University of Dundee DOCTOR of PHILOSOPHY Epigenetic Dysregulation of Novel Candidate Genes in Melanoma Wang, Hexiao

Total Page:16

File Type:pdf, Size:1020Kb

University of Dundee DOCTOR of PHILOSOPHY Epigenetic Dysregulation of Novel Candidate Genes in Melanoma Wang, Hexiao University of Dundee DOCTOR OF PHILOSOPHY Epigenetic dysregulation of novel candidate genes in melanoma Wang, Hexiao Award date: 2013 Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 DOCTOR OF PHILOSOPHY Epigenetic dysregulation of novel candidate genes in melanoma Hexiao Wang 2013 University of Dundee Conditions for Use and Duplication Copyright of this work belongs to the author unless otherwise identified in the body of the thesis. It is permitted to use and duplicate this work only for personal and non-commercial research, study or criticism/review. You must obtain prior written consent from the author for any other use. Any quotation from this thesis must be acknowledged using the normal academic conventions. It is not permitted to supply the whole or part of this thesis to any other person or to post the same on any website or other online location without the prior written consent of the author. Contact the Discovery team ([email protected]) with any queries about the use or acknowledgement of this work. Epigenetic dysregulation of novel candidate genes in melanoma Hexiao Wang BSc, MSc Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Supervisors: Professor Charlotte Proby, Dr Tim Crook, Dr Gareth Inman. August 2013 Table of Contents Table of Contents ................................................................................................................. I List of Figures .................................................................................................................... IV List of Tables ..................................................................................................................... VII Abbreviations ................................................................................................................... VIII Declaration ......................................................................................................................... XI Acknowledgements .......................................................................................................... XII Abstract ........................................................................................................................... XIV Aims ................................................................................................................................. XVI Chapter 1 Introduction ....................................................................................................... 1 1.1 Cutaneous Melanoma (CM) ....................................................................................... 2 1.1.1 Epidemiology of melanoma ................................................................................ 3 1.1.2 Histological progression of melanoma.............................................................. 4 1.1.3 Subtypes of CM ................................................................................................... 7 1.1.4 Staging system of melanoma ............................................................................. 7 1.1.5 Risk factors for melanoma ............................................................................... 13 1.2 Genetic and epigenetic aberrations of melanoma................................................. 19 1.2.1 Genetic dysregulation of melanoma ................................................................ 19 1.2.2 Targeted therapies for melanoma .................................................................... 26 1.2.3 Epigenetic dysregulation of melanoma ........................................................... 28 Chapter 2 Materials and Methods ................................................................................ 39 2.1 Cell lines and culture conditions ............................................................................ 40 2.1.1 Human melanocyte and melanoma cell culture .............................................. 40 2.1.2 Human melanoma cell line culture for microarray .......................................... 42 2.1.3 Disassociation, freezing and recovery of cells ............................................... 43 2.2 Tissue and serum samples ..................................................................................... 44 2.3 Molecular biology methods .................................................................................... 45 2.3.1 DNA and RNA Purification ................................................................................ 45 2.3.2 Reverse transcription of mRNA to cDNA ........................................................ 49 2.3.3 Quantitative real-time polymerase chain reaction (qPCR) ............................. 50 I | P a g e 2.3.4 DNA Methylation analysis ................................................................................ 53 2.4 Protein procedures .................................................................................................. 61 2.4.1 Western blotting ................................................................................................ 61 2.4.2 Immunofluorescence ........................................................................................ 66 2.5 Cell biology assays ................................................................................................. 67 2.5.1 Transient transfection of short interfering RNA (siRNA)................................ 67 2.5.2 Methylation reversal assay ............................................................................... 70 2.5.3 Hypoxia treatment ............................................................................................. 70 2.5.4 Cell counting ..................................................................................................... 71 2.6 Microarray analysis ................................................................................................. 71 2.6.1 Methylation reversal assay with expression microarray ................................ 71 2.6.2 Expression microarray ..................................................................................... 72 2.6.3 Methylation microarray ..................................................................................... 72 2.7 Statistics .................................................................................................................. 73 Chapter 3 Identification of candidate biomarkers by systematic approaches ............. 74 3.1 Introduction ............................................................................................................. 75 3.1.1 Tissue factor pathway inhibitor 2 (TFPI2) ........................................................ 77 3.1.2 Early growth response gene 2 (EGR2) ............................................................ 79 3.1.3 Dickkopf homolog 1 (DKK1) ............................................................................. 80 3.1.4 SMAD family member 3 (SMAD3) ..................................................................... 81 3.1.5 TSC22 domain family, member 1 (TSC22D1) .................................................. 82 3.2 Results ..................................................................................................................... 82 3.2.1 Identification of candidate genes by methylation reversal assay combined with gene expression profiling ................................................................................. 82 3.2.2 Identification of candidate genes by systematic methylation profiling and gene expression profiling in paired melanoma cell lines...................................... 111 3.3 Discussion ............................................................................................................. 117 Chapter 4 Methylation investigation of candidate genes NT5E, DUSP2, and Dab2. .. 123 4.1 Introduction ........................................................................................................... 124 4.1.1 NT5E (ecto-5’-nucleotidase, CD73) ................................................................ 124 4.1.2 DUSP2 (Dual-specificity phosphatase 2) ....................................................... 126 4.1.3 Dab2 (Disabled-2) ............................................................................................ 128 4.2 Results ................................................................................................................... 129 4.2.1 NT5E methylation in melanoma ..................................................................... 129 4.2.2 DUSP2 methylation in melanoma................................................................... 138 4.2.3 Dab2 methylation in melanoma ...................................................................... 146 II | P a g e 4.3 Discussion
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • The Molecular Signature of the Stroma Response in Prostate
    RESEARCH ARTICLE The Molecular Signature of the Stroma Response in Prostate Cancer-Induced Osteoblastic Bone Metastasis Highlights Expansion of Hematopoietic and Prostate Epithelial Stem Cell Niches Berna C. O¨ zdemir1., Janine Hensel1., Chiara Secondini1, Antoinette Wetterwald1, Ruth Schwaninger1, Achim Fleischmann2, Wolfgang Raffelsberger3, OPEN ACCESS Olivier Poch4, Mauro Delorenzi5, Ramzi Temanni6, Ian G. Mills7, Gabri van der Citation: O¨ zdemir BC, Hensel J, Secondini C, Pluijm8, George N. Thalmann1, Marco G. Cecchini1* Wetterwald A, Schwaninger R, et al. (2014) The Molecular Signature of the Stroma Response in 1. Urology Research Laboratory, Department of Urology and Department of Clinical Research, University of Prostate Cancer-Induced Osteoblastic Bone Bern, Bern, Switzerland, 2. Institute of Pathology, University of Bern, Bern, Switzerland, 3. Institut Ge´ne´tique Metastasis Highlights Expansion of Hematopoietic Biologie Mole´culaire Cellulaire (IGBMC), Strasbourg, France, 4. ICube UMR7357, University of Strasbourg, and Prostate Epithelial Stem Cell Niches. PLoS Strasbourg, France, 5. Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne ONE 9(12): e114530. doi:10.1371/journal.pone. and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland, 6. Biomedical Informatics Division, Sidra 0114530 Medical and Research Center, Doha, Qatar, 7. Prostate Cancer Research Group, Norway Centre for Editor: Adriano Angelucci, University of L9Aquila, Molecular Medicine (NCMM), University of Oslo, Oslo, Norway,
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • Curriculum Vitae Kathleen A. Trychta Program in Toxicology University Of
    Depletion of endoplasmic reticulum calcium triggers the loss of ER resident proteins Item Type dissertation Authors Trychta, Kathleen Anne Publication Date 2019 Abstract The endoplasmic reticulum (ER) contains proteins that carry out the diverse functions of the ER including calcium storage, protein folding, modification, and trafficking, lipid metabolism, and drug detoxification. When soluble ER resident proteins wi... Keywords Cellular biology; Molecular biology; Neurosciences; ER retention sequence; KDEL receptor; oxygen-glucose deprivation; Calcium; Endoplasmic Reticulum; Ischemia Download date 10/10/2021 05:06:38 Link to Item http://hdl.handle.net/10713/11613 Curriculum Vitae Kathleen A. Trychta Program in Toxicology University of Maryland, Baltimore Date: July 2019 Contact Information: [email protected] EDUCATION University of Maryland, Baltimore, MD August 2016-Present • Graduate Program • Molecular and Mechanistic Toxicology Colgate University, Hamilton, NY May 2013 • Bachelor of Arts (with honors) • Major: Cellular Neuroscience • Minor: Biology RESEARCH EXPERIENCE National Institutes of Health, Baltimore, MD August 2016-Present National Institute on Drug Abuse Pre-Doctoral Fellow (Dr. Brandon Harvey) • Study the departure of endoplasmic reticulum (ER) resident proteins from the ER in response to pathological conditions and propose a novel pathophysiological phenomenon defined as “ER exodosis” • Develop an assay to longitudinally monitor ER calcium depletion in vitro and in vivo using the specificity of an endogenous
    [Show full text]
  • Evidence of Y Chromosome Long Non-Coding Rnas Involved in the Radiation Response of Male Non-Small Cell Lung Cancer Cells
    Graduate Theses, Dissertations, and Problem Reports 2020 Evidence of Y Chromosome Long Non-Coding RNAs involved in the Radiation Response of Male Non-Small Cell Lung Cancer Cells Tayvia Brownmiller West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Cancer Biology Commons, Cell Biology Commons, Genetics Commons, Molecular Genetics Commons, and the Radiation Medicine Commons Recommended Citation Brownmiller, Tayvia, "Evidence of Y Chromosome Long Non-Coding RNAs involved in the Radiation Response of Male Non-Small Cell Lung Cancer Cells" (2020). Graduate Theses, Dissertations, and Problem Reports. 7784. https://researchrepository.wvu.edu/etd/7784 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Evidence of Y Chromosome Long Non-Coding RNAs involved in the
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Mechanism-Driven Hypothesis Generation Support for a Predictive Adverse Effect in Colorectal Cancer Treatment
    Aus dem Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Lehrstuhl Biometrie und Bioinformatik, Ludwig-Maximilians-Universität München Vorstand: Prof. Dr. Ulrich Mansmann Mechanism-driven Hypothesis Generation Support for a Predictive Adverse Effect in Colorectal Cancer Treatment Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München vorgelegt von Sebastian Schaaf aus Bergisch Gladbach 2018 ______________________________________________________ Mit Genehmigung der Medizinischen Fakultät der Universität München Betreuer: Prof. Dr. Ulrich Mansmann Zweitgutachter: Prof. Dr. Volker Heun Dekan: Prof. Dr. med. dent. Reinhard Hickel Tag der mündlichen Prüfung: 15.02.2019 Eidesstattliche Versicherung Schaaf, Sebastian Name, Vorname Ich erkläre hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Thema „Mechanism-driven Hypothesis Generation Support for a Predictive Adverse Effect in Colorectal Cancer Treatment“ selbstständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe. Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. Kerpen, 15.01.2020___________ Sebastian_Schaaf_________________
    [Show full text]
  • A Network Inference Approach to Understanding Musculoskeletal
    A NETWORK INFERENCE APPROACH TO UNDERSTANDING MUSCULOSKELETAL DISORDERS by NIL TURAN A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy College of Life and Environmental Sciences School of Biosciences The University of Birmingham June 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Musculoskeletal disorders are among the most important health problem affecting the quality of life and contributing to a high burden on healthcare systems worldwide. Understanding the molecular mechanisms underlying these disorders is crucial for the development of efficient treatments. In this thesis, musculoskeletal disorders including muscle wasting, bone loss and cartilage deformation have been studied using systems biology approaches. Muscle wasting occurring as a systemic effect in COPD patients has been investigated with an integrative network inference approach. This work has lead to a model describing the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. This model has shown for the first time that oxygen dependent changes in the expression of epigenetic modifiers and not chronic inflammation may be causally linked to muscle dysfunction.
    [Show full text]
  • LEPREL2 (T-20): Sc-243253
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . LEPREL2 (T-20): sc-243253 BACKGROUND APPLICATIONS LEPREL2 (leprecan-like protein 2), also known as P3H3 (prolyl 3-hydroxylase LEPREL2 (T-20) is recommended for detection of LEPREL2 of mouse, rat and 3) or protein B, is a 736 amino acid protein belonging to the leprecan family, human origin by Western Blotting (starting dilution 1:200, dilution range a family of collagen prolyl hydroxlysases required for proper collagen biosyn - 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range thesis, folding and assembly. LEPREL2 contains one Fe2OG dioxygenase 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range domain and four TPR repeats. LEPREL2 has prolyl 3-hydroxylase activity cat - 1:30-1:3000); non cross-reactive with LEPREL1. alyzing the post-translational formation of 3-hydroxyproline in -Xaa-Pro-Gly- LEPREL2 (T-20) is also recommended for detection of LEPREL2 in additional sequences in collagens, especially types IV and V. Localized in the endoplas - species, including canine and porcine. mic reticulum, LEPREL2 is weakly expressed in heart, lung, ovary and skele - tal muscle. Two isoforms of LEPREL2 are produced by alternative splicing Suitable for use as control antibody for LEPREL2 siRNA (h): sc-95718, events. The gene encoding LEPREL2 maps to human chromosome 12p13.31 LEPREL2 siRNA (m): sc-146709, LEPREL2 shRNA Plasmid (h): sc-95718-SH, and mouse chromosome 6 F2. LEPREL2 shRNA Plasmid (m): sc-146709-SH, LEPREL2 shRNA (h) Lentiviral Particles: sc-95718-V and LEPREL2 shRNA (m) Lentiviral Particles: REFERENCES sc-146709-V.
    [Show full text]
  • An Integrative Genomic Analysis of the Longshanks Selection Experiment for Longer Limbs in Mice
    bioRxiv preprint doi: https://doi.org/10.1101/378711; this version posted August 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: 2 An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice 3 Short Title: 4 Genomic response to selection for longer limbs 5 One-sentence summary: 6 Genome sequencing of mice selected for longer limbs reveals that rapid selection response is 7 due to both discrete loci and polygenic adaptation 8 Authors: 9 João P. L. Castro 1,*, Michelle N. Yancoskie 1,*, Marta Marchini 2, Stefanie Belohlavy 3, Marek 10 Kučka 1, William H. Beluch 1, Ronald Naumann 4, Isabella Skuplik 2, John Cobb 2, Nick H. 11 Barton 3, Campbell Rolian2,†, Yingguang Frank Chan 1,† 12 Affiliations: 13 1. Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany 14 2. University of Calgary, Calgary AB, Canada 15 3. IST Austria, Klosterneuburg, Austria 16 4. Max Planck Institute for Cell Biology and Genetics, Dresden, Germany 17 Corresponding author: 18 Campbell Rolian 19 Yingguang Frank Chan 20 * indicates equal contribution 21 † indicates equal contribution 22 Abstract: 23 Evolutionary studies are often limited by missing data that are critical to understanding the 24 history of selection. Selection experiments, which reproduce rapid evolution under controlled 25 conditions, are excellent tools to study how genomes evolve under strong selection. Here we 1 bioRxiv preprint doi: https://doi.org/10.1101/378711; this version posted August 19, 2018.
    [Show full text]
  • THE USE of WHOLE EXOME SEQUENCING to DETECT NOVEL GENETIC DISORDERS: TWO CASES and an ASSESSMENT of the TECHNOLOGY by Lauren
    THE USE OF WHOLE EXOME SEQUENCING TO DETECT NOVEL GENETIC DISORDERS: TWO CASES AND AN ASSESSMENT OF THE TECHNOLOGY by Lauren Westerfield BS Psychology, Florida State University, 2011 Submitted to the Graduate Faculty of Graduate School of Public Health in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH Graduate School of Public Health This thesis was presented by Lauren Westerfield It was defended on March 26, 2013 and approved by Robin Grubs, Ph.D., Assistant Professor, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh M. Michael Barmada, Ph.D., Associate Professor, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh Thesis Director: Gerard Vockley, M.D., Ph.D., Professor, Department of Pediatrics, School of Medicine, University of Pittsburgh ii Copyright © by Lauren Westerfield 2013 iii THE USE OF WHOLE EXOME SEQUENCING TO DETECT NOVEL GENETIC DISORDERS: TWO CASES AND AN ASSESSMENT OF THE TECHNOLOGY Lauren Westerfield, MS University of Pittsburgh, 2013 ABSTRACT Over the past several years whole exome sequencing (WES) by high-throughput sequencing of target-enriched genomic DNA has become both technically feasible and financially practical as a means of studying Mendelian disorders. It is also entering the clinical realm as a powerful diagnostic tool for cases that have eluded answers and a cost effective one for cases with a suspected genetically heterogeneous disorder or set of differentials. This thesis examines the strategies for use and impact of such a technology in both the research and clinical setting. It presents an analysis of two cases in which WES was used to determine the causative mutation in the phenotype of an unknown/undiagnosed genetic disorder.
    [Show full text]