 Academic Editor: Anastasios Petkou Copyright © 2015 R. Vazirian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3. Metric-affine geometry provides a nontrivial extension of the general relativity where the metric and connection are treated as the two independent fundamental quantities in constructing the spacetime (with nonvanishing torsion and nonmetricity). In this paper,westudythegenericformofactioninthisformalismandthenconstructtheWeyl-invariantversionofthistheory.Itisshown that, in Weitzenbock¨ space, the obtained Weyl-invariant action can cover the conformally invariant teleparallel action. Finally, the related field equations are obtained in the general case. 1. Introduction with the metric and torsion-free condition is relaxed; thus, in addition to Christoffel symbols, the affine connection would Extended theories of gravity have become a field of interest contain an antisymmetric part and nonmetric terms as well.
    [Show full text]
  • Spacetime and Geometry: an Introduction to General Relativity Pdf, Epub, Ebook
    SPACETIME AND GEOMETRY: AN INTRODUCTION TO GENERAL RELATIVITY PDF, EPUB, EBOOK Sean M. Carroll,John E. Neely,Richard R. Kibbe | 513 pages | 28 Sep 2003 | Pearson Education (US) | 9780805387322 | English | New Jersey, United States Spacetime and Geometry: An Introduction to General Relativity PDF Book Likewise an explorer from region IV could have a brief look at region I before perishing. Mathematics Kronecker delta Levi-Civita symbol metric tensor nonmetricity tensor Christoffel symbols Ricci curvature Riemann curvature tensor Weyl tensor torsion tensor. Thorne, John Archibald Wheeler Gravitation. When using coordinate transformations as described above, the new coordinate system will often appear to have oblique axes compared to the old system. Indeed, they find some remarkable new regions of spacetime! In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress—energy tensor representing matter, for instance. Views Read Edit View history. Modern cosmological models are a bit more complicated, but retain those features. I was misled even lied to by JG on math. Bitte versuchen Sie es erneut. Considering the number of things I did not know it was a good idea to postpone reading this section until now. Tuesday, 25 February Einstein's equation. So I decided to test the flatness idea in two dimensions Principles of Cosmology and Gravitation. It was supposed to be impossible to travel between regions I and IV of the Kruskal diagram and here Carroll
    [Show full text]
  • Book of Abstracts Ii Contents
    Spring workshop on gravity and cosmology Monday, 25 May 2020 - Friday, 29 May 2020 Jagiellonian University Book of Abstracts ii Contents Stochastic gravitational waves from inflaton decays ..................... 1 Approximate Killing symmetries in non-perturbative quantum gravity .......... 1 Disformal transformations in modified teleparallelism .................... 1 Quantum fate of the BKL scenario ............................... 2 Ongoing Efforts to Constrain Lorentz Symmetry Violation in Gravity ........... 2 Proof of the quantum null energy condition for free fermionic field theories . 2 Cosmic Fibers and the parametrization of time in CDT quantum gravity . 3 Stable Cosmology in Generalised Massive Gravity ...................... 3 Constraining the inflationary field content .......................... 3 The (glorious) past, (exciting) present and (foreseeable) future of gravitational wave detec- tors. ............................................. 4 reception ............................................. 4 Testing Inflation with Primordial Messengers ........................ 4 Gravitational waves from inflation ............................... 4 CDT, a theory of quantum geometry. ............................. 4 Cosmic Fibers and the parametrization of time in CDT quantum gravity . 5 Loop-based observables in 4D CDT .............................. 5 Spectral Analysis of Causal Dynamical Triangulations via Finite Element Methods . 5 A consistent theory of D -> 4 Einstein-Gauss-Bonnet gravity ................ 5 Quantum Ostrogradsky theorem
    [Show full text]
  • The Multiverse: Conjecture, Proof, and Science
    The multiverse: conjecture, proof, and science George Ellis Talk at Nicolai Fest Golm 2012 Does the Multiverse Really Exist ? Scientific American: July 2011 1 The idea The idea of a multiverse -- an ensemble of universes or of universe domains – has received increasing attention in cosmology - separate places [Vilenkin, Linde, Guth] - separate times [Smolin, cyclic universes] - the Everett quantum multi-universe: other branches of the wavefunction [Deutsch] - the cosmic landscape of string theory, imbedded in a chaotic cosmology [Susskind] - totally disjoint [Sciama, Tegmark] 2 Our Cosmic Habitat Martin Rees Rees explores the notion that our universe is just a part of a vast ''multiverse,'' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. 3 Scientific American May 2003 issue COSMOLOGY “Parallel Universes: Not just a staple of science fiction, other universes are a direct implication of cosmological observations” By Max Tegmark 4 Brian Greene: The Hidden Reality Parallel Universes and The Deep Laws of the Cosmos 5 Varieties of Multiverse Brian Greene (The Hidden Reality) advocates nine different types of multiverse: 1. Invisible parts of our universe 2. Chaotic inflation 3. Brane worlds 4. Cyclic universes 5. Landscape of string theory 6. Branches of the Quantum mechanics wave function 7. Holographic projections 8. Computer simulations 9. All that can exist must exist – “grandest of all multiverses” They can’t all be true! – they conflict with each other.
    [Show full text]
  • Alternative Gravitational Theories in Four Dimensions
    Alternative Gravitational Theories in Four Dimensionsa Friedrich W. Hehl Institute for Theoretical Physics, University of Cologne, D-50923 K¨oln, Germany email: [email protected] We argue that from the point of view of gauge theory and of an appropriate interpretation of the interferometer experiments with matter waves in a gravitational field, the Einstein- Cartan theory is the best theory of gravity available. Alternative viable theories are general relativity and a certain teleparallelism model. Objections of Ohanian & Ruffini against the Einstein-Cartan theory are discussed. Subsequently we list the papers which were read at the ‘Alternative 4D Session’ and try to order them, at least partially, in the light of the structures discussed. 1 The best alternative theory? I would call general relativity theory8 GR the best available alternative gravitational 21,14 theory and the next best one its teleparallel equivalent GR||. Because of these two theories, at least, it is good to have this alternative session during the Marcel Grossmann Meeting. Let me try to explain why I grant to GR the distinction of being the best alternative theory. After finally having set up special relativity theory in 1905, Einstein subse- quently addressed the question of how to generalize Newton’s gravitational theory as to make it consistent with special relativity, that is, how to reformulate it in a Poincar´ecovariant way. Newton’s theory was a battle tested theory in the realm of our planetary system and under normal laboratory conditions. It has predictive power as it had been shown by the prediction of the existence of the planet Neptune in the last century.
    [Show full text]
  • Modified Standard Einstein's Field Equations and the Cosmological
    Issue 1 (January) PROGRESS IN PHYSICS Volume 14 (2018) Modified Standard Einstein’s Field Equations and the Cosmological Constant Faisal A. Y. Abdelmohssin IMAM, University of Gezira, P.O. BOX: 526, Wad-Medani, Gezira State, Sudan Sudan Institute for Natural Sciences, P.O. BOX: 3045, Khartoum, Sudan E-mail: [email protected] The standard Einstein’s field equations have been modified by introducing a general function that depends on Ricci’s scalar without a prior assumption of the mathemat- ical form of the function. By demanding that the covariant derivative of the energy- momentum tensor should vanish and with application of Bianchi’s identity a first order ordinary differential equation in the Ricci scalar has emerged. A constant resulting from integrating the differential equation is interpreted as the cosmological constant introduced by Einstein. The form of the function on Ricci’s scalar and the cosmologi- cal constant corresponds to the form of Einstein-Hilbert’s Lagrangian appearing in the gravitational action. On the other hand, when energy-momentum is not conserved, a new modified field equations emerged, one type of these field equations are Rastall’s gravity equations. 1 Introduction term in his standard field equations to represent a kind of “anti ff In the early development of the general theory of relativity, gravity” to balance the e ect of gravitational attractions of Einstein proposed a tensor equation to mathematically de- matter in it. scribe the mutual interaction between matter-energy and Einstein modified his standard equations by introducing spacetime as [13] a term to his standard field equations including a constant which is called the cosmological constant Λ, [7] to become Rab = κTab (1.1) where κ is the Einstein constant, Tab is the energy-momen- 1 Rab − gabR + gabΛ = κTab (1.6) tum, and Rab is the Ricci curvature tensor which represents 2 geometry of the spacetime in presence of energy-momentum.
    [Show full text]
  • Teleparallelism Arxiv:1506.03654V1 [Physics.Pop-Ph] 11 Jun 2015
    Teleparallelism A New Way to Think the Gravitational Interactiony At the time it celebrates one century of existence, general relativity | Einstein's theory for gravitation | is given a companion theory: the so-called teleparallel gravity, or teleparallelism for short. This new theory is fully equivalent to general relativity in what concerns physical results, but is deeply different from the con- ceptual point of view. Its characteristics make of teleparallel gravity an appealing theory, which provides an entirely new way to think the gravitational interaction. R. Aldrovandi and J. G. Pereira Instituto de F´ısica Te´orica Universidade Estadual Paulista S~aoPaulo, Brazil arXiv:1506.03654v1 [physics.pop-ph] 11 Jun 2015 y English translation of the Portuguese version published in Ci^enciaHoje 55 (326), 32 (2015). 1 Gravitation is universal One of the most intriguing properties of the gravitational interaction is its universality. This hallmark states that all particles of nature feel gravity the same, independently of their masses and of the matter they are constituted. If the initial conditions of a motion are the same, all particles will follow the same trajectory when submitted to a gravitational field. The origin of universality is related to the concept of mass. In principle, there should exist two different kinds of mass: the inertial mass mi and the gravitational mass mg. The inertial mass would describe the resistance a particle shows whenever one attempts to change its state of motion, whereas the gravitational mass would describe how a particle reacts to the presence of a gravitational field. Particles with different relations mg=mi, therefore, should feel gravity differently when submitted to a given gravitational field.
    [Show full text]
  • Copyrighted Material
    ftoc.qrk 5/24/04 1:46 PM Page iii Contents Timeline v de Sitter,Willem 72 Dukas, Helen 74 Introduction 1 E = mc2 76 Eddington, Sir Arthur 79 Absentmindedness 3 Education 82 Anti-Semitism 4 Ehrenfest, Paul 85 Arms Race 8 Einstein, Elsa Löwenthal 88 Atomic Bomb 9 Einstein, Mileva Maric 93 Awards 16 Einstein Field Equations 100 Beauty and Equations 17 Einstein-Podolsky-Rosen Besso, Michele 18 Argument 101 Black Holes 21 Einstein Ring 106 Bohr, Niels Henrik David 25 Einstein Tower 107 Books about Einstein 30 Einsteinium 108 Born, Max 33 Electrodynamics 108 Bose-Einstein Condensate 34 Ether 110 Brain 36 FBI 113 Brownian Motion 39 Freud, Sigmund 116 Career 41 Friedmann, Alexander 117 Causality 44 Germany 119 Childhood 46 God 124 Children 49 Gravitation 126 Clothes 58 Gravitational Waves 128 CommunismCOPYRIGHTED 59 Grossmann, MATERIAL Marcel 129 Correspondence 62 Hair 131 Cosmological Constant 63 Heisenberg, Werner Karl 132 Cosmology 65 Hidden Variables 137 Curie, Marie 68 Hilbert, David 138 Death 70 Hitler, Adolf 141 iii ftoc.qrk 5/24/04 1:46 PM Page iv iv Contents Inventions 142 Poincaré, Henri 220 Israel 144 Popular Works 222 Japan 146 Positivism 223 Jokes about Einstein 148 Princeton 226 Judaism 149 Quantum Mechanics 230 Kaluza-Klein Theory 151 Reference Frames 237 League of Nations 153 Relativity, General Lemaître, Georges 154 Theory of 239 Lenard, Philipp 156 Relativity, Special Lorentz, Hendrik 158 Theory of 247 Mach, Ernst 161 Religion 255 Mathematics 164 Roosevelt, Franklin D. 258 McCarthyism 166 Russell-Einstein Manifesto 260 Michelson-Morley Experiment 167 Schroedinger, Erwin 261 Millikan, Robert 171 Solvay Conferences 265 Miracle Year 174 Space-Time 267 Monroe, Marilyn 179 Spinoza, Baruch (Benedictus) 268 Mysticism 179 Stark, Johannes 270 Myths and Switzerland 272 Misconceptions 181 Thought Experiments 274 Nazism 184 Time Travel 276 Newton, Isaac 188 Twin Paradox 279 Nobel Prize in Physics 190 Uncertainty Principle 280 Olympia Academy 195 Unified Theory 282 Oppenheimer, J.
    [Show full text]
  • Cosmic Microwave Background
    1 29. Cosmic Microwave Background 29. Cosmic Microwave Background Revised August 2019 by D. Scott (U. of British Columbia) and G.F. Smoot (HKUST; Paris U.; UC Berkeley; LBNL). 29.1 Introduction The energy content in electromagnetic radiation from beyond our Galaxy is dominated by the cosmic microwave background (CMB), discovered in 1965 [1]. The spectrum of the CMB is well described by a blackbody function with T = 2.7255 K. This spectral form is a main supporting pillar of the hot Big Bang model for the Universe. The lack of any observed deviations from a 7 blackbody spectrum constrains physical processes over cosmic history at redshifts z ∼< 10 (see earlier versions of this review). Currently the key CMB observable is the angular variation in temperature (or intensity) corre- lations, and to a growing extent polarization [2–4]. Since the first detection of these anisotropies by the Cosmic Background Explorer (COBE) satellite [5], there has been intense activity to map the sky at increasing levels of sensitivity and angular resolution by ground-based and balloon-borne measurements. These were joined in 2003 by the first results from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[6], which were improved upon by analyses of data added every 2 years, culminating in the 9-year results [7]. In 2013 we had the first results [8] from the third generation CMB satellite, ESA’s Planck mission [9,10], which were enhanced by results from the 2015 Planck data release [11, 12], and then the final 2018 Planck data release [13, 14]. Additionally, CMB an- isotropies have been extended to smaller angular scales by ground-based experiments, particularly the Atacama Cosmology Telescope (ACT) [15] and the South Pole Telescope (SPT) [16].
    [Show full text]